人教版八年级下册数学几何题训练含答案讲解学习

合集下载

人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)

人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)

人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形是矩形,点,在坐标轴上,是由绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段=2,=4(1)求直线的解析式.(2)求的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3=xy分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D -3+3为直线AB上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+-x的解集为___________3>33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B .(1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B →C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF ⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1)OC=4,BC=2,B(-2,4),.设解析式为,.(2),.直线,.当,,,.2.(1)依照题意画出图形,如图所示.(2)令y=x+2中y=0,则x+2=0,解得:x=﹣2,∴点B(﹣2,0);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点C(4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7; (2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当m x m y 32,321-=+-=时 mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8)设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中,得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A (﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),时,即S=6m-18.11. (1)设函数解析式为y=kx +b , 由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46C O E B C M OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP是平行四边形由△BCM ≌△COE 可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,(1)解得2<k<4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=x+1=1,则B(0,1);(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。

第19章一次函数——几何变换 专项练习 2022—2023学年人教版数学八年级下册

第19章一次函数——几何变换  专项练习  2022—2023学年人教版数学八年级下册

一次函数典型例题——几何变换◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.6.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,3),已知直线l:y=x﹣2(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.一次函数典型例题——几何变换(解析)◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k2+12的图象经过原点,∴﹣3k2+12=0,∴,∴k=﹣2;(2)∵直线y=﹣2x+9求出此直线与y轴的交点坐标为(0,9),∴﹣3k2+12=9,∴k=1或k=﹣1;(3)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(4)∵一次函数为减函数,∴k﹣2<0,∴k<2.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.