必修一_第一章_集合(集合讲义_做的很细_适合初学者)之欧阳数创编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合
1.1 集合的含义与表示2
1.11 集合的含义2
1.12集合的表示5
1.2 子集、全集、补集9
1.3 交集、并集13
第一章集合
空集
一、知识梳理
1.集合的含义:一些元素组成的构成一个集合(set).
注意:(1)集合是数学中原始的、不定义的概念,只作描述.
(2)集合是一个“整体.
(3)构成集合的对象必须是“确定的”且“不同”的
2.集合中的元素:
集合中的每一个对象称为该集合的元素(element).简称
元.
集合一般用大写拉丁字母表示,如集合A,
元素一般用小写拉丁字母表示.如a,b,c……等.
思考:构成集合的元素是不是只能是数或点?
【答】
3.集合中元素的特性:
(1)确定性.设 A 是一个给定的集合,x是某一元素,则x是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的.
(3)无序性.集合与其中元素的排列次序无关.
4.常用数集及其记法:
一般地,自然数集记作____________正整数集记作__________或___________整数集记作________有理数记作_______实数集记作________
5.元素与集合的关系:
如果a是集合A的元素,就记作__________ 读作“___________________”;
如果a不是集合A的元素,就记作______或______读作“_______________”;
6.集合的分类:
按它的元素个数多少来分:
(i) _________________叫做有限集;
(ii)________________________叫做无限集;
(iii)_______________叫做空集,记为_____________
二、例题讲解
1、运用集合中元素的特性来解决问题
例1.下列研究的对象能否构成集合
(1)世界上最高的山峰(2)高一数学课本中的难题(3)中国国旗的颜色
(4)book中的字母(5)立方等于本身的实数
(6)不等式2x-8<13的正整数解
【解】
点评:判断一组对象能否组成集合关键是能否找到一个明确的标准,按照这个确定的标准,它要么是这个集合的元素,要么不是这个集合的元素,即元素确定性.
例2:集合M中的元素为1,x,x2-x,求x的范围?
分析:根据集合中的元素互异性可知:集合里的元素各不相同,联列不等式组.
点评: 元素的特性(特别是互异性)是解决问题的切入点.
例3:三个元素的集合1,a,b
a,也可表示为0,a2,
a+b,求a2005+ b2006的值.
分析:三个元素的集合也可表示另外一种形式,说明这两个集合相同,而该题目从特殊元素0入手,可以省去繁琐的讨论.
点评:从特殊元素入手,灵活运用集合的三个特征.
2、运用元素与集合的关系来解决一些问题
例4:集合A中的元素由(a∈Z,b∈Z)组成,判断下列元素与集合A的关系?
(1)0 (2(3
分析:先把x写成的形式,再观察a,b是否为整数.点评:要判断某个元素是否是某个集合的元素,就是看这个元素是否满足该集合的特性或具体表达形式.
例5:不包含-1,0,1的实数集A满足条件a∈A,则1
1
a
a + -
∈A,如果2∈A,求A中的元素?
分析:该题的集合所满足的特征是由抽象的
语句给出的,把2这个具体的元素代入求出A的另
一个元素,但该题要循环代入,求出其余的元素,
同学们可能想不到.
三、巩固练习
1.下列研究的对象能否构成集合
①某校个子较高的同学;
②倒数等于本身的实数
③所有的无理数
④讲台上的一盒白粉笔
⑤中国的直辖市
⑥中国的大城市
2.下列写法正确的是___________________
Q
②当n∈N时,由所有(-1)n的数值组成的集合为无限集
R
④-1∈Z ⑤由book 中的字母组成的集合与元素k ,o ,b 组
成的集合是同一个集合
把正确的序号填在横线上
3.用∈或∉填空
1_______N -3_________N
0__________N
________N
1_______Z -3_________Q
0__________Z
________R
0_______N* π________R
227_______Q cos300_______Z
4. 由实数-x ,|x|
,
,x
,组成的集合最多含
有元素的个数
是_________________个
1.12集合的表示
一、知识梳理 1. 集合的常用表示方法:
(1)列举法
将集合的元素一一列举出来,并____________________
集合的表示
描述法
列举法
表示集合的方法叫列举法.
注意:
①元素与元素之间必须用“,”隔开;
②集合的元素必须是明确的;
③各元素的出现无顺序;
④集合里的元素不能重复;
⑤集合里的元素可以表示任何事物.
(2)描述法
将集合的所有元素都具有性质()表示出来,写成_________的形式,称之为描述法.
注意:
①写清楚该集合中元素满足性质;
②不能出现未被说明的字母;
③多层描述时,应当准确使用“或”,“且”;
④所有描述的内容都要写在集合的括号内;
⑤用于描述的语句力求简明,准确.
思考:还有其它表示集合的方法吗?
【答】
文字描述法:是一种特殊的描述法,
如:{正整数},{三角形}
图示法(Venn图):用平面上封闭曲线的内部代集合.
2. 集合相等
如果两个集合A,B所含的元素完全相同,