数学高考压轴题大全

合集下载

【高考数学】22道压轴题:导数及其应用(练习及参考答案)

【高考数学】22道压轴题:导数及其应用(练习及参考答案)

【高考数学】22道压轴题导数及其应用(练习及参考答案)1.已知函数xa x x f +=ln )(. (1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当e a 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )= xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e . (Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22. (1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈. (1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x(1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑.10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数. (Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =. (1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围; (2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围; (2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ). (Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值; (Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++?. (1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f . (1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈. (Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞. 由x a x x f +=ln )(,得221)(xa x x a x x f -=-='. ①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增, 又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f . 所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增. 当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f , 所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞. 另解:函数x a x x f +=ln )(的定义域为),0(+∞. 由xa x x f +=ln )(,得x x a ln -=. 令x x x g ln )(-=,则)1(ln )(+-='x x g . 当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g . 所以函数)(x g 在)1,0(e 上单调递增,在),1(+∞e 上单调递减. 故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=. 因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤, 综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(, 即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h . 当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f . 所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增. 当e x 1=时,a ex h +-=1)]([min . 于是,当e a 2≥时,ea e x h 11)(≥+-≥.① 令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减. 当1=x 时,ex 1)]([min =ϕ. 于是,当0>x 时,ex 1)(≤ϕ.② 显然,不等式①、②中的等号不能同时成立. 故当ea 2≥时,x e x f ->)(. 2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得 有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以 (Ⅱ) bx x x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g0ln 2)(22222=+-=bx x x x g1202x x x +=022)(000=+-='b x x x g ④ 由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++ 令12x t x =,12,01x x t <∴<<.则上式可化为122ln +-=t t t , 设函数()()10122ln <<+--=t t t t t h ,则 ()()()()011141222>+-=+-='t t t t t t h , 所以函数()122ln +--=t t t t h 在(0,1)上单调递增. 于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾. 所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)n mx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m∴()3032-≠>+m m ,得到 ①∵()()()32313223)(2++-=+-+='m x x m mx x x f∴⎪⎭⎫ ⎝⎛+-==='32110)(m x x x f 或,得 由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得② 由①②得3-<m(Ⅱ)()02301=++='n m f 得由 所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条, 令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=- 由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x.01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++= ()mx x x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()x x e e x xe x f xxx22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f(Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥xx e x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令 2)(-='x e x h2ln ,0)(=='x x h 得()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x所以当0>x 时,)()(x g x f >. 综上R x ∈∀,()()f x g x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞), 求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ), 即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e , 实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+, l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =. ∵21()()(1)ln (1)12g x f x a x x ax a x =--=-+-+, ∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>, 当1(0,)x a∈时,'()0g x >,()g x 单调递增; 当1(,)x a∈+∞时,'()0g x <,()g x 单调递减. 故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-. (2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++, '(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥ 对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==. 又(1)f a =,则1a ≥. 下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立. 1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥. 令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =. 当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增 若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0; 当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增 (2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g000min 11)()(0x e x x g x g x +-+==∴, 由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k <所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b . 经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立. 若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立, 即x x b 222--≥=21)21(22++-x 恒成立,由此得≥b 21; 若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立, 即x x b 222--≤=21)21(22++-x 恒成立. 因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立. 综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h . 当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛. ∴33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--, 即2max 1()(2)3f x f e e e==--. (Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-, 令'()0f x =,得log a x e =,则 ①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min ()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=, 因为当1a >时,ln 0a >,所以此方程无解. ②当01a <<时,ln 0a <,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞, 所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*) 设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=, 令'()0g a =,得1a e=, 当10a e <<时,'()0g a <;当1a e>时,'()0g a >; 所以当1a e =时,min 11()()ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e=. 综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)= x --2a ln x . x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增; ②当a 1时,令,得x 1=, x 2=x(0,) ()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )= x -2a ln x , h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1, x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(), H /(x )=2()lnx=当时,H/(x)<0, H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-, ∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增, ∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分 ∵2110x x+>,∴0a ≤, 故实数a 的取值范围是(],0-∞;.…………3分 (2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=--- , 令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-, 故a b +的最小值为﹣1;.…………7分 (3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得()12121212ln x x x x a x x x x +-=+ 两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,. 9分不妨令120x x <<,记211x t x =>, 令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+, ∴()21ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分 令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln 210.8512=+≈<,∴1ln G =>>>,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分 设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分 (Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(上递增,在)上递减,∴当x =12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++ ()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+ (2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解; 设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+ 令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+ 所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=- 1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增, 所以()()max 01ln 0u x u a ==-<,所以a e > 2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭, ()11211122x h x x x -'=-=++ 令()102h x x '>⇒>,()1002h x x '<⇒<< 所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增 所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>, 所以()()00g x g >>, 所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意 综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根, ∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=, 当()0,x e ∈时,()0g x '>; 当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =, 当x e >时,()0g x >, 所以()20g e a<< ∴()210g e a e<<= 解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-, 故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+ 所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-, 所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-, 因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-, 则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈ ①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意; ③当01λ<<时,()01I t t λ'>⇔<< 所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减, 故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ), ∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值; ②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k时,f′(x )<0;当x >e k,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k,无极大值. (2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0, ∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k)上单调递减, 在区间(e k,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k<x 2<e k+1,要证x 1x 2<e 2k,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k(),x ∈(0,e k)h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ), ∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直, 所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即 1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反. 令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-, 所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增. 又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<. (Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >,e 0xx >,()2e 10x x x ->,320x>, 所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增. 所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减; 当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--, 由()'0f x <得13x <<,由()'0f x >得1x <或3x >. 所以()f x 在()1,3上单调递减,在(),1-?,()3,+?上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $?,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪?琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=, ∴0)1('=f ,23)1(-=f , ∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y . (2))0(1)('2>-=x xax x f . 当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞; 当0>a 时,)(x f 在),0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立 只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =. ∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值. (Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立. ②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==. 因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立. 故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->, 解得231e k e +>. ∴综上,k 的取值范围是231(,)e e++∞.。

2024数学高考试卷压轴题

2024数学高考试卷压轴题

2024数学高考试卷压轴题一、设函数f(x) = ax3 + bx2 + cx + d (a ≠ 0),若f(x)在x=1和x=2处取得极值,且在x=3处的函数值为8,则a+b+c的值为多少?A. -1B. 0C. 1D. 2(答案)B。

解析:由题意知f'(1) = f'(2) = 0,且f(3) = 8。

根据导数的定义和极值条件,可以列出方程组求解a, b, c的值,进而求得a+b+c=0。

二、已知等差数列{an}的前n项和为Sn,且a1 = 1,S3 = 6,则S10的值为多少?A. 25B. 50C. 55D. 110(答案)C。

解析:由等差数列的前n项和公式Sn = n/2 * (2a1 + (n-1)d),以及给定的a1和S3,可以求出公差d,再代入S10的公式计算得到S10 = 55。

三、在三角形ABC中,角A, B, C的对边分别为a, b, c,若a = 3,b = 4,cosC = 1/2,则c的值为多少?A. 3B. 4C. 5D. 6(答案)C。

解析:由余弦定理c2 = a2 + b2 - 2ab*cosC,代入已知的a, b, cosC的值,可以求得c = 5。

四、设随机变量X服从二项分布B(n, p),若E(X) = 6,D(X) = 5,则p的值为多少?A. 1/6B. 1/5C. 1/4D. 1/3(答案)A。

解析:由二项分布的期望和方差公式E(X) = np,D(X) = np(1-p),代入已知的E(X)和D(X)的值,可以解得p = 1/6。

五、已知向量a = (1, 2),向量b = (3, 4),则向量a与向量b的夹角的余弦值为多少?A. √2/2B. √3/2C. 2/3D. 1/2(答案)A。

解析:由向量的夹角余弦公式cosθ = (a·b) / (|a| * |b|),代入已知的向量a和b的坐标,可以计算得到cosθ = √2/2。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考必做的36道压轴题(数学)变式题(pdf版)

高考必做的36道压轴题(数学)变式题(pdf版)

又因为 CM DM , 所以 CD MN ,
2 1 3k 2 , 所以 3k k 2 m 3k 2
2
第 4 页 共 83 页
即 m
k 1 6 6 [ , 0) (0, ]. 2 3k 2 12 12 3k k
2
故所求 m 的取范围是 [ 3-2 解: (Ⅰ)依题意, c
得 (3k 2) x 6kx 3 0 .
2 2
6k , 3k 2 2 2 . 3k 2
2
所以 x0
x1 x2 3k 2 , 2 3k 2
从而 y0 kx0 1
所以 MN 斜率 kMN
2 2 y0 3k 2 . x0 m 3k m 3k 2 2
所以 16( x y1 ) 9( x y ).
112 7 x 2 由点 P 在椭圆 C 上得, y , 1 (4 x 4) , 3
所以点 M 的轨迹方程为 y
轨迹是两条平行于 x 轴的线段. 4-2(Ⅰ)解:因为 A, B 两点关于 x 轴对称, 所以 AB 边所在直线与 y 轴平行. 设 M(x, y),由题意,得 A( x, 3x), B( x, -
2 y1 2 y2 (2 y1 )(3 x2 ) (2 y2 )(3 x1 ) 3 x1 3 x2 (3 x1 )(3 x2 )

[2 k ( x1 1)](3 x2 ) [2 k ( x2 1)](3 x1 ) x1 x2 3( x1 x2 ) 9
把直线 MN 的方程 y x 2a 代入双曲线的方程,消去 y 并整理,得
2 x 2 4ax 7a 2 0 .