【解答】解:(1)∵函数的图象经过原点,∴m﹣1=0,解得:m=1;(2)∵图象不经过三象限,∴3m﹣7<0,m﹣1≥0,解得:1≤m<;(3)∵不论m取何值,直线恒过一定点P,∴当x=﹣时,y=﹣1=,即不论m取何值,直线恒过一定点P,定点P坐标为:(﹣,).3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.【解答】解:∵y1与kx﹣2成正比例,y2﹣3与x成正比例,∴y1=k1(x﹣2),y2﹣3=k2x,∴y=k1(x﹣2)+k2x+3,把x=1时,y=4;x=2时,y=7代入上式解得,解得:,则y与x的解析式为y=3x+1.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.【解答】解:(1)当y=0,则2x﹣2=0,解得x=1;当x=0时,y=﹣2,∴点A的坐标为(1,0),点B的坐标为(0,﹣2);(2)将直线AB向上平移3个单位得直线l:y=2x+1,设C的坐标为(m,2m+1),∵S△AOC=3,∴|2m+1|=3,∴2m+1=±6,解得m=或﹣,∴C(,6)或(﹣,﹣6).5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4,令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△P AB=S△OCD,∴S△P AB=××6×8=12.∵点P在y轴上,S△P AB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.【解答】解:连接AF,直线y=﹣x+4与x轴交于点A,与y轴交于点C,令x=0,则y=4;令y=0,则x=3,∴A(3,0),C(0,4),∴OA=3,OC=4,∴AC==5,∵CD∥x轴,点D、点A关于直线CF对称,∴CD=CA=5.∠DCF=∠ACF=∠FGA,∴∠CAF=∠D=90°设EF=x,则DF=AF,DF=4﹣x,AE=2,∴(4﹣x)2﹣x2=4.解得x=.∴点F坐标为(5,).7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=1,点A的坐标为(﹣2,0).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.【解答】解:(1)由一次函数y=(m+1)x+4,令x=0,则y=4,∴B(0,4),∴OB=4,∵S△OAB=4,∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案为:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),设直线BP的解析式为y=kx+b,将(8,0),(0,4)代入得,解得k=﹣,b=4,∴直线BP的解析式为y=﹣x+4;(3)设直线AB绕点B顺时针旋转45°得到直线BE,如图,过点A作AF⊥AB交BE于点F,作FH⊥x轴于H.则∠AHF=∠BOA=90°,AF=BA,∠F AH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),设直线BE的解析式为y=mx+n,则把点F和点B的坐标代入,可得,解得,∴直线BE的解析式为y=x+4.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.【解答】解:∵直线y=2x+2与x轴,y轴分别交于A,B两点,当x=0时,y=2;当y=0时,x=﹣1;∴A(﹣1,0),B(0,2).(1)∵直线AB绕点O按逆时针方向旋转90度得到直线CD,∴直线CD与x轴,y轴的交点坐标(﹣2,0),(0,﹣1),设直线CD的解析式是y=k1x+b1,则,解得.故直线CD的解析式是y=﹣x﹣1;(2)∵将直线AB绕原点按顺时针方向旋转90度得到直线EF,∴直线EF与x轴,y轴的交点坐标(2,0),(0,1),设直线EF的解析式是y=k2x+b2,则,解得.故直线EF的解析式是y=﹣x+1.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.【解答】解:(1)直线y=2x+4与x轴,y轴分别交于点A,B,令x=0,则y=4,令y=0,则x=﹣2,∴B(0,4),A(﹣2,0),将直线AB向右平移6个单位长度,点B平移后的对应点为点C为(6,4);(2)∵A(﹣2,0),∴D(4,0),解得:k=2,b=﹣8,∴直线CD的表达式为y=2x﹣8.把C(6,4),D(4,0)代入y=kx+b中得,(3)∵点B(0,4)关于原点的对称点为点E(0,﹣4),∴设过点E的直线y=kx﹣4,把D(4,0)代入y=kx﹣4中得4k﹣4=0,∴k=1,把A(﹣2,0)代入y=kx﹣4中,∴k=﹣2∴k≥1或k≤﹣2.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b.