提高交流输电系统稳定性的措施

提高交流输电系统稳定性的措施
提高交流输电系统稳定性的措施

摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运行的重要性,从而得出了提高交流输电系统稳定性的具体措施。关键词:输电系统稳定性静态暂态措施1输电系统稳定性的重要性输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发电机的电势e、减小系统电抗x、提高和稳定系统电压u等方面着手。二是尽可能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。 2提高交流输电系统稳定性的措施采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具有e’q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂态电抗x’d了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励磁电压,减小了e’q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势增大。改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础,改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输电系统的稳定性。快速切除短路和自动重合闸:快速切除故障是提高暂态稳定最根本、最有效的措施,同时又是简单易行的措施。快速切除故障的作用是减小加速面积,增大减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减少了电动机失速和停顿的危险,提高了负荷的稳定性。切除故障时间是继电保护装置动作时间和断路器动作时间的总和。目前可达到短路后0.06s 切除故障线路,其中0.02s为保护装置动作时间,0.04s为断路器动作时间。高压输电线路的短路故障,绝大多数是瞬时性的,故障线路切除后通过自动重合闸装置立即重新投入,大多数情况下可以恢复正常运行,成功率可达90%以上。超高压输电线路的故障大多数是单相接地,这类故障可以采用按相动作的单相重合闸装置。这种装置自动选出故障相切除,经过一小段时间后又重新合闸。由于只切除一相,送电端的发电厂和受端系统没有完全失去联系,故提高了系统的暂态稳定性。

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

电力系统三个实验

实验一:一机—无穷大系统稳态运行方式实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。 图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验 在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验 按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。 表3-1 注:U Z —中间开关站电压; ?U —输电线路的电压损耗; △U —输电线路的电压降落

国家电网公司加强配电网规划建设 全面提高供电可靠性

国家电网公司加强配电网规划建设全面提高供电可靠性 北极星输配电网讯:1 月28 日,记者从国家电网公司2016 年发展工作会议了解到,2016 年国家电网公司将进一步加强配电网规划建设,全面提高供电可靠性。2016 年,国家电网公司经营范围内城网、农网客户平均停电时间将不超过3.1 小时、12.7 小时,同比缩短0.1 小时、0.4 小时。 十三五期间,我国经济年均增长底线是6.5%以上,预计2020 全国社会用电量将达到8.0 万亿度,人均用电量5691 度。此外,国家大力推进分布式能源和电动汽车等多元化负荷发展,2020 年,预计分布式光伏装机达7000 万千瓦,电动汽车保有量达500 万辆,微电网和储能装置快速发展,这对配电网的安全性、经济性、互动性提出了更高要求,需要进一步提高配电网建设改造标准,促进源网荷协调互动,实现传统配电网向智能配电网的转型升级。 2016 年,国家电网公司将按照统一规划、统一标准、安全可靠、坚固耐用的原则,深入贯彻资产全寿命周期管理理念,优化完善电网规划,并认真执行配电网建设改造行动计划,加快实施农网改造升级工程,有效解决农网低电压、卡脖子、动力电不足等问题,上半年完成2015 年国家新增中西部农网项目,年内完成新增东部七省(市)农网和城镇配电网工程。国家电网公司还将全面开展配电网标准化建设,依据规划设计导则,按照典型目标网架要求,优化完善配电网结构,提高线路互倒互带和环网供电能力。 此外,国家电网公司将加快推进国网阳光扶贫行动,结合农网改造升级,年内完成1.3 万个自然村通动力电、2.7 万个自然村动力电改造工程;落实国家光伏扶贫工作要求,建设光伏扶贫项目接网工程,帮扶公司定点扶贫五县(区)建设集中式光伏电站。

提高交流输电系统稳定性的措施(一)

提高交流输电系统稳定性的措施(一) 摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运行的重要性,从而得出了提高交流输电系统稳定性的具体措施。 关键词:输电系统稳定性静态暂态措施 1输电系统稳定性的重要性 输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。 2提高交流输电系统稳定性的措施 采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具有E’q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂态电抗x’d了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励磁电压,减小了E’q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势增大。 改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础,改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输电系统的稳定性。 快速切除短路和自动重合闸:快速切除故障是提高暂态稳定最根本、最有效的措施,同时又是简单易行的措施。快速切除故障的作用是减小加速面积,增大减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减少了电动机失速和停顿的危险,提高了负荷的稳定性。切除故障时间是继电保护装置动作时间和断路器动作时间的总和。目前可达到短路后0.06s切除故障线路,其中0.02s为保护装置动作时间,0.04s为断路器动作时间。高压输电线路的短路故障,绝大多数是瞬时性的,