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。

1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。

2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。

1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。

3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。

1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。

4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。

1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

2024高考数学压轴题题型总结

2024高考数学压轴题题型总结

2024高考数学压轴题题型总结一、函数与导数综合题。

1. 题目。

已知函数f(x)=e^x-ax 1(a∈ R)。

(1)求f(x)的单调区间;(2)若对于任意x≥slant0,f(x)≥slant0恒成立,求a的取值范围。

2. 解析。

(1)首先对函数f(x)=e^x-ax 1求导,可得f^′(x)=e^x-a。

当a≤slant0时,e^x>0,所以f^′(x)=e^x-a>0恒成立,此时f(x)在(-∞,+∞)上单调递增。

当a > 0时,令f^′(x)=0,即e^x-a = 0,解得x=ln a。

当x∈(-∞,ln a)时,f^′(x)<0,f(x)单调递减。

当x∈(ln a,+∞)时,f^′(x)>0,f(x)单调递增。

(2)由(1)可知,当a≤slant1时,因为x≥slant0,f(x)在[0,+∞)上单调递增,所以f(x)_min=f(0)=e^0-a×0 1=0,满足f(x)≥slant0恒成立。

当a > 1时,f(x)在[0,ln a)上单调递减,在(ln a,+∞)上单调递增,那么f(x)_min=f(ln a)=a aln a-1。

令g(a)=a aln a 1(a > 1),对g(a)求导得g^′(a)=-ln a<0(a > 1)。

所以g(a)在(1,+∞)上单调递减,且g(1)=0,所以g(a)<0,即f(ln a)<0,不满足f(x)≥slant0恒成立。

综上,a的取值范围是(-∞,1]。

二、圆锥曲线综合题。

1. 题目。

已知椭圆C:frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a > b > 0)的离心率e=(√(3))/(2),且过点A(2,0)。

(1)求椭圆C的方程;(2)设直线l:y = kx + m与椭圆C交于P、Q两点,且→OP·→OQ=0(O为坐标原点),求证:直线l与圆x^2+y^2=(4)/(5)相切。

2024年高考数学专项突破数列大题压轴练(解析版)

2024年高考数学专项突破数列大题压轴练(解析版)

数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

2024年高考一卷数学压轴题

2024年高考一卷数学压轴题

2024年高考一卷数学压轴题一、已知函数f(x)=e的x次方-ax在x=1处取得极小值,则a的值为?A. 1B. eC. 1/eD. -e(答案)B。

解析:对函数f(x)求导得f'(x)=e的x次方-a,由于函数在x=1处取得极小值,所以f'(1)=0,即e-a=0,解得a=e。

二、在三角形ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=-1/2,则三角形ABC的面积为?A. 3/2B. 3根号3/2C. 3D. 3根号3(答案)D。

解析:由于cosC=-1/2,且C为三角形内角,所以C=120度,根据三角形面积公式S=1/2absinC,代入得S=1/2×2×3×sin120度=3根号3/2×2/根号3=3根号3。

三、已知等差数列{an}的前n项和为Sn,且a1=1,S3=6,则a5的值为?A. 5B. 6C. 9D. 10(答案)C。

解析:由等差数列前n项和公式Sn=n/2(a1+an),代入S3=6,a1=1得6=3/2(1+a3),解得a3=3,由等差数列性质得a5=a3+2d=3+2×(3-1)=9。

四、已知向量a=(1,2),向量b=(3,4),向量c=k向量a+向量b,且向量c与向量a垂直,则k的值为?A. -3/4B. -4/3C. 3/4D. 4/3(答案)A。

解析:由向量c=k向量a+向量b得c=(k+3,2k+4),由于向量c与向量a垂直,所以向量c·向量a=0,即(k+3)×1+(2k+4)×2=0,解得k=-3/4。

五、已知函数f(x)=lnx-x+1,g(x)=x2-2x+a,若对任意的x1∈(0,+∞),总存在x2∈[0,2],使得f(x1)=g(x2)成立,则实数a的取值范围为?A. [0,1]B. [1,2]C. [2,3]D. [3,4](答案)D。

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。

预计2024年后命题会继续在以上几个方面进行。

高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。

高考数学压轴题精选100题汇总(含答案)

高考数学压轴题精选100题汇总(含答案)