∵点A的坐标为(﹣1,0),点B的坐标是(1,﹣2),∴,解得,∴直线AB的解析式为y=﹣x﹣1,把直线AB向上平移m个单位后得y=﹣x+m﹣1.由,解得,即交点为(,).由题意,得,解得m>3;(2)AB最短时有AB⊥CD,设此时直线AB的解析式为y=﹣x+n,将A(﹣1,0)代入,得0=﹣×(﹣1)+n,解得n=﹣.即直线AB的解析式为y=﹣x﹣.由,解得,所以B点坐标为(,﹣).12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.【解答】解:(1)∵点A(﹣1,m)是直线y=﹣x+2上一点,∴m=1+2=3.∴点A的坐标为(﹣1,3).∴点(﹣1,3)向右平移4个单位长度得到点B的坐标为(3,3).(2)当直线l:y=kx﹣2过点A(﹣1,3)时,得3=﹣k﹣2,解得k=﹣5.当直线l:y=kx﹣2过点B(3,3)时,得3=3k﹣2,解得k=.如图,若直线l:y=kx﹣2(k≠0)与线段AB有公共点,则b的取值范围是k≤﹣5或k≥.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式y=2x;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式y=x+2;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.【解答】解:(1)直线l:y=2x+4向右平移2个单位得到的直线l2的解析式为:y=2(x﹣2)+4,即y=2x,(2)∵(0,4),(﹣2,0)在直线ly=2x+4上,这两点关于y=﹣x的对称点为(﹣4,0),(0,2),设直线l1的解析式为y=kx+b,∴,解得,∴直线l1的解析式为:y=x+2,故答案为y=x+2;(3)∵直线l:y=2x+4交x轴于A,交y轴于B.∴A(﹣2,0),B(0,4),∴OA=2,OB=4,设P的坐标为(x,2x+4),∵S△OAP=2S△OBP,∴OA•|2x+4|=2×OB•|x|,即|2x+4|=4|x|,解得x=﹣或2,∴P(﹣,)或(2,8).2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.【解答】解:(1)由,解得,∴B(3,3).(2)由题意A(0,2),C(2,0),∴S四边形ABCO=S△OCB+S△AOB=×2×3+×2×3=6.(3)如图,将线段BC绕点B逆时针旋转90得到C′.∵△BCC′是等腰直角三角形,∠BCD=45°,∴点C′在直线CD上,∵B(3,3),C(2,0),∴C′(6,2),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣1.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.【解答】解:(1)∵四边形OABC是矩形,∴∠AOC=90°,∵OC:OB'=4:3,∴B′C:OB′=5:3,∵B′C=BC=10,∴OB′=6,∴B′点的坐标为:(6,0);(2)将纸片翻折后,点B恰好落在x轴上的B′点,CE为折痕,∴△CBE≌△CB′E,故BE=B′E,CB′=CB=OA,由OB′=6,OC:OB'=4:3,∴OC=8,设AE=a,则EB′=EB=8﹣a,AB′=AO﹣OB′=10﹣6=4,由勾股定理,得a2+42=(8﹣a)2,解得a=3,∴点E的坐标为(10,3),点C的坐标为(0,8),设直线CE的解析式为y=kx+b,根据题意,得,解得,∴CE所在直线的解析式为y=﹣x+8.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限,∴6﹣3m<0,2n﹣4≥0,故m>2,n≥2.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.【解答】解:(1)在y=2x+3中,令x=0,得y=3;令y=0,得x=,所以A、B的坐标分别为:A(,0),B(0,3),∴S△ABC=×|3|×=;(2)把l1:y=2x+3向下平移1个长度单位后得l2:y=2x+2;(3)直线l2:y=2x+2与x轴、y轴的交点C、D的坐标分别为:C(﹣1,0)、D(0,2),∴S△CBD=×|1|×|3﹣2|=.216.如图,在平面直角坐标系中,边长为2的正方形ABCD 在第一象限内,AB ∥x 轴,点A 的坐标为(5,3),已知直线l :y =x ﹣2(1)将直线l 向上平移m 个单位,使平移后的直线恰好经过点A ,求m 的值(2)在(1)的条件下,平移后的直线与正方形的边长BC 交于点E ,求△ABE 的面积.【解答】解:(1)设平移后的直线方程为y =x +b ,把点A 的坐标为(5,3)代入,得3=×5+b ,解得 b =.则平移后的直线方程为:y =x +.则﹣2+m =,解得 m =;(2)∵正方形ABCD 的边长为2,且点A 的坐标为(5,3),∴B (3,3).把x =3代入y =x +,得y =×3+=2,即E (3,2).∴BE =3﹣2=1,∴△ABE 的面积=×2×1=1.22。