提高配电供电可靠性的管理措施(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 提高配电供电可靠性的管理措 施(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

提高配电供电可靠性的管理措施(标准版) 1.加强检修计划管理,推行一条龙检修。 在检修管理工作中,将可靠性管理与生产计划管理紧密结合,安排每项检修时,各单位配合工作,合理高效利用停电时间,杜绝重复停电。 2.推广新产品,提高配网装备水平。大力推广采用免维修,免维护设备,如SF6开关,真空开关等。 3.提高业务人员技术水平,杜绝各种可能的人为误操作。 4.利用配网自动化手段进行故障管理。 故障处理的快慢,直接影响供电可靠性的高低。配电网综合自动化处理采取一系列措施包括故障检测、定位、故障点隔离、网络重构以及恢复供电。首先利用故障信息的采集处理功能,对不同故障点进行故障检测和定位,并结合一次性系统进行故障隔离,通过遥控完成恢复供电。

5.加强配电设备,输配电线路运行管理 严格按照规定对电气设备,电力线路进行巡视、维护。实行24小时值班制,对发现的问题及时处理。开展特巡、夜巡,减少事故隐患,消除事故萌芽,确保配电设备、输电线路的正常运行。 6.加快农电管理步伐,制定与当前形式相匹配的农电企业现代化管理模式。 7.从管理、技术、科技思维以及电力营销上,都要加强配电人员的自身素质建设,为供电可靠性创建一个良好的氛围。 电力企业的不断发展和管理程度的逐步规范与标准,农村配电网的可靠性指标,由目前单纯的数字统计,会逐步提高到应用于电网规划,技术设计以及日常生产的领域中去,供电可靠性指标会逐年提高。 云博创意设计 MzYunBo Creative Design Co., Ltd.

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

提高交流输电系统稳定性的措施

提高交流输电系统稳定性的措施 摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运 行的重要性,从而得出了提高交流输电系统稳定性的具体措施。 关键词:输电系统稳定性静态暂态措施 1 输电系统稳定性的重要性 输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系 统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定 因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。 从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂 态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电 机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会 失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和 输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发 电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可 能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子 轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。 2 提高交流输电系统稳定性的措施 采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具 有E'q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂 态电抗x'd了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小 发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化 率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减 小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气 距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良 好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息 下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁 系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励 磁电压,减小了E'q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势 增大。 改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础, 改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统 的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与 输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的 电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统 还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调 相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至 变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电 气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调 相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过 采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输

提高配电网供电可靠性技术措施方案

整体解决方案系列 提高配电网供电可靠性技 术措施 (标准、完整、实用、可修改)

编号:FS-QG-75904提高配电网供电可靠性技术措施 Technical measures to improve the reliability of power distributen n etwork power supply 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1. 提高发、供电设备的可靠性:采用高度可靠的发、供电设备,做好发、供电设备的维护运行工作。 2. 提高供电线路的可靠性,对系统中重要线路采用双回线,目前农电配网中,架设双回线的还比较少,双回线路供电,输送能力大,稳定储备高,输电线路的可靠性很稳定。 3. 选择合理的电力系统结构和接线。 4. 选择合理的运行方式。 5. 建立配电网络自动化:选择合理的与本地相适应的综合自动化系统方案,配网自动化在实施一整套监控措施的同 时,加强对电网是实时状态、设备、开关动作次数、负荷情况,潮流动向等数据进行采集,实施网络管理,拟定优化方案,提高供电可靠性。 6. 主干线增设线路开关,架设分支,把分支线路故障停电范围限制

在支线范围内,减少停电范围。 7. 在人口较集中、树线矛盾突出的地方采用架空绝缘线或地下电缆 敷设。 8. 中性点接地和配套技术的应用。 随着电缆广泛采用,对地容性电流越来越高,中性点运行方式的改变和配套技术的应用,是改善系统过电压对设备的危害、减少绝缘设备破坏造成的事故,增强溃线自动化对单项接地故障的判别能力的重要手段。 9. 增大导线截面,提线路输送客量。 10. 增设10千伏开闭所,增加10千伏出线回路数,缩短10千伏线路供电半径。 11. 增设变电站之间的联络线,提高各站负荷的转供能力。 12. 开展带电作业,减少停电时间,在严格执行有关规定和保证安全的前提下,推行带电作业,在10千伏线路上使用安装方便,运行可靠的AMF线夹,与配套的AMP带电作业工具配合进行带电作业,可 减少检修停电时间。 请输入您公司的名字 Foon shi on Desig n Co., Ltd