7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln

an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

高考数学压轴题及答案汇总

高考数学压轴题及答案汇总

高考数学压轴题及答案汇总1500字以下是一些高考数学压轴题及答案的汇总,共1500字。

1. 题目:已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。

答案:使用勾股定理,可得另一条直角边长为8cm。

2. 题目:已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。

答案:将x替换为-1,计算f(-1) = 2(-1)^2 + 3(-1) - 5,最终结果为-10。

3. 题目:已知正方形ABCD的边长为8cm,E是BC的中点,连接AE并延长至F,求BF的长度。

答案:由于E是BC的中点,所以BE的长度为4cm。

注意到三角形AEF是等腰直角三角形,所以AE = AF。

又有AB = AE + EB,所以AE = AB - EB = 8 - 4 = 4cm。

根据勾股定理,可得BF的长度为4√2 cm。

4. 题目:若a是一个大于1的正整数,且满足a^2 - 3a + 2 = 0,求a的值。

答案:将方程重新组织,得到a^2 - 2a - a + 2 = 0,进一步化简为a(a - 2) - 1(a - 2) = 0。

根据因式分解,可得(a - 2)(a - 1) = 0。

因此,a的值可以是2或1。

5. 题目:已知点A(1,2)和B(4,5),求线段AB的中点坐标。

答案:线段AB的中点坐标可以通过求AB的横坐标和纵坐标的平均值来得到。

横坐标的平均值为(1 + 4) / 2 = 2.5,纵坐标的平均值为(2 + 5) / 2 = 3.5。

因此,线段AB 的中点坐标为(2.5, 3.5)。

6. 题目:已知等差数列的首项为a,公差为d,若其第5项为11,第8项为20,求a 和d的值。

答案:设等差数列的第1项为a,公差为d,则第5项可以表示为a + 4d,第8项可以表示为a + 7d。

根据已知条件,可列出以下两个方程:a + 4d = 11,a + 7d = 20。

解这个方程组,可得a = 1,d = 2。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立; (2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e 2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x ,证明:12|()()|2f x f x a-<.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.参考答案1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b 2e <.【过程详解】(1)()212()ln ()f x x a x x a x'=-+-⋅,由()10f '=,即202(1)ln1(1)a a --=+,解得1a =. (2)()()(2ln 1)af x x a x x'=--+, 令()2ln 1ag x x x=-+, ()1,e a ∈ ,111(,1e ),a a a∴∈∴<,()21()2ln 11)2ln (10g a a a a a a=--+=-++-<, ()2ln 112ln 0g a a a =-+=>, 22()0ag x x x+'=>在(0,)+∞恒成立, 故()g x 在(0,)+∞递增,而1lg()0,()0g a a <>,01(,)x a a∴∃∈,使得g 0()0,x =令()0f x '=,有1201,,x a x x x =<=故0(0,)x x ∈时()0f x ¢>,0(,)x x a ∈时()0f x '<,(,)x a ∈+∞时()0f x ¢>, 故()f x 在0(0,)x 上递增,在0(,)x a 上递减,在(,)a +∞上递增,∴()f x 极大值2000()()ln ,f x x a x b =->由000()2ln 10,ag x x x =-+=得0002ln ,a x x x =+ 故23004(ln ),b x x <则230028(ln ),ab ax x <01,e 1e x a a<<<< 0e,e a x ∴<<,23233008(ln )8e e 18e ax x ∴<⋅⋅⋅=,328e ,ab ∴<2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.【过程详解】(1)若()0f x ≤在()0,∞+上恒成立,即2ln xa x≤-, 令()2ln x u x x =-,所以()()222ln 122ln x x u x x x --'=-=, 所以当0e x <<时,()0u x '<,当e x >时,()0u x '>, 所以()u x 在()0,e 上单调递减,在()e,+∞上单调递增, 所以()()min 2e eu x u ==-,所以2a e ≤-,即a 的取值范围是2,e ⎛⎤-∞- ⎝⎦.(2)令()0g x =,即22ln 0xx a x--=, 令()22ln x h x x a x =--,则()()()3222ln 121ln 2x x x h x x x x +--'=-=, 令()3ln 1r x x x =+-,所以()2130r x x x'=+>,所以()r x 在()0,∞+上单调递增,又()10r =,所以当01x <<时,()0r x <,所以()0h x '<, 当1x >时,()0r x >,所以()0h x '>,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增. 不妨设12x x <,则1201x x <<<,2101x <<, 因为()()120h x h x ==,所以()()22212222222212ln 2ln 1111x x h x h h x h x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭22222112ln x x x x x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭. 设函数()12ln x x x x ϕ=--(1x >),则()()22211210x x x x xϕ-'=+-=>在()1,+∞上恒成立, 所以()x ϕ在()1,+∞上单调递增,所以()()222212ln 10x x x x ϕϕ=-->=, 所以()1210h x h x ⎛⎫-> ⎪⎝⎭,即()121h x h x ⎛⎫> ⎪⎝⎭.又函数()22ln xh x x a x=--在()0,1上单调递减, 所以12101x x <<<,所以121x x <. 3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .【过程详解】(1)1a =,()e ln xf x x =-,0x >由()11e ln1e f =-=,得切点为()1,e由()1e xf x x'=-,有()1e 1f '=-,即()f x 在点()1,e 处的切线斜率为e 1-,所以()f x 在点()1,e 处的切线方程为:()e 11y x =-+. (2)证明:因为()1e xf x a x '=-(1ea ≥,0x >),设函数()()g x f x '=,则()21e 0xg x a x '=+>(1e a ≥,0x >),所以()f x '在()0,∞+上单调递增又因为()212e 02f a '=->,112e2e 1e 2e e 2e 02e a a f a a a a ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在1,22e a β⎛⎫∈⎪⎝⎭,使得()0f β'=, 即1e a ββ=,1e a ββ=,所以,当()0,x ∈β时,()0f x '<,()f x 在()0,β上单调递减; 当(),x β∈+∞时,()0f x ¢>,()f x 在(),β+∞上单调递增;所以()()1e ln ln 2lnf x f a a ββββββ≥=-+=--令()12ln =--h x x x x ,()()()()14432ln 40x h x x x x x xϕ=--+=+-->, 则()()()2131x x x x ϕ-+'=,()0x ϕ'<解得01x <<,()0x ϕ'>解得1x >,所以,()x ϕ在()0,1上单调递减,在()1,+∞上单调递增; 所以,()()10x ϕϕ≥=,所以,()h x 的图像在44y x =-+的上方,且()h x 与44y x =-+唯一交点为()1,0, 所以,()44f x x ≥-+.(3)圆22117416x y ⎛⎫++= ⎪⎝⎭的圆心坐标为10,4⎛⎫- ⎪⎝⎭,半径r =圆心到直线44y x =-+的距离174d ===, 所以直线44y x =-+为圆22117416x y ⎛⎫++= ⎪⎝⎭的切线,由2211741644x y y x ⎧⎛⎫++=⎪ ⎪⎨⎝⎭⎪=-+⎩解得切点坐标为()1,0, 显然,圆22117416x y ⎛⎫++= ⎪⎝⎭在直线44y x =-+的下方又因为()44f x x ≥-+,且点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上,则点()(),f ββ即为切点为()1,0,所以1β=,1ea =.4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立;(2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 【过程详解】(1)函数21()e 12xf x x x =---,0x >,求导得()e 1x f x x '=--,令e 1x y x =--,0x >,求导得e 10x y '=->, 则函数()f x '在(0,)+∞上单调递增,()(0)0f x f ''>=, 因此函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=, 所以当0x >时,()0f x >恒成立.(2)设sin y x x =-,()0,πx ∈,则1cos 0y x '=->, 则sin y x x =-在()0,π上递增,0y >,即sin 0x x >>, 方程()sin 2f x xa x x +=等价于e sin 10x ax x x ---=,()0,πx ∈, 令()e sin 1xg x ax x x =---,原问题等价于()g x 在()0,π内有零点,由()0,πx ∈,得2sin x x x <, 由(1)知,当12a ≤时,()21e sin 1e 102x xg x ax x x x x =--->--->, 当()0,πx ∈时,函数()y g x =没有零点,不合题意; 当12a >时,由()e sin 1x g x ax x x =---,求导得()()e cos sin 1xg x a x x x '=-+-, 令()()()e cos sin 1x t x g x a x x x '==-+-,则()()e sin 2cos xt x a x x x '=+-,当π[,π)2x ∈时,()0t x '>恒成立,当π(0,)2x ∈时,令()()()e sin 2cos x s x t x a x x x '==+-,则()()e 3sin cos xs x a x x x '=++,因为e 0x >,()3sin cos 0a x x x +>,则()0s x '>,即()t x '在π(0,2上单调递增,又()0120t a '=-<,π2ππ(e 022t a '=+>,因此()t x '在π(0,)2上存在唯一的零点0x ,当()00,x x ∈时,()0t x '<,函数()g x '单调递减,当()0,πx x ∈时,()0t x '>,函数()g x '单调递增,显然()()000g x g ''<=,()ππe π10g a '=+->,因此()g x '在()0,π上存在唯一的零点1x ,且()10,πx x ∈,当()10,x x ∈时,()0g x '<,函数()g x 单调递减,当()1,πx x ∈时,()0g x '>,()g x 单调递增, 又()00g =,()()100g x g <=,由(1)知,21e 112x x x x >++>+,则()ππe π10g =-->,所以()g x 在()10,x 上没有零点,在()1,πx 上存在唯一零点,因此()g x 在()0,π上有唯一零点, 所以a 的取值范围是1(,)2+∞.5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e2x x x x x x +++++<. 【过程详解】(1)由题意设()()22e x f x x =-(x ∈R ),则()f x '=()2e xx x -,x ∈R ,令()0f x '=,得0x =或2x =,当0x <或2x >时,()0f x ¢>,所以()f x 在(),0∞-,()2,+∞上单调递增; 当02x <<时,()0f x '<,所以()f x 在()0,2上单调递减;又()20f =,()04f =,()33e 4f =>,且()()22e 0x f x x =-≥,当x 趋向于+∞时,()f x 也趋向于+∞,又方程()22e x x a -=有三个实数根123123,,()x x x x x x <<, 等价于直线y a =与()y f x =的函数图像有三个交点, 即04a <<,所以a 的取值范围为()0,4.(2)选①,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-,1k >, 则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭,设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 选②,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-(1k >),则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭1>), 设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 所以()()()12121222244x x x x x x --=-++<,则()12122x x x x <+, 又因为1202x x <<<,所以120x x <,从而()12121221121x x x x x x +⎛⎫=+< ⎪⎝⎭,故121112x x +<①,下证120x x +<, 有12122ln 2ln 44011k k kx x t t k k+=++=++<--(1k >), 即证1k >时,()()1ln 21k k k +>-,即()214ln 211k k k k ->=-++, 即证4ln 21k k +>+(1k >), 设()4ln 1h x x x =++(1x >),则()()()()22211411x h x x x x x -'=-=++,当1x >时,()0h x '>,所以()h x 在()1,+∞上单调递增, 则()()12h x h >=,所以120x x +<②,又()()33e 0f f =>,所以得323x <<,设()1x x xϕ=+,(23x <<),则()211x x ϕ'=-,当23x <<时,()0x ϕ'>,所以()x ϕ在()2,3上单调递增, 则331103x x +<③, 联立①②③得:123123*********e 042362x x x x x x +++++<++=<<,故1231231113e2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 【过程详解】(1)解:函数()f x 的定义域为{}|0x x ≠,()32222k x kf x x x x -='-=, 令()0f x '=,则x =①当0k<时,当x <()0f x '<,()f x0x <<时,()0f x ¢>,()f x 单调递增;当0x >时,()0f x ¢>,()f x 单调递增;②当0k>时,当0x <时,()0f x '<,()f x 单调递减;当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x ¢>,()f x 单调递增.综上:当0k <时,单调增区间为⎫⎪⎪⎭,()0,∞+,单调递减区间为⎛-∞ ⎝; 当0k >时,单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为(),0∞-,⎛ ⎝. (2)对任意的m,n ⎫∈+∞⎪⎭,且m n >,令mt n =(1t >),因为()()()()()()()32m n f m f n g m g n -+--()22333311ln 2222m m n m n m n m n n ⎛⎫⎛⎫=-+----- ⎪ ⎪⎝⎭⎝⎭33221133ln 222222n m m m n mn m n m n n=-+-+-+ 323111332ln 22m m m m n m n n n n n mn ⎡⎤⎛⎫⎛⎫⎛⎫=-+⋅----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()332331*********ln (1)2ln 2222n t t t t t n t t t t t ⎛⎫⎛⎫=-+----=---- ⎪ ⎪⎝⎭⎝⎭ ()33211111(1)2ln 33132ln 626t t t t t t t t t t ⎡⎤⎛⎫⎛⎫≥----=-+---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 321336ln 16t t t t ⎛⎫=-++- ⎪⎝⎭, 记()32336ln 1h t t t t t =-++-,则()22226311113636320h t t t t t t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=---'=-+-> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h t 在()1,+∞单调递增,所以()()10h t h >=,故32336ln 10t t t t-++->,所以()()()()()()()302m n f m f n g m g n -+-->, 故()()()()332g m g n f m f n m n-+<-.7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.【过程详解】(1)由题意可知,()()()()22ln 1y x f x x a x =-=-+-,则()2ln 11xy a x a x-'=+-++-,因为2x =是函数()()2ln 1y x a x =-+-的极值点, 所以()ln 120a +-=,解得2a =, 经检验满足题意,故2a =;(2)由(1)得()()ln 3f x x =-,(),3x ∞∈-, 设()()()22ln 3h x x f x x x =-+=-+-,则()12133x h x x x -'=-=--, 当2x <时,203x x ->-,即()0h x '>,所以()h x 在区间(),2-∞单调递增; 当23x <<时,203x x -<-,即()0h x '<,所以()h x 在区间()2,3单调递减, 因此当(),3x ∞∈-时,()()20h x h ≤=,因为()g x 的定义域要求()f x 有意义,即(),3x ∞∈-,同时还要求()2ln 30x x -+-≠,即要求2x ≠,所以()g x的定义域为{|3x x < 且}2x ≠, 要证()()()()212x f x g x x f x -=>-+,因为()20x f x -+<,所以需证()()()22x f x x f x -<-+, 即需证()()23ln 30x x x -+-->,令3x t -=,则0t >且1t ≠,则只需证1ln 0t t t -+>,令()1ln m t t t t =-+,则()ln m t t '=,令()ln 0m t t '==,可得1t =, 所以()0,1t ∈,()0m t '<;()1,t ∈+∞,()0m t '>;所以()m t 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()10m t m >=,即()1g x >成立.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.【过程详解】(1)()()f x x b '=+由切线方程知()()1110f f ⎧=⎪⎨='⎪⎩,即()()1110b b +=+=,注意到0a ≠,解得1a =,0b =.(2)由(1)可知()f x x,若要()f x x x =<且注意到0x >,所以只需ln x < 构造函数()ln h x x =()122h x x x '==,令()0h x '=得4x =,所以()h x 、()h x '随x 的变化情况如下表:()0,4 ()4,+∞()h x '+-()h x所以()h x 有极大值()244ln 42ln 0eh =-=<,综上()0h x <,结合分析可知命题得证. (3)由题意分以下三种情形讨论:情形一:注意到当0t ≥且1x >0x >,()10txx -≥,此时有()0g x >,即()g x 在区间(1,)+∞上无零点,符合题意.情形二:对()2()g x x t x x =+-求导得()()21g xt x x '=+-,所以有()11g t '=+;进一步对()()21g x t x x '=++- 求导得()32ln 24x g x t x-''=+,注意到当1t ≤-且1x >时,有20t <,32ln 04x x-< ,进而有()0g x ''<,所以()g x '单调递减,所以()()110g x g t ''<=+≤,因此()g x 单调递减,故()()10g x g <=,即()g x 在区间(1,)+∞上无零点,符合题意.情形三:由(2)可知1x >lnx <,且注意到当10t -<<时有()()()1()21211212g x t x t x t x '=-<+-<++-成立, 所以11(02a g a a -'<-<,此时()110g t '=+>, 所以存在011,a x a -⎛⎫∈ ⎪⎝⎭使得()00g x '=,且注意到此时有()32ln 204x g x t x -''=+<成立, 所以()g x 、()g x '随x 的变化情况如下表:()01,x ()0,x +∞()g x ' +-()g x故一方面当0x x =时,()g x 取极大值(或最大值)()0g x ,显然有()()010g x g >=;ln x <可得()()()22()1g x x t x x x t x x x tx t +-<+-=+-,所以有10a g a -⎛⎫< ⎪⎝⎭,由零点存在定理并结合这两方面可知函数()g x 在区间(1,)+∞上存在零点.综上所述,符合题意的t 的取值范围为(][),10,-∞-⋃+∞.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x,证明:12|()()|f x f x -<. 【过程详解】(1)依题意,222122()(0)a ax x af x a x x x x -+'=-+=>,当0a ≤时,()0f x '<,所以()f x 在(0,)+∞上单调递减;当0a <<()0f x '>,解得102x a <<或12x a>,令()0f x '<,解得112x a <<,所以()f x在1(0,2a 上单调递增,在11(22a a上单调递减,在)+∞上单调递增;当a ≥时,()0f x '≥,所以()f x 在(0,)+∞上单调递增. (2)不妨设120x x <<,由(1)知,当04a <<时,()f x 在1(0,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()fx的极小值点,所以12()()f x f x >,所以1212|()()|()()f x f x f xf x -=-.由(1)知,122x x =,121x x a+=,则21x xa-==.要证12|()()|f x f x -<1221()())2f x f x x x -<-.因为22121122121112()()()()()ln 222x x xx x f x f x x x a x x a x x x ---+=-+--+⋅2212212111212()2()()ln ln 2x x x x a x x x x x x x x -=-+--=+ 2122112(1)ln 1x x xx x x -=+, 设211x t x =>,2(1)()ln 1t g t t t -=++.所以222414()0(1)(1)g t t t t '==>++, 所以()g t 在(1,)+∞上单调递增,所以()(1)0g t g >=.所以2112)()()02x x f x f x --+>,即得1221()()()2f x f x x x -<-成立. 所以原不等式成立.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.【过程详解】(1)()f x 的定义域为()0,∞+,()()()221111ax x a f x a x x x --+'=+-=, 当0a ≤时,10ax -<,令()0f x ¢>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,令()0f x ¢>,解得01x <<或1x a >,令()0f x '<,解得11x a <<,所以()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增;当1a >时,令()0f x ¢>,解得10x a <<或1x >,令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫⎪⎝⎭上单调递减;综上所述,当0a ≤时,()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫ ⎪⎝⎭上单调递减.(2)当0a =时,由(1)可得()()11ln 10f x x f x=--<=,()1x >,因为N n *∈1>,则10<,即11>>所以n ++>-+L L2n =-L2n =-)21=-,即)2ln 1+>L .。