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。

人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)

人教版数学八年级下册:第十八章  平行四边形   专题练习(附答案)

第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。

八年级下数学几何题(有答案)

八年级下数学几何题(有答案)

八年级下数学几何题(有答案)八年级下期末复习5如图1,四边形ABCD为正方形,E在CD上,∠DAE的平分线交CD于F,BG⊥AF于G,交AE于H.(1)如图1,∠DEA=60°,求证:AH=DF;(2)如图2,E是线段CD上(不与C、D重合)任一点,请问:AH与DF有何数量关系并证明你的结论;(3)如图3,E是线段DC延长线上一点,若F是△ADE中与∠DAE相邻的外角平分线与CD的交点,其它条件不变,请判断AH与DF的数量关系(画图,直接写出结论,不需证明).证明:(1)延长BG交AD于点S∵AF是HAS的角的平分线,BS⊥AF∴∠HAG=∠SAG,∠HGA=SGA=90°又∵AG=AG∴△AGH≌△AGS∴AH=AS,∵AB∥CD∴∠AFD=∠BAG,∵∠BAG+∠ABS=∠ABS+∠ASB=90°∴∠BAG=∠ASB∴∠ASB=∠AFD又∵∠BAS=∠D=90°,AB=AD∴△ABS≌△DAF∴DF=AS∴DF=AH.(2)DF=AH.同理可证DF=AH.(3)DF=AH如图,在△ABC中,点O是AC边上的一个动点(点O不与A、C 两点重合),过点O作直线MN ∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.(1)OE 与OF相等吗?为什么?(2)探究:当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)在(2)中,当∠ACB等于多少时,四边形AECF为正方形.(不要求说理由)解:(1)如图所示:作EG⊥BC,EJ⊥AC,FK⊥AC,F H⊥BF,因为直线EC,CF分别平分∠ACB与∠ACD,所以EG=EJ,FK=FH,在△EJO与△FKO中,∠AOE=∠CON ∠EJO=∠FKO EJ=FK ,所以△EJO≌△FKO,即OE=OF(2)当OA=OC,OE=OF时,四边形AECF是矩形,证明:∵OA=OC,OE=OF,∴四边形AECF为平行四边形,又∵直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.∴∠ACE=∠BCE,∠ACF=∠FCD,由∠BCE+∠ACE+∠ACF+∠FCD=180°,∴∠ECA+∠ACF=90°,即∠ECF=90°,∴四边形AECF为矩形;(3)由(2)可知,四边形AECF是矩形,要使其为正方形,再加上对角线垂直即可,即∠ACB=90°(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?即:FG=(AB+BC+AC)(直接写出结果即可)(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是解如图(1)FG=1 /2 (AB+BC+AC);(2)答:FG=1 /2 (AB+AC-BC);证明:延长AG交BC于N,延长AF交BC于M∵AF⊥BD,A G⊥CE,∴∠AGC=∠CGN=90°,∠AFB=∠BFM=90°在Rt△AGC和Rt△CGN中∠AGC=∠CGN=90°,CG=CG,∠ACG=∠NCG∴Rt△AGC≌Rt△CGN∴AC=CN,AG=NG同理可证:AF=FM,AB=BM.∴GF是△AMN的中位线∴GF=1/ 2 MN.∵AB+AC=MB+CN=BN+MN+CM+MN,BC=BN+MN+CM ∴AB+AC-BC=MN∴GF=1 /2 MN=1 /2 (AB+AC-BC);(3)线段FG与△ABC三边之间数量关系是:GF=1/ 2 (AC+BC-AB).已知:△ABC中,以AC、BC为边分别向形外作等边三角形ACD 和BCE,M为CD中点,N为CE 中点,P为AB中点.(1)如图1,当∠ACB=120°时,∠MPN的度数为;(2)如图2,当∠ACB=α(0°<α<180°)时,∠MPN的度数是否变化?给出你的证明.解:(1)∠MPN的度数为60°;(2)∠MPN的度数不变,仍是60°,理由如下:证明:取AC、BC的中点分别为F,G,连接MF、FP、PG、GN,∵MF是等边三角形ACD的中位线,∴MF=1 /2 AD=1 /2 AC,MF∥AD,∵PG是△ABC的中位线,∴PG=1/ 2 AC,PG∥AC,∴MF=PG,同理:FP=CG,∴四边形CFPG是平行四边形,∴∠CFP=∠CGP,∴∠MFC+∠CFP=∠CGN+∠CGP,即∠MFP=∠PGN,∴△MFP≌△PGN(SAS),∴∠FMP=∠GPN,∵PG∥AC,∴∠1=∠2,在△MFP中,∠MFC+∠CFP+∠FMP+∠FPM=180°,又∵∠MFC=60°,∴∠CFP+∠FMP+∠FPM=120°,∵∠CFP=∠1+∠3,∴∠1+∠3+∠FMP+∠FPM=120°,∵∠1=∠2,∠FMP=∠GPN,∴∠2+∠3+∠GPN+∠FPM=120°,又∵∠3+∠FPM+∠MPN+∠GPN+∠2=180°,∴∠MPN=60°.如图,在平面直角坐标系中,A是反比例函数y=k/x(x>0)图象上一点,作AB⊥x轴于B点,AC⊥y轴于C点,得正方形OBAC的面积为16.(1)求A点的坐标及反比例函数的解析式;.(2)点P(m,16/3 )是第一象限内双曲线上一点,请问:是否存在一条过P点的直线l与y轴正半轴交于D点,使得BD⊥PC?若存在,请求出直线l的解析式;若不存在,请说明理由;(3)连BC,将直线BC沿x