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

提高供电可靠性措施研究

提高供电可靠性措施研究 随着我国社会的不断发展,人民生活水平的不断提高,电力客户对电能的可靠性供应的要求也越来越高。文章主要分析影响电网供电可靠性的因素,并提出相应的技术和管理措施来提高电网供电可靠性。 标签:供电可靠性;影响因素;提高措施 前言 配电网络是电力系统中直接为广大用户分配电能的重要环节,与人们的生产和生活密切相关,配电网供电可靠性的高低直接反映电力系统供电的整体水平。电力系统70%的供电都是通过配电网输送到用电客户的。电力系统发生电力故障80%都是发生在配电网的。因此配电网可靠性是整个电力系统可靠性最重要的组成部分。研究影响配电网可靠性的因素并提出可行且有效的改善和提高配电网可靠性的具体措施,对提高整个供电可靠性具有重要的意义。 1 影响供电可靠性因素 1.1 配电网供求目前无法满足我国高速发展的电力负荷的需求 由于10kV存在着供电半径小、供电能力制约的问题导致供电不足。但是若将110kV降压至10kV,建设变电站多,花费大;而将220kV降至10kV,则出线回路数多,导线截面粗,出线难配置。同时在用电高峰时段,使用110kV或220kV降压至10kV,10kV电网的负荷电流大,容易导致用电设备故障。有些地区内无变电站点,供电能力薄弱,无法满足负荷发展需求。供电范围不合理,线路供电距离较远。 1.2 架空线路多和设备老化严重 农村地区架空线路较多,架空裸导线较多,线路接线模式以架空线路多分段单联络为主,网架结构薄弱,环网率及可转供率不高,变电站间联络率不强,可靠性水平较低。架空线路暴露在大气环境中,易受到雷电袭击、雨淋、湿雾以及自然和工业污秽等造成停电事故。某些供电设备长时间运行或长期重载运行造成老化,或者产品设备没有及时更新换代对供电可靠性指标有很大影响。 1.3 设备选型或者施工安装原因 用户客户对设备的选型也会对供电可靠性的产生显著影响。有些客户交给供电局的设备大多选用价格低廉的但是性能不高设备。产品质量不高,运行一段时间后就会发生故障。有些设备是由于施工安装时施工工艺不合格,导致运行一段时间后发生故障。尤其以电缆头故障居多。施工安装工艺不良,导致线路经常发生故障,对供电可靠性指标的提高也有一定的影响。

如何通过科学管理提高供电可靠性

如何通过科学管理提高供电可靠性 供电系统用户供电可靠性,是电力可靠性管理的一项重要内容,直接体现供电系统对用户的供电能力,反映了电力工业对国民经济电能需求的满足程度,是供电系统的规划、设计、基建、施工、设备选型、生产运行、供电服务等方面的质量和管理水平的综合体现。 标签:科学管理;供电;可靠性 1 供电可靠性目标描述 采用现代化科学技术和管理方法,加大电网投资力度,强化电网结构,加大可靠性管理与考核力度,减少计划检修、临时检修,提高供电可靠性。供电可靠性管理的范围涉及公司的生产技术部、调度所、输变电工区、供电所、施工单位等部门,对外涉及客户工程的业扩报装、检修和事故处理。影响供电可靠性的主要因素如图1。 图1 影响供电可靠性因素分解图 2 供电可靠性工作介绍 2.1 供电可靠性管理流程图供电可靠性管理流程图如图2。 图2 供电可靠性管理流程图 2.2 供电可靠性的组织保障为了确保流程的严格实施,应成立由公司一把手为组长的领导小组,并在各相关科室设置供电可靠性管理专责。 2.3 供电可靠性的管理保障 2.3.1 加强计划管理,合理安排检修时间。加强对检修计划的管理,坚持年度检修计划、月度作业计划和周计划平衡工作,事前控制户时数,做好预测工作。严格实行供电可靠性定期分析制度,及时查找可靠性降低的原因,为电力规划、基本建设、生产运行、检修维护、营销管理提供切实可行的依据。加大考核力度,每月兑现奖惩,使供电可靠性管理贯穿于生产经营、电网建设全过程。坚持检修审批制度,由各单位每月將下月的检修计划报运维检修部,运维检修部可靠性专责根据每月可靠性分解的指标将检修计划进行统筹安排,制定下月检修计划,所安排的检修一律控制在考核指标范围内。对计划外的检修工作由主管领导审批,城网检修必须由经理批准后方可进行,减少计划外检修工作。合理安排检修时间,