2024年新高考1卷数学压轴题

2024年新高考1卷数学压轴题

2024年新高考1卷数学压轴题一、设函数f(x)在R上可导,且f'(x)>f(x)对于所有x∈R都成立。

若f(0)=1,则下列不等式成立的是?A. f(2)>e²B. f(2)<e²C. f(2)=e²D. 无法确定f(2)与e²的大小关系(答案)A解析:构造辅助函数g(x)=f(x)/ex,求导得g'(x)=(f'(x)-f(x))/ex。

由题意知f'(x)>f(x),所以g'(x)>0,即g(x)在R上单调递增。

因此,g(2)>g(0),即f(2)/e²>f(0)/e⁰=1,所以f(2)>e²。

二、在△ABC中,内角A,B,C对应的边分别为a,b,c。

已知a=2,b=3,且cosC=-1/2。

则△ABC的面积为?A. 3√3/2B. 3√3C. 3D. 6(答案)B解析:由cosC=-1/2,且C∈(0,π),得C=2π/3。

根据三角形面积公式S=1/2absinC,代入a=2,b=3,sinC=√(1-cos²C)=√3/2,得S=1/223√3/2=3√3/2*2=3√3。

三、设等比数列{an}的前n项和为Sn,且a1=1,公比q≠1。

若S3=7,则S6/S3的值等于?A. 4B. 5C. 6D. 8(答案)D解析:由等比数列前n项和公式Sn=a1(1-qn)/(1-q),代入a1=1,S3=7,得(1-q³)/(1-q)=7。

化简得q²+q+1=7,即q²+q-6=0。

解得q=2或q=-3。

由于q≠1,且等比数列的公比不能为负(否则数列无意义),所以q=2。

代入S6/S3=(1-q⁶)/(1-q)/(1-q³)/(1-q)=1+q³=1+2³=9-1=8。

四、在平面直角坐标系xOy中,直线l=kx+b与圆C²+y²=4相交于A,B两点。

2024年高考数学新题型之19题压轴题专项汇编(解析版)

2024年高考数学新题型之19题压轴题专项汇编(解析版)

