葡萄酒论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
葡萄酒的分析及等级划分
[摘要]由于经济全球化越来越广泛,西方文化的逐渐渗入中国的东方文化,葡萄酒越来越被大众接受,其营养价值和保健价值也逐渐受到人们重视,葡萄酒认证和质量评价逐渐得到关注,因此我们想要对其进行研究。我们寻找到两组各10个评酒员对红白葡萄酒的评分数据以及葡萄酒和酿酒葡萄的理化指标来对葡萄酒进行分析及等级划分。首先先验证各组评分数据是否满足正态分布,再对红白葡萄酒的两组数据分别采用配对T检验检验两组数据是否有显著性差异,再根据方差判断哪组数据较为可靠。由于同一等级物品,其特性相近,因此用可靠的那组评分数据综合酿酒葡萄的理化指标采用聚类分析,对酿酒葡萄进行等级划分,各分为四个等级,用每个等级的中所有葡萄酒平均得分作为该等级的酿酒葡萄分数。查阅资料,分析可知酿酒葡萄的理化指标影响了葡萄酒的理化指标,因此考虑建立模型,描述一个葡萄酒的理化指标与酿酒葡萄的多个指标之间的关系,通过这种联系分析酿酒葡萄指标对葡萄酒理化指标的影响。最后用葡萄酒的得分作为葡萄酒的质量标准,综合剔除指标后的酿酒葡萄和葡萄酒的理化指标进行回归分析,并观察回归性是否显著。以此判断葡萄酒质量是否可以运用这两种指标来评价。
【关键词】正态检验;配对T检验;聚类分析;逐步回归分析
1.引言
葡萄酒中含有丰富的营养物质,至今多达 600 种以上的物质被测定出来。葡萄具有的营养和医疗作用很早就被认识, 葡萄酒因其特殊的营养价值和较好的保健效果,越来越受到广大消费者的欢迎。在此形势下,葡萄酒认证和质量评价得到关注。葡萄酒的质量,即葡萄酒优秀的程度, 它是产品的一种特性,且决定购买者的可接受性。因此,葡萄酒能够满足人类需求的各种特性的总和即构成了它的质量。葡萄酒认证保证了市场中酒的质量,同时保护了消费者的利益。葡萄酒的认证包括理化性质分析、感官评价、物理化学指标、卫生指标等手段。质量评价是认证中的重要阶段,它有益于提高葡萄酒的酿造工艺,同时为市场定位提供决策信息。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系。葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒的质量。葡萄酒的每一项理化指标是其质量的单一体现,而感官指标则是葡萄酒质量的综合概括,换句话说,一个理化指标、卫生指标都合格的葡萄酒未必是高质量的葡萄酒。在今后的一个时期,我们需要做的是从葡萄酒的特点出发,围绕葡萄和葡萄酒理化指标、感官指标等众多因素对葡萄酒质量的联系进行研究,尽可能确定较为合理的葡萄酒质量评价标准,既保证市场中酒的质量,保护消费者利益,又能为市场定位提供决策信息,达到经济效益的目的,从而实现双赢。
2.模型假设
2.1假设品酒员给出的评价能够真实客观地反应葡萄酒的情况
2.2葡萄酒的质量只与酿酒葡萄有关,忽略人为干扰、酿造过程中的环境差别,如温度、湿度等因素
2.3每个评酒员对不同葡萄酒样品的评分是不受主观因素影响的,即各评分结果相互独立
2.4假设数据来源真实有效,数据的误差皆在可接受范围之内
3.符号说明
j i A , 表示第j 个品酒员对第i 个葡萄酒样品的评分
d 度量酿酒葡萄与得分的距离
.
_
ij x
作为第i 组样品j 的得分
4.分析两组评酒员的评价结果有无显著性差异,哪一组结果更可信
4.1数据预处理
对附件一的数据进行观察,可以看出葡萄酒样品的评价项目满分为100分,分别由10个品酒员进行评分,评分标准主要有外观分析(15分)、香气分析(30分)、口感分析(44分)以及平衡/整体评价(11分),各占一部分比例,红白葡萄酒的两组数据表,发现有几个数据属于异常值和残缺值,应先做出处理
4.1.1残缺值的处理
第一组红葡萄酒4号品酒员对20号葡萄酒样品的色调评价分数为空值,因为可以粗略认为不同品酒师对同一葡萄酒样品评分相差不大,所以采用均值替换法来处理数据 4.1.2异常数据的处理
第一组白葡萄酒7号品酒员对3号葡萄酒样品的持久性评分为77,超过其上限8分,9号品酒员对8号葡萄酒样品的持久性评价为16,超过上限8,显然不合理,因此属于异常数据,采用均值替换法处理该数据。
4.2对原始数据的处理
每个品酒员对同一葡萄酒样品的外观分析、香气分析、口感分析、平衡/整体评价都有一个评分,把这些评分相加作为该品酒员对该葡萄酒样品的得分,再把这10个品酒员对该葡萄酒样品的评分取平均值,作为该葡萄酒样品的最终得分。
4.3各葡萄酒样品样品评分数据的概率分布的确定
由于要对数据分别进行显著差异性检验,因而必须先检验数据是否服从正态分布,才能确定要采用参数检验还是非参数检验来进行显著差异性的检验。首先,先对每一个葡萄酒样本中的10个品酒员的分数进行平均,取该平均值为葡萄酒样本的分数,即:
然后,利用SPSS 软件分别画出这四组数据的频率分布直方图和Q-Q 图进行正态分布检验。频率分布直方图下图所示:
从频率直方图可以看出数据基本符合正态分布
Q-Q图:一种散点图,对应于正态分布的Q-Q图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图. 要利用QQ图鉴别样本数据是否近似于正态分布,只需看Q-Q 图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值. 用Q-Q图还可获得样本偏度和峰度的粗略信息。
由图可知数据基本与图中的45度对角线吻合,且右边的图形偏差不会过大,因此符合正态分布。
单样本K-S 检验:可以将一个变量的实际频数分布与正态分布、均匀分布、泊松分布、指数分布进行比较。其零假设0H 为样本来自的总体与指定的理论分布无显著差异。SPSS 在统计中将计算K-S 的Z 统计量,并依据K-S 分布表(小样本)或正态分布表(大样本)给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平α,则应拒绝零假设
0H ,认为样本来自的总体与指定的分布有显著差异;如果相伴概率值大于显著性水平,则
不能拒绝零假设0H ,认为样本来自的总体与指定的分布无显著差异。