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

劳斯判据判定稳定性

劳斯判据 即Routh-Hurwitz判据 一、系统稳定的必要条件 判据是判别系统特征根分布的一个代数判据。 要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件: 1)特征方程的各项系数都不等于零。 2)特征方程的各项系数的符号都相同。 此即系统稳定的必要条件。 按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。 二、系统稳定的充要条件 系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。 运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。 运用判据的关键在于建立表。建立表的方法请参阅相关的例题或教材。运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。 在应用判据还应注意以下两种特殊的情况: 1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。于是表的计算无法继续。为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。此时,系统为临界稳定系统。 2.如果在表中任意一行的所有元素均为0,表的计算无法继续。此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。这样,表中的其余各元就可以计算下去。出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳

定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。 三、相对稳定性的检验 对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法: 1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。 2)利用判据对新的特征方程进行稳定性判别。如新系统稳定,则说明原系统特征方程所有的根均在新虚轴之左边,(越大,系统相对稳定性越好。

10kV配电网提高供电可靠性之我见(正式版)

文件编号:TP-AR-L7892 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 10kV配电网提高供电可 靠性之我见(正式版)

10kV配电网提高供电可靠性之我见 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 建立供电可靠性领导小组,完善管理网络,提 高可靠性管理水平 1.1把供电可靠性管理工作作为企业工作的重 点,定期召开管理分析会,制定可靠性管理工作计 划,保证供电可靠性年初有计划,季度有分析,年末 有总结。同时明确各科室部门在可靠性管理工作中的 标准和职责,充分发挥各部门管理人员的积极性和创 造性,保证供电可靠性目标的实现。 1.2 认真学习贯彻新规程,培训可靠性管理人 员,为分析可靠性指标、计划检修、故障停电和重复

性停电等问题打好基础。 1.3加强基础资料管理和完善。为编制运行方式、计划检修和制定有关生产管理措施提供详实、准确的依据,同时也为电网可靠性评估提供计算依据。 1.4各部门要互相协作,广泛参与到配电管理、新增用户送电方案审批、停电计划会签和审批、计划外停电的批准、城网改造等工作中去。 1.5 坚持计划,控制临检。各单位在安排生产计划时,坚持计划停电,凡涉及供电可靠性指标的各种停电工作,均由运行单位统一申报月停电计划,组织有关单位召开检修计划会,进行协调、合并,做到“一线停多处干,一家申请多家工作”,最大限度地减少重复性停电,缩短停电时间。 2 提高设备技术装备水平 2.1实现10kV配电线路环网供电,不断加大配

怎样提高供电可靠性

怎样提高供电可靠性 农网改造中,进一步健全了组织机构,完善管理制度,加强了可靠性统计与分析,对检修、项目实行周停电计划。使农村电网的可靠性、安全性大大加强,农村电网的可靠性从1998年的0.99528增加到0.99689,同时事故也大大减少了。 我们局作为农村两网改造的试点县区,早已完成了农村电网的改造并实行了同网同价,在农网改造中,把加强农村电网的可靠性及安全性放在重要位置。以下主要谈谈农网建设中我们加强农村电网的可靠性及安全性的几点做法: 1 合理的配网结构 (1)双电源点: 我区原有220kV变电站一个,110kV变电站一个,35kV变电站三个,有35kV线路9条。农网改造中又新建了35kV变一个、35kV线路一条,约 2.1km ,改造了35kV线路约10km ,使每个变电

站保证有两个电源点供电。部分变电站之间形成环网形式,增加了变电站供电的可靠性。 (2)配网的环网连接: 农网改造中我们新建了10kV线路约41.8km ,改造了 6.22km ,新装了真空断路器约15台,以上大规模的改造与新建,进一步使从不同开关站(变电站)连接的10kV干线末端通过开关和单刀,形成环网结构,同时在每一条主线中间用真空断路器和闸刀进行分段,以缩小故障及检修时的停电范围,从不同公用变出来的两条低压主干线末端,也通过开关和刀闸进行联接,使低压线路也连成环网结构。以上改造进一步加强了农网的互联互供能力,缩小了故障及检修时的停电范围,增加了电网的可靠性及安全性。 (3)加强农网规划,增加导线线径,提高农村电网的供电裕度: 农网改造中对所有的高低压配网及农村公用变进一步加强规划及设计,主管部门严格把关;改造中科学的增大了导线线径,农村10kV线路主干线基本上用150mm 2导线或120mm 2导线,农村公用变出线电缆用95mm 2,综合线主线70mm 2,分支线