2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.【解】(1)由定义可知,532=5 !23 !22 !2=(1)2(2)2(3)2(4)2(5)2(1)2(2)2(3)2 (1)2(2)2=(4)2(5)2(1)2(2)2=1+2+22+23 1+2+22+23+24 1×1+2=155.(2)因为n kq =n !qk !q n -k !q =(n )q ⋅n -1 !q k !q n -k !q,n -1k -1q +q k n -1kq =n -1 !q k -1 !q n -k !q +q k ⋅n -1 !q k !q n -k -1 !q=n -1 !q k !q n -k !q(k )q +q k⋅(n -k )q .又(k )q +q k ⋅(n -k )q =1+q +⋯+q k -1+q k 1+q +⋯+q n -k -1=1+q +⋯+q n -1=(n )q ,所以n k q =n -1k -1q +q k n -1kq(3)由定义得:对任意k ∈N ,n ∈N *,k ≤n ,n k q =nn -kq.结合(2)可知n k q =n n -kq =n -1n -k -1q +q n -k n -1n -kq=n -1kq +q n -kn -1k -1q即n k q =n -1kq +q n -k n -1k -1q,也即n k q -n -1k q =q n -k n -1k -1q.所以n +m +1k +1q -n +m k +1 q =q n +m -k n +mkq,n +m k +1 q -n +m -1k +1q =q n +m -1-k n +m -1kq,⋯⋯n +1k +1 q -n k +1 q =q n -k nkq.上述m +1个等式两边分别相加得:n +m +1k +1q -n k +1 q =∑m i =0q n -k +i n +ikq.2(2024·广东江门·一模)将2024表示成5个正整数x 1,x 2,x 3,x 4,x 5之和,得到方程x 1+x 2+x 3+x 4+x 5=2024①,称五元有序数组x 1,x 2,x 3,x 4,x 5 为方程①的解,对于上述的五元有序数组x 1,x 2,x 3,x 4,x 5 ,当1≤i ,j ≤5时,若max (x i -x j )=t (t ∈N ),则称x 1,x 2,x 3,x 4,x 5 是t -密集的一组解.(1)方程①是否存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S =5i =1x 2i ,问S 是否存在最小值?若存在,请求出S 的最小值;若不存在,请说明理由.【解】(1)若x i +1-x i i =1,2,3,4 等于同一常数,根据等差数列的定义可得x i 构成等差数列,所以x 1+x 2+x 3+x 4+x 5=5x 3=2024,解得x 3=20245,与x 3∈N *矛盾,所以不存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数;(2)因为x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,依题意t =1时,即当1≤i ,j ≤5时,max (x i -x j )=1,所以max x i =405,min x j =404,设有y 个405,则有5-y 个404,由405y +4045-y =2024,解得y =4,所以x 1,x 2,x 3,x 4,x 5中有4个405,1个404,所以方程①的解共有5组.(3)因为平均数x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,又方差σ2=155i =1x i -x 2 ,即5σ2=5i =1x i -x 2 =5i =1x 2i -5x 2,所以S =5σ2+5x 2,因为x 为常数,所以当方差σ2取最小值时S 取最小值,又当t =0时x 1=x 2=x 3=x 4=x 5,即5x 1=2024,方程无正整数解,故舍去;当t =1时,即x 1,x 2,x 3,x 4,x 5 是1-密集时,S 取得最小值,且S min =4×4052+4042=819316.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l 1,l 2,l 3,l 4为平面上过定点P 且互异的四条直线,L 1,L 2为不过点P 且互异的两条直线,L 1与l 1,l 2,l 3,l 4的交点分别为A 1,B 1,C 1,D 1,L 2与l 1,l 2,l 3,l 4的交点分别为A 2,B 2,C 2,D 2,证明:(A 1,B 1;C 1,D 1)=(A 2,B 2;C 2,D 2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG 与△E ′F ′G ′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG 与△E ′F ′G ′对应边的交点在一条直线上.【解】证明:(1)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用,设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).1-(D ,B ;C ,A )=1-DC ⋅BA BC ⋅DA =BC ⋅AD +DC ⋅BABC ⋅AD =BC ⋅(AC +CD )+CD ⋅AB BC ⋅AD,=BC ⋅AC +BC ⋅CD +CD ⋅AB BC ⋅AD =BC ⋅AC +AC ⋅CD BC ⋅AD =AC ⋅BD BC ⋅AD =1(B ,A ;C ,D );(2)(A1,B 1;C 1,D 1)=A 1C 1⋅B 1D 1B 1C 1⋅A 1D 1=S △PA 1C 1⋅S △PB 1D 1S △PB 1C 1⋅S △PA 1D 1=12⋅PA 1⋅PC 1⋅sin ∠A 1PC 1⋅12⋅PB 1⋅PD 1⋅sin ∠B 1PD 112⋅PB 1⋅PC 1⋅sin ∠B 1PC 1⋅12⋅PA 1⋅PD 1⋅sin ∠A 1PD 1=sin ∠A 1PC 1⋅sin ∠B 1PD 1sin ∠B 1PC 1⋅sin ∠A 1PD 1=sin ∠A 2PC 2⋅sin ∠B 2PD 2sin ∠B 2PC 2⋅sin ∠A 2PD 2=S △PA 2C 2⋅S △PB 2D 2S △PB 2C 2⋅S △PA 2D 2=A 2C 2⋅B 2D 2B 2C 2⋅A 2D 2=(A 2,B 2;C 2,D 2);(3)设EF 与E ′F ′交于X ,FG 与F ′G ′交于Y ,EG 与E ′G ′交于Z ,连接XY ,FF ′与XY 交于L ,EE ′与XY 交于M ,GG ′与XY 交于N ,欲证X ,Y ,Z 三点共线,只需证Z 在直线XY 上,考虑线束XP ,XE ,XM ,XE ′,由第(2)问知(P ,F ;L ,F ′)=(P ,E ;M ,E ′),再考虑线束YP ,YF ,YL ,YF ′,由第(2)问知(P ,F ;L ,F ′)=(P ,G ;N ,G ′),从而得到(P ,E ;M ,E ′)=(P ,G ;N ,G ′),于是由第(2)问的逆命题知,EG ,MN ,E ′G ′交于一点,即为点Z ,从而MN 过点Z ,故Z 在直线XY 上,X ,Y ,Z 三点共线.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m,n,t都有c m≠c n,且不等式S m+S n>λS t恒成立,求实数λ的最大值.【解】(1)因为a n=n3,所以Δa n=a n+1-a n=n+13-n3=3n2+3n+1,因为Δa1=7,Δa2=19,Δa3=37,故Δa2-Δa1=12,Δa3-Δa2=18,显然Δa2-Δa1≠Δa3-Δa2,所以Δa n不是等差数列;因为Δ2a n=Δa n+1-Δa n=6n+6,则Δ2a n+1-Δ2a n=6,Δ2a1=12,所以Δ2a n是首项为12,公差为6的等差数列.(2)因为数列log a b n是以1为公差的等差数列,所以log a b n+1-log a b n=1,故b n+1b n=a,所以数列b n是以公比为a的正项等比数列,b n=b1a n-1,所以Δ2b n=Δb n+1-Δb n=b n+2-b n+1-b n+1-b n=b n+2-2b n+1+b n,且对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m,即b1a n+1-2b1a n+b1a n-1=b1a m-1,所以a-12=a m-n,因为a>2,所以m-n>0,①若m-n=1,则a2-3a+1=0,解得a=3-52(舍),或a=3+52,即当a=3+52时,对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m=b n+1.②若m-n≥2,则a m-n≥a2>a-12,对任意的n∈N*,不存在m∈N*,使得Δ2b n=b m.综上所述,a=3+5 2.(3)因为Δc n为常数列,则c n是等差数列,设c n的公差为d,则c n=c1+n-1d,若d=0,则c n=c m,与题意不符;若d<0,所以当n>1-c1d时,c n<0,与数列c n的各项均为正数矛盾,所以d>0,由等差数列前n项和公式可得S n=d2n2+c1-d2n,所以S n+S m=d2n2+m2+c1-d2n+m,因为m+n=2t,所以S t=d2n+m22+c1-d2n+m2,因为m≠n,故n2+m22>n+m22,所以S n+S m=d2n2+m2+c1-d2n+m>d2×n+m22+c1-d2n+m=2S t则当λ≤2时,不等式S m +S n >λS t 恒成立,另一方面,当λ>2时,令m =t +1,n =t -1,n ∈N *,t ≥2,则S n +S m =d 22t 2+2 +2t c 1-d 2 ,S t =d 2t 2+c 1-d 2t ,则λS t -S n +S m =d 2λt 2+c 1-d 2 λt -d 22t 2+2 -2t c 1-d2=d2λ-dt 2-t +λ-2 c 1t -d ,因为d2λ-d >0,t 2-t ≥0,当t >dλ-2 c 1时,λS t -S n +S m >0,即S n +S m <λS t ,不满足不等式S m +S n >λS t 恒成立,综上,λ的最大值为2.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.【解】(1)由a n =3n -1,n ∈N +知:当n =1时,a 1=1;当n ≥2时a n3∈N +,故b n =3n ,n ∈N +,则S n =4∑ni =13n -1=4×1-3n1-3=23n -1 ,n ∈N +;(2)假设存在,由S n 单调递增,不妨设p <q <r ,2S q =S p +S r ,p ,q ,r ∈N +,化简得3p -q+3r -q=2,∵p -q <0,∴0<3p -q<1,∴1<3r -q<2,∴0<r -q <log 23<1,与“q <r ,且q ,r ∈N +”矛盾,故不存在;(3)由题意,e n =nS n 2(3n -1)=n ×2(3n -1)2(3n -1)=n ,则e 3n =3n ,e 3n -2=3n -2,e 3n -1=3n -1,所以保留e 3n -2,e 3n -1,则k 2n -1=3n -2,k 2n =3n -1,n ∈N +,又k 4n +1=6n +1,k 4n +2=6n +2,k 4n +3=6n +4,k 4n +4=6n +5,n ∈N +,将k 4n ,k 4n +1删去,得到p n ,则p 2n +1=6n +2,p 2n +2=6n +4,c 2n +1=6n +2 +2n +1 =8n +3,c 2n +2=6n +4 +2n +2 =8n +6,n ∈N +,即:c 2n -1=8n -5,c 2n =8n -2,n ∈N +,即:c n =4n -1,n =2k -14n -2,n =2k,k ∈N +,记r k =k k +12,下面证明:(2k +1)2=c r k+c r k-1,由r 4m =8m 2+2m ,r 4m +1=8m 2+6m +1,r 4m +2=8m 2+10m +3,r 4m +3=8m 2+14m +6,k =4m 时,r 4m =8m 2+2m ,r 4m +1=8m 2+2m +1,c r 4tm+c r4m -1=48m 2+2m -2 +48m 2+2m +1 -1=64m 2+16m +1=(2×4m +1)2;k =4m +1时,r 4m -1=8m 2+6m +1,r 4m +1=8m 2+6m +2,c r4m -1+c r4m +1-1=48m 2+6m +1 -1 +48m 2+6m +2 -2=64m 2+48m +9=24m +1 +1 2;k =4m +2时,k 4m +2=8m 2+10m +3,k 4m +2+1=8m 2+10m +4,c k4m -2+c k4m -2+1=48m 2+10m +3 -1 +48m 2+10m +4 -2=64m 2+80m +25=24m +2 +1 2;k =4m +3时,r 4m +3=8m 2+14m +6,r 4m +3+1=8m 2+14m +7,c r4m +3+c r4m +3+1=48m 2+14m +6 -2 +48m 2+14m +7 -1=64m 2+112m +49=24m +3 +1 2,综上,对任意的k ∈N +,都有2k +1 2=c r k+c r k+1,原命题得证.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n=12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.【解】(1)因为f a n ⊗b n =f a n ⋅f b n =a 1+a 2x +a 3x 2+a 4x 3⋯ b 1+b 2x +b 3x 2+b 4x 3⋯ =⋅⋅⋅+a 1b 4+a 2b 3+a 3b 2+a 4b 1 x 3+⋅⋅⋅,且f m n =m 1+m 2x +m 3x 2+m 4x 3+⋯,所以,由a n ⊗b n =m n 可得m 4x 3=(a 1b 4+a 2b 3+a 3b 2+a 4b 1)x 3,所以m 4=a 1b 4+a 2b 3+a 3b 2+a 4b 1.(2)因为f ({a n }⊗{b n })=f ({a n })⋅f ({b n }),所以f ({a n })⋅f ({b n })⋅f ({c n })=f ({a n }⊗{b n })⋅f ({c n })=f (({a n }⊗{b n })⊗{c n })又因为f a n ⋅f b n ⋅f c n =f a n ⋅f b n ⋅f c n =f ({a n })⋅f ({b n }⊗{c n })=f ({a n }⊗({b n }⊗{c n }))所以f (({a n }⊗{b n })⊗f {c n })=f ({a n }⊗({b n }⊗f {c n })),所以a n ⊗b n ⊗c n =a n ⊗b n ⊗c n .