人教版八年级下册数学几何题训练含答案讲解学习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学几何题训练含答案
八年级习题练习
四、证明题:(每个5分,共10分)
1、在平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F ,求
证:BE =DF 。
2、在平行四边形DECF 中,B 是CE 延长线上一点,A 是CF 延长线上一点,连结AB 恰过点D ,求证:AD ·BE =DB ·EC
五、综合题(本题10分)
3.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x
2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .
(1)求证:AD 平分∠CDE ;
(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
F
E
D
C
B A
F
E
D
C
B
A
4. 如图,四边形ABCD中,AB=2,CD=1 ,∠A=60度,∠D=∠B=90度,求四边形ABCD的面积S
5.如图,梯形ABCD中,AD//BC,AB=DC. 如果P是BC上任意一点(中点除外),PE//AB,PF//DC,那么AB=PE+PF 成立吗?如果成立,请证明,如果不成立,说明理由。
参考答案
证明题1、证△ABE≌△CDF;
2、⇒
⎭
⎬
⎫
∠
=
∠
⇒
∠
=
∠
⇒
A
BDE
AC
DE
B
ADF
BC
DF
△ADF∽△DBE
BE
DF
DB
AD
=
⇒
综合题
1.(1)证:由y=x+b得 A(b,0),B(0,-b).
∴∠DAC=∠OAB=45 º
又DC⊥x轴,DE⊥y轴∴∠ACD=∠CDE=90º
∴∠ADC=45º即AD平分∠CDE.
(2)由(1)知△ACD和△BDE均为等腰直角三角形.
∴AD=2CD,BD=2DE.
∴AD·BD=2CD·DE=2×2=4为定值.
(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD
设OB=a (a>0),∴B(0,-a),D(2a,a)
2上,∴2a·a=2 ∴a=±1(负数舍去)
∵D在y=
x
∴B(0,-1),D(2,1).
又B在y=x+b上,∴b=-1
即存在直线AB:y=x-1,使得四边形OBCD为平行四边形.
4.如图,延长AD与BC交于点E
∵∴
∵∠A=60度,∠B=90度,AB=2
∴∠E=30度
AE=4(30度所对的边为斜边的一半)
BE^2=AE^2 - AB^2(勾股定理)
BE=√ 4^2-2^2=√ 12=2√ 3
同上理,已知CD=1
∴CE=2,DE=√ 3
∴四边形ABCD的面积=S△ABE - S△CED = 1/2(BE*AB)-1/2(DE*CD)=1/2*2√ 3*2 - 1/2*√3*1=(3*√ 3)/2
5.由平行易得:三角形pce相似于三角形bca 易得:pe=ag,且bg/ba=bp/bc=bf/bd
由上可知:gf//bp
易证:三角形gbp全等于三角形fpb
所以:bgfp为等腰梯形---可得bg=fp
所以有结果:bg+ag=pe+pf=AB