提高配电网供电可靠性的技术措施(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 提高配电网供电可靠性的技术 措施(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

提高配电网供电可靠性的技术措施(标准 版) 1.提高发、供电设备的可靠性:采用高度可靠的发、供电设备,做好发、供电设备的维护运行工作。 2.提高供电线路的可靠性,对系统中重要线路采用双回线,目前农电配网中,架设双回线的还比较少,双回线路供电,输送能力大,稳定储备高,输电线路的可靠性很稳定。 3.选择合理的电力系统结构和接线。 4.选择合理的运行方式。 5.建立配电网络自动化:选择合理的与本地相适应的综合自动化系统方案,配网自动化在实施一整套监控措施的同时,加强对电网是实时状态、设备、开关动作次数、负荷情况,潮流动向等数据进行采集,实施网络管理,拟定优化方案,提高供电可靠性。

6.主干线增设线路开关,架设分支,把分支线路故障停电范围限制在支线范围内,减少停电范围。 7.在人口较集中、树线矛盾突出的地方采用架空绝缘线或地下电缆敷设。 8.中性点接地和配套技术的应用。 随着电缆广泛采用,对地容性电流越来越高,中性点运行方式的改变和配套技术的应用,是改善系统过电压对设备的危害、减少绝缘设备破坏造成的事故,增强溃线自动化对单项接地故障的判别能力的重要手段。 9.增大导线截面,提线路输送客量。 10.增设10千伏开闭所,增加10千伏出线回路数,缩短10千伏线路供电半径。 11.增设变电站之间的联络线,提高各站负荷的转供能力。 12.开展带电作业,减少停电时间,在严格执行有关规定和保证安全的前提下,推行带电作业,在10千伏线路上使用安装方便,运行可靠的AMP线夹,与配套的AMP带电作业工具配合进行带电作

提高供电可靠性 优化供电服务

提高供电可靠性优化供电服务 摘要:供电可靠性是评价电网的一项重要指标,随着经济的发展,人们对电的依赖程度越来越高,相应地对供电可靠性提出了更高的要求,本文就此进行探讨。 关键词:电力系统供电可靠性措施 电力系统供电可靠性把可靠性工程的一般原理和方法与电力系统的供电问题相结合,便形成了电力系统供电可靠性。供电可靠性渗透到电力系统的规划、设计、电力系统的运行管理等各个方面。可靠性这门学科在电力系统的应用得以蓬勃发展,其主要原因为:随着经济的发展,电力系统不断向高电压、远距离、大容量发展,在要求提高经济效益的同时,安全可靠和电能质量的问题也日益突出;近若干年以来,国内外大电网发生的大面积长时间停电事故,不但造成巨大的经济损失,而且危及社会秩序。因此,定量地评定和改善电力系统供电可靠性,显得更加必要和迫切。 一、供电可靠性的重要性; 随着经济技术的发展,供电系统可靠性已越来越占有重要位置。系统处于电力系统的末端,直接与用户相连,是包括发电、输变电和配电在内的整个电力系统与用户联系、向用户供应电能和分配电能的重要环节。同时,供电系统大多采用辐射式的网状结构,对单故障比较敏感。供电可靠性直接关系到国民经济和居民生活。由此,对供电系统尤其是供电系统可靠性的研究是保证供电质量、实现电力工业现代化的重要手段,对促进和改善电力工业生产技术和管理,提高经济