(3)对于{a n },{b n }∈S ,因为(a 1+a 2x +⋯+a n x n -1+⋯)(b 1+b 2x +⋯+b n x n -1+⋯)=d 1+d 2x +⋯+d n x n -1+⋯,所以d n x n -1=a 1(b n x n -1)+⋯+a k x k -1(b n +1-k x n -k )+⋯+a n -1x n -2(b 2x )+a n x n -1b 1,所以d n =a 1b n +a 2b n -1+⋯+a k b n +1-k +⋯+a n -1b 2+a n b 1,所以a n ⊗b n =d n =∑nk =1a kb n +1-k ,d 200=200k =1a k b 201-k =100k =1a k b 201-k +200k =101a k b 201-k =100k =1a k b 201-k =100k =1(k +1)2+1k (k +1)2k +2,所以d 200=∑100k =112k +21+2k -1k +1,=∑100k =112k +2+∑100k =11k ⋅2k +1-1k +1 ⋅2k +2=12-102101×2102<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P :a 1,a 2,⋯,a n ,定义变换T 1,T 1将数列P 变换成数列T 1P :n ,a 1-1,a 2-1,⋯,a n -1.对于每项均是非负整数的数列Q :b 1,b 2,⋯,b m ,定义S (Q )=2(b 1+2b 2+⋯+mb m )+b 21+b 22+⋯+b 2m ,定义变换T 2,T 2将数列Q 各项从大到小排列,然后去掉所有为零的项,得到数列T 2Q .(1)若数列P 0为2,4,3,7,求S T 1P 0 的值;(2)对于每项均是正整数的有穷数列P 0,令P k +1=T 2T 1P k ,k ∈N .(i )探究S T 1P 0 与S P 0 的关系;(ii )证明:S P k +1 ≤S P k .【解】(1)依题意,P 0:2,4,3,7,T 1P 0 :4,1,3,2,6,S T 1P 0 =2(4+2×1+3×3+4×2+5×6)+16+1+9+4+36=172.(2)(i )记P 0:a 1,a 2,⋯,a n ,(a 1,a 2,⋯,a n ∈N *),T 1P 0 :n ,a 1-1,a 2-1,⋯,a n -1,S (T 1(P 0))=2[n +2(a 1-1)+3(a 2-1)+⋯+(n +1)(a n -1)]+n 2+(a 1-1)2+(a 2-1)2+⋯+(a n -1)2,S (P 0)=2(a 1+2a 2+3a 3+⋯+na n )+a 21+a 22+⋯+a 2n ,S (T 1(P 0))-S (P 0)=2n +2a 1+2a 2+⋯+2a n -4-6-⋯-2(n +1)+n 2-2a 1-2a 2-⋯-2a n +n =n 2+3n -(2n +6)⋅n2=0,所以S (T 1(P 0))=S (P 0).(ii )设A 是每项均为非负整数的数列a 1,a 2,⋯,a n ,当存在1≤i <j ≤n ,使得a i ≤a j 时,交换数列A 的第i 项与第j 项得到数列B ,则S (B )-S (A )=2(ia j +ja i -ia i -ja j )=2(i -j )(a j -a i )≤0,当存在1≤m <n ,使得a m +1=a m +2=⋯=a n =0时,若记数列a 1,a 2,⋯,a m 为C ,则S (C )=S (A ),因此S T 2(A ) ≤S (A ),从而对于任意给定的数列P 0,由P k +1=T 2T 1P k (k =0,1,2,⋯),S P k +1 ≤S T 1P k ,由(i )知S T 1P k =S P k ,所以S P k +1 ≤S P k .题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s -1e x -1(x >0,s >1,s 为常数)密切相关,请解决下列问题.(1)当1<s ≤2时,讨论f x 的单调性;(2)当s >2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.【解】(1)由f x =x s -1e x -1,x ∈0,+∞ ,1<s ≤2可得fx =s -1 ⋅xs -2⋅e x -1 -x s -1⋅e x e x -1 2=x s -2⋅s -1-x ⋅e x -s -1e x -12,令h x =s -1-x ⋅e x -s -1 ,则h x =-e x +s -x -1 ⋅e x =s -x -2 ⋅e x ;又1<s ≤2,x >0,所以s -x -2<0,e x >0,即h x <0恒成立;即函数h x 在0,+∞ 上单调递减,又h 0 =0,所以h x <h 0 =0,可得fx =x s -2⋅s -1-x ⋅e x -s -1e x -12<0恒成立,因此函数f x 在0,+∞ 上单调递减,即当1<s ≤2时,函数f x 在0,+∞ 上单调递减;(2)当s >2时,①由(1)可知令h x =s -x -2 ⋅e x =0,可得x =s -2>0,易知当x ∈0,s -2 时,h x =s -x -2 ⋅e x >0,即函数h x 在0,s -2 上单调递增,当x ∈s -2,+∞ 时,h x =s -x -2 ⋅e x <0,即函数h x 在s -2,+∞ 上单调递减,即函数h x 在x =s -2处取得极大值,也是最大值;注意到h 0 =0,由单调性可得h s -2 >h 0 =0,可知h x 在0,s -2 大于零,不妨取x =2s -2,则h 2s -2 =1-s ⋅e 2s -2-s -1 =1-s e 2s -2+1 <0;由零点存在定理可知h x 存在唯一变号零点x 0∈s -2,+∞ ,所以fx =x s -2⋅s -1-x ⋅e x -s -1 e x -12存在唯一变号零点x 0满足f x 0 =0,由h x 单调性可得,当x ∈0,x 0 时,f x >0,当x ∈x 0,+∞ 时,f x <0;即可得函数f x 在0,x 0 上单调递增,在x 0,+∞ 单调递减;所以f x 有唯一极大值点x 0;②记f x 的唯一极值点为g s ,即可得x 0=g s由h x 0 =s -1-x 0 ⋅e x 0-s -1 =0可得s =x 0⋅e x 0e x 0-1+1,即可得g s 的反函数g -1s =x 0⋅ex 0e x 0-1+1,令φx =x ⋅e x e x -1+1,x ∈s -2,+∞ ,则φx =e x e x -x -1 e x -1 2,构造函数m x =e x -x -1,x ∈0,+∞ ,则m x =e x -1,显然m x =e x -1>0在0,+∞ 恒成立,所以m x 在0,+∞ 上单调递增,因此m x >m 0 =0,即e x >x +1在0,+∞ 上恒成立,而s >2,即s -2>0,所以e x >x +1在s -2,+∞ 上恒成立,即可得φx =e x e x -x -1e x -12>0在s -2,+∞ 上恒成立,因此g -1s 在s -2,+∞ 单调递增;易知函数g s 与其反函数g -1s 有相同的单调性,所以函数g s 在2,+∞ 上单调递增;9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x =0处的n n ∈N * 阶导数都存在时,f x =f 0 +f0 x +f 0 2!x 2+f 30 3!x 3+⋯+f n0 n !x n +⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f nx n ≥3 表示f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x =1-x 22!+x 44!-x 66!+⋯.当x ≥0时,试比较cos x 与1-x 22的大小,并给出证明;(3)设n ∈N *,证明:nk =11(n +k )tan 1n +k>n -14n +2.【解】(1)令f x =sin x,则f (x)=cos x,f (x)=-sin x,f3 x =-cos x,f4 x =sin x,⋯故f0 =0,f (0)=1,f (0)=0,f3 0 =-1,f4 0 =0,⋯由麦克劳林公式可得sin x=x-x33!+x55!-x77!+⋯,故sin 12=12-148+⋯≈0.48.(2)结论:cos x≥1-x22,证明如下:令g x =cos x-1+x22,x≥0,令h x =g x =-sin x+x,h x =-cos x+1≥0,故h x 在0,+∞上单调递增,h x ≥h0 =0,故g x 在0,+∞上单调递增,g x ≥g0 =0,即证得cos x-1+x22≥0,即cos x≥1-x22.(3)由(2)可得当x≥0时,cos x≥1-x22,且由h x ≥0得sin x≤x,当且仅当x=0时取等号,故当x>0时,cos x>1-x22,sin x<x,1n+ktan1n+k =cos1n+kn+ksin1n+k>cos1n+kn+k⋅1n+k=cos1n+k>1-12(n+k)2,而12(n+k)2=2(2n+2k)2<2(2n+2k)2-1=22n+2k-12n+2k+1=12n+2k-1-12n+2k+1,即有1n+ktan1n+k>1-12n+2k-1-12n+2k+1故nk=11(n+k)tan1n+k>n-12n+1-12n+3+12n+3-12n+5+⋯+14n-1-14n+1=n-12n+1+1 4n+1而n-12n+1+14n+1-n-14n+2=14n+1-14n+2>0,即证得nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)=f(x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯;f (n )(x )为f(n -1)(x )的导数)已知f (x )=ln (x +1)在x =0处的1,1 阶帕德近似为R (x )=ax1+bx.(1)求实数a ,b 的值;(2)比较f x 与R (x )的大小;(3)若h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,求m 的取值范围.【解】(1)由f (x )=ln (x +1),R (x )=ax1+bx,有f (0)=R (0),可知f (x )=1x +1,f (x )=-1(x +1)2,R (x )=a (1+bx )2,R(x )=-2ab (1+bx )3,由题意,f (0)=R (0),f (0)=R (0),所以a =1-2ab =-1 ,所以a =1,b =12.(2)由(1)知,R (x )=2x x +2,令φ(x )=f (x )-R (x )=ln (x +1)-2xx +2(x >-1),则φ(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2>0,所以φ(x )在其定义域(-1,+∞)内为增函数,又φ(0)=f (0)-R (0)=0,∴x ≥0时,φ(x )=f (x )-R (x )≥φ(0)=0;-1<x <0时,φ(x )=f (x )-R (x )<φ(0)=0;所以x ≥0时,f (x )≥R (x );-1<x <0时,f (x )<R (x ).(3)由h (x )=f (x )R (x )-12-m f (x )=1x +m ln (x +1),∴h(x )=-1x 2ln (x +1)+1x +m 1x +1=mx 2+x -(x +1)ln (x +1)x 2(x +1).由h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,所以h (x )在(0,+∞)上存在变号零点.令g (x )=mx 2+x -(x +1)ln (x +1),则g (x )=2mx +1-ln (x +1)+1 =2mx -ln (x +1),g (x )=2m -1x +1.①m <0时,g (x )<0,g (x )为减函数,g (x )<g (0)=0,g (x )在(0,+∞)上为减函数,g (x )<g (0)=0,无零点,不满足条件.②当2m >1,即m >12时,g (x )>0,g (x )为增函数,g (x )>g (0)=0,g (x )在(0,+∞)上为增函数,g (x )>g (0)=0,无零点,不满足条件.③当0<2m <1,即0<m <12时,令g (x )=0即2m =1x +1,∴x =12m-1.当0<x <12m -1时,g (x )<0,g (x )为减函数;x >12m -1时,g (x )>0,g (x )为增函数,∴g min (x )=g 12m -1=2m 12m -1 -ln 12m-1+1 =1-2m +ln2m ;令H (x )=1-x +ln x ,0<x <1,H (x )=-1+1x ,H (x )=-1+1x>0在0<x <1时恒成立,H(x)在0,1上单调递增,H(x)<H(1)=0,∴g12m-1=(1-2m)+ln2m<0恒成立;∵x>0,0<m<1,∴x(m-1)<0,则mx2-1>mx2-1+mx-x=x+1mx-1,∴mx2-1x+1>mx-1,∴1+mx2-1x+1-ln(x+1)>mx-ln(x+1);∵g(x)=(x+1)mx2+xx+1-ln(x+1),令l(x)=mx2+xx+1-ln(x+1)=1+mx2-1x+1-ln(x+1)>mx-ln(x+1)=m(x+1)-ln(x+1)-m,令F x =ln(x+1)-2x+1x>0,F x =1x+1-1x+1=1-x+1x+1<0,则F x 在0,+∞是单调递减,F x <F0 =-2,所以ln(x+1)<2x+1,∴l(x)>m(x+1)-2x+1-m=m2(x+1)-m+m2(x+1)-2x+1,令x=16m2-1,则x+1=16m2,∴m2(x+1)-2x+1≥0,m2(x+1)-m=8m-m>00<m<12.∴l(x)>0,即l16m2-1>0.由零点存在定理可知,l(x)在12m-1,+∞上存在唯一零点x0∈12m-1,16m2-1,又由③知,当0<x<12m-1时,g (x)<0,g (x)为减函数,g (0)=0,所以此时,g (x)<0,在0,12m-1内无零点,∴g(x)在(0,+∞)上存在变号零点,综上所述实数m的取值范围为0,12.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.