效益和社会效益,进行城市网络建设和改造有着重要作用。在市场经济条件下,对用户的可靠供电是电力企业保证其自身经济发展的支柱。供电可靠性是创建社会主义一流供电企业必须达到的主要技术指标之一,是企业管理工作的一项重要基础工作,也是一项综合性的工作。 二、影响供电可靠性的原因 (1)电网结构不合理。电源点少,多为独立供电,供电半径长,技术标准低,运行不灵活、不可靠;线路分段开关数量少,预安排停电时,停电范围较大。 (2)设备老化、运行环境差,故障率高。常见故障如下: ①缺相运行。开关、跌落式熔断器有一相没有合严或没有合上;三相负荷不平衡,出现某相严重过负荷,使一相跌落;断线及接点氧化接触不良等原因造成的缺相运行。 ②接地。绝缘子、避雷器、跌落保险的瓷体,由于表面和瓷裙内积满灰尘及污垢;质量有问题,瓷体产生裂纹、掉瓷,绝缘强度下降,下雨受潮接地;通道清理不及时使树枝触碰导线等原因造成的接地。 ③倒杆。外力破坏(如车撞电杆、吊车挂断导线,建筑施工时向下扔杂物拉倒电杆);线路断线或拉线断造成电杆倾斜;暴风雨、洪水等自然灾害使杆根土壤严重流失等原因造成的倒杆。 ④断线。气候变化或施工不当,使导线弛度过紧而拉断导线;外力破坏造成相间短路而烧断导线;线路长期过负荷,接点接触不良等原因造成的断线。

浅谈提高输电系统稳定性的方法

浅谈提高输电系统稳定性的方法 摘要输电系统的根本任务是尽可能的为用户提供安全、稳定、经济的电力。本 文介绍了提高输电系统稳定性的方法。 关键词输电系统稳定性方法 随着大容量机组和远距离输电线路的不断增多和发展,电力系统的稳定性问 题日益突出,所以从电力系统的规划设计到日常的远行维护进行电力系统稳定性 的研究分析,并提出相应的提高和控制稳定的措施,以保证电力系统的安全经济 远行,尽可能避免大面积的停电事故。电力系统稳定性的提高和控制,可以从两 方面进行:一是在电力系统的结构及其主设备或元件(也称一次设备,如原动机, 发电机,高压输电线等)的接线方式和参数选择加以考虑;二是根据不同的系统结 构和运行要求采取附加的提高稳定的调节和控制措施,也称为提高电力系统稳定 性的二次系统措施。但无论采取何种措施,既要兼顾经济性,还要充分考虑其适 应性及可行性。 一、输电系统稳定性的提高与控制 1.设备的使用要具备一定的前瞻性。因为电力系统的运行方式经常发生变化,电力系统的规模和结构也是不断扩大和变化的,设备的更替也将影响电力系统的 参数和特性。所以,在按照一定的电力系统规模和运行参数设计提高稳定措施时,应充分考虑其适应性,使电力系统的结构和运行参数在允许的范围内发生变化时,只要适当改变提高稳定措施的参数,或者调整整定值,就可以适应新的情况。在 应用以微型计算机为控制核心的提高稳定性装置中,这种适应性更强。 2.提高稳定装置的可取性。在使自动化稳定装置时,经常会出误动作或拒动作问题,这些错误指令很可能造成严重的后果,因此所采用的稳定装置要具备一 定的可取性。提高可取性的措施有:重要装置双重化,能在装置出现故障时自动 切换,或者并联设备,用设有不同原理的后备措施,例如因提高稳定措施失误导 致稳定破坏,而使电力系统出现失步现象时,可由失步解列装置使电力系统自动 解列,避免事故的进一步扩大。 3.使用综合稳定控制装置。以往分散型的稳定控制装置均是根据设置点的就地信息(如电压、电流、频率等)来实现控制的。这种控制方法在一定时期内有效 提高了电力系统的稳定性。但是,随着电力系统的日趋复杂和扩大,这种分散的 就地控制由于缺乏全系统的信息,而且分别装在不同点的装置不能相互协调,所 以其作用就受到限制,在严重的情况下甚至不能有效地实现稳定控制。所以,在 复杂的电力系统中研究分区集中多功能(或综合)稳定控制装置,如将快关汽门、 电气制动、励磁控制等稳定控制措施的综合应用,发挥各种措施的特长,弥补各 自的不足,实现局部地区的最佳控制。 二、加强输电系统的安全运行管理 1.加强输电系统的改造。提高电网安全运行,必须有高的投入,必须加快城市电网建设与改造。按电网规划,优先安排增加电网传输质量,提高电网安全和 供电质量的项目,改善和优化输、配电网架结构,满足电网的N-1准则和合理的 变压器容载比。110kV高压配电网采用多回路辐射或环网接线供电,10kV线路采 用辐射分段联络,环网结构“手拉手”供电,减少故障范围,提高配网互供能力。 2.加强设备安全治理工作。供电设备隐患是影响电网安全的一个重要因素,生产部门应加强供电设备管理,定期对设备进行维护,消除设备存在的隐患问题,同时进行预防性试验,完全保证设备的高可靠性运行。正确处理好大修、技改等

相关文档
最新文档