【解】(1)经过2秒机器人可能位于的区域为P、Q1,Q,经过3秒机器人可能位于的区域为A,B1,B2,C1,C2,C3;(2)若经过2秒机器人位于区域Q,则经过1秒时,机器人必定位于B2,P有三个相邻区域,故由P→B2的概率为p1=13,B2有两个相邻区域,故由B2→Q的概率为p2=12,则经过2秒机器人位于区域Q的概率为p1p2=13×12=16;(3)机器人的运动路径为P→A∪B1∪B2→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→⋯,设经过n秒机器人位于区域Q的概率P n,则当n为奇数时,P n=0,当n为偶数时,由(2)知,P2=16,由对称性可知,经过n秒机器人位于区域Q的概率与位于区域Q1的概率相等,亦为P n,故经过n秒机器人位于区域P的概率为1-2P n,若第n秒机器人位于区域P,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q1,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q,则第n+2秒机器人位于区域Q的概率为1-2×1 6=23,则有P n+2=23P n+16P n+161-2P n,即P n+2=16+12P n,令P n+2+λ=12P n+λ,即P n+2=12P n-12λ,即有λ=-13,即有P n+2-13=12P n-13,则P n+2-13P n-13=12,故有P n-13P n-2-13=12、P n-2-13P n-4-13=12、⋯、P4-13P2-13=12,故P n-13P n-2-13×P n-2-13P n-4-13×⋯×P4-13P2-13×P2-13=P n-13=12 n2-1×16-13=-13⋅12 n2,即P n=13-13⋅12n2,综上所述,当n为奇数时,经过n秒机器人位于区域Q的概率为0,当n为偶数时,经过n秒机器人位于区域Q的概率为13-13⋅12n2.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)【解】(1)依题意,4个番石榴的位置从第1个到第4个排序,有A44=24种情况,要摘到那个最大的番石榴,有以下两种情况:①最大的番石榴是第3个,其它的随意在哪个位置,有A33=6种情况;②最大的番石榴是最后1个,第二大的番石榴是第1个或第2个,其它的随意在哪个位置,有2A22=4种情况,所以所求概率为6+424=512.(2)记事件A表示最大的番石榴被摘到,事件B i表示最大的番石榴排在第i个,则P B i=1 n,由全概率公式知:P(A)=ni=1P(A|B i)P(B i)=1nni=1P(A|B i) ,当1≤i≤k时,最大的番石榴在前k个中,不会被摘到,此时P(A|B i)=0;当k+1≤i≤n时,最大的番石榴被摘到,当且仅当前i-1个番石榴中的最大一个在前k个之中时,此时P A|B i)=ki-1,因此P(A)=1nkk+kk+1+⋯+kn-1=k n ln n k,令g(x)=xnln nx(x>0),求导得g (x)=1nln nx-1n,由g(x)=0,得x=ne,当x∈0,n e时,g (x)>0,当x∈n e,n时,g (x)<0,即函数g(x)在0,n e上单调递增,在n e,n上单调递减,则g(x)max=gne=1e,于是当k=n e时,P(A)=k n ln n k取得最大值1e,所以P的最大值为1e,此时t的值为1e.13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.【解】(1)①由椭圆定义可知AF1+AF2=2a,BF1+BF2=2a,所以△ABF2的周长L=4a=8,所以a=2,因为离心率为12,故ca=12,解得c=1,则b2=a2-c2=3,由题意,椭圆的焦点在x轴上,所以椭圆方程为x24+y23=1,直线l:y-0=tan π3⋅x+1,即l:y=3x+1,联立x24+y23=1得15x2+24x=0,解得x=0或-85,当x=0时,y=3×0+1=3,当x=-85时,y=3×-85+1=-335,因为点A在x轴上方,所以A0,3,B-85,-335,故AO⊥F1F2,折叠后有A O⊥F1F2,因为二面角A-F1F2-B为直二面角,即平面A F1F2⊥F1F2B ,交线为F1F2,A O⊂平面A F1F2,所以A O⊥平面F1F2B ,因为F 2B ⊂平面F 1F 2B ,所以A O ⊥F 2B ;②以O 为坐标原点,折叠后的y 轴负半轴为x 轴,原x 轴为y 轴,原y 轴正半轴为z 轴,建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 335,-85,0,F 20,1,0 ,A F 2 =0,1,-3 ,BF 2 =-335,135,0 ,其中平面A F 1F 2的法向量为n 1=1,0,0 ,设平面A B F 2的法向量为n 2=x ,y ,z ,则n 2 ⋅AF 2 =x ,y ,z ⋅0,1,-3 =y -3z =0n 2 ⋅B F 2 =x ,y ,z ⋅-335,135,0 =-335x +135y =0,令y =3得x =133,z =1,故n 2 =133,3,1 ,设平面A B F 2与平面A F 1F 2的夹角为φ,则cos φ=cos n 1 ,n 2 =n 1 ⋅n 2n 1 ⋅n 2 =1,0,0 ⋅133,3,1 1699+3+1=13205205,故平面A B F 2与平面A F 1F 2的夹角的余弦值为13205205;(2)设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后对应的A x 1,y 1,0 ,B x 2,0,-y 2 ,设直线l 方程为my =x +1,将直线l 与椭圆方程x 24+y 23=1联立得,3m 2+4 y 2-6my -9=0,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠前可知AB =x 1-x 22+y 1-y 2 2,折叠后,在空间直角坐标系中,A B=x 1-x 22+y 21+y 22,,由A F 2 +B F 2 +A B =152,AF 2 +BF 2 +AB =8,故AB -A B =12,所以AB -A B =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12①,分子有理化得-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=-4y 1y 2②,由①②得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=my 1-1-my 2+1 2+y 1-y 2 2=m 2+1y 1-y 2 ,故14-2y 1y 2=m 2+1y 1-y 2 ,即14-2y 1y 2=m 2+1y 1+y 2 2-4y 1y 2,将y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4代入上式得14+183m 2+4=m 2+16m3m 2+42+363m 2+4,两边平方后,整理得2295m 4+4152m 2-3472=0,即45m 2-28 51m 2+124 =0,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F(t )=[x(t )]2+[y(t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE的长度.【解】(1)依题意,y =1-cos t ,|OB |=BM=t ,则x =|OB |-sin t =t -sin t ,所以x =t -sin t ,y =1-cos t .(2)由复合函数求导公式yt=y x⋅x t及(1)得y x=y x ⋅x t x t =y t x t=sin t 1-cos t ,因此tan θ=sin t 1-cos t ,而1+cos2θ=2cos 2θ=2cos 2θsin 2θ+cos 2θ=2tan 2θ+1=2sin t 1-cos t 2+1=2(1-cos t )22-2cos t =1-cos t =y 0,所以1+cos2θy 0为定值1.(3)依题意,F (t )=(1-cos t )2+sin 2t =2-2cos t =2sin t 2.由0≤t 2≤π,得sin t 2≥0,则F (t )=2sin t 2,于是F (t )=-4cos t2+c (c 为常数),则F (2π)-F (0)=(-4cosπ+c )-(-4cos0+c )=8,所以OE 的长度为8.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1x 2-x 1成立;(3)设a n =2n +1n 2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).【解】(1)函数f x 的定义域为0,+∞ ,fx =1x -ax =1-ax 2x ,①若a ≤0,f x >0恒成立,f x 在0,+∞ 上单调递增.②若a >0,x ∈0,1a时,fx >0,f x 单调递增;x ∈1a,+∞时,f x <0,f x 单调递减.综上,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a上单调递增,在1a,+∞ 上单调递减.(2)证明:令F x =f x -f x 2 -f x 1x 2-x 1,x >0则F x =1x -ax -ln x 2-12ax 22-ln x 1+12ax 12x 2-x 1=1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1因为a >0,所以,F x =1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1 在区间x 1,x 2 上单调递减.F x 1 =1x 1-ax 1-ln x 2-ln x 1x 2-x 1+12a x 2+x 1 =1x 1-ln x 2-ln x 1x 2-x 1+12a x 2-x 1=1x 2-x 1x 2x 1-1-ln x 2x 1+12a x 2-x 1令g t =t -1-ln t ,t >0,则g t =1-1t =t -1t,所以,t ∈0,1 时,g t <0,g t 单调递减,t ∈1,+∞ 时,g t >0,g t 单调递增,所以,g t min =g 1 =0,又0<x 1<x 2,所以,x 2x 1>1,所以g x 2x 1=x 2x 1-1-ln x 2x 1>0恒成立,又因为a >0,x 2-x 1>0,所以,F x 1 >0.同理可得,F x 2 =1x 2-x 11-x 1x 2-ln x 2x 1+12a x 1-x 2 ,由t -1-ln t ≥0(t =1时等号成立)得,1t -1-ln 1t ≥0,即1-1t -ln t ≤0(t =1时等号成立),又0<x 1<x 2,所以0<x 1x 2<1,所以1-x1x 2-ln x 2x 1<0恒成立,又因为a >0,x 1-x 2<0,x 2-x 1>0,所以,F x 2 <0,所以,区间x 1,x 2 上存在唯一实数ξ,使得F ξ =0,所以对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f ξ =f x 2 -f x 1x 2-x 1成立;(3)证明:当a =1时,由(1)可得,f x =ln x -12x 2+12在1,+∞ 上单调递减.所以,x >1时,f x <f 1 =0,即ln x -12x 2+12<0.令x =n +1n ,n ∈N *,则ln n +1n -12n +1n 2+12<0,即n +1n2-1>2ln n +1 -2ln n ,即2n +1n 2>2ln n +1 -2ln n 令b n =2ln n +1 -2ln n ,n ∈N *,则a n >b n ,a 1+a 2+a 3+⋅⋅⋅+a n >b 1+b 2+b 3+⋅⋅⋅+b n=2ln2-2ln1+2ln3-2ln2+⋯+2ln n +1 -2ln n =2ln n +1 所以,S n >2ln n +1 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(本小题满分14分)
已知函数.
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与的大小;
(3)求证:().
2、设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数的有极值点,求的取值范围及的极值点;
(Ⅲ)当且时,求证:.
3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若∙,(i )求证:直线过定点;
(ii )试问点,能否关于轴对称?若能,求出
此时的外接圆方程;若不能,请说明理由.
二、计算题
评卷人得分
(每空?分,共?分)
4、设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.
(Ⅰ)求函数的表达式;
(Ⅱ)求证:.
5、已知函数:
(1)讨论函数的单调性;
(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?
(3)求证:.
6、已知函数=,.
(Ⅰ)求函数在区间上的值域;
(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;
(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得
成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.
7、已知函数
(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;
(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.
8、已知函数:
⑴讨论函数的单调性;
⑵若函数的图象在点处的切线的倾斜角为45o,对于任意的,函数
在区间上总不是单调函数,求m的取值范围;
⑶求证:.
9、已知正方形的中心在原点,四个顶点都在函数图象上.(1)若正方形的一个顶点为,求,的值,并求出此时函数的单调增区间;
(2)若正方形唯一确定,试求出的值.
10、已知函数,曲线在点处的切线方程为.(I)求a,b的值;
(II)如果当x>0,且时,,求k的取值范围.
11、设函数f(x)=x2+b ln(x+1),其中b≠0.
(Ⅰ)当b>时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln)都成立.
12、如图7,椭圆的离心率为,x轴被曲线截得的线段长等于的长半轴长。

(Ⅰ)求,的方程;
(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?
请说明理由。

13、已知点是直角坐标平面内的动点,点到
直线的距离为,到点的
距离为,且.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、
B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记,,(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线、点、曲线C:
,则使等式成立的的值仍保持不变.请给出
你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
14、如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.
(1)求曲线弧的方程;
(2)求的最小值(用表示);
(3)曲线上是否存点,使为正三角形?若存在,求的取值范围;若不存在,说
明理由.
15、设、是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求的最大值.
(3)若,且,,求证:.16、已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式
恒成立,求实数的取值范围.
17、已知函数
(1)若曲线处的切线平行,求a的值;
(2)求的单调区间;
(3)设是否存在实数a,对
均成立;若存在,求a的取值范围;若不存在,请说明理由。

18、已知函数图象的对称中心为,且的极小值为. (1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
19、已知函数.
(1)若方程在区间内有两个不相等的实根,求实数的取值范围;
(2)如果函数的图像与x轴交于两点,且,
求证:(其中,是的导函数,正常数满足).20、已知函数f(x)=a x+x2-x ln a(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
21、已知函数处取得极小值,其图象过点A(0,1),且在点A 处切线的斜率为—1。

(Ⅰ)求的解析式;
(Ⅱ)设函数上的值域也是
,则称区间为函数的“保值区间”。

证明:当不存在“保值区间”;
22、已知函数
(1)求证函数上的单调递增;
(2)函数有三个零点,求t的值;
(3)对恒成立,求a的取值范围。

23、已知函数,其中
(Ⅰ)若函数上有极值,求的取值范围;
(Ⅱ)若函数有最大值(其中为无理数,约为2.71828),求的值;
(Ⅲ)若函数有极大值,求的值。

24、已知函数。

(1)若函数在区间上存在极值,其中,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围;
(3)求证:
25、已知函数,,其中R.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.
26、已知函数.
(1)求函数的单调区间;
(2)设m>0,求在[m,2m]上的最大值;
(3)试证明:对任意N+,不等式<恒成立.
27、已知函数
(1)求函数的单调区间;
(2)设,求证:;
(3)设,求证:.。

相关文档
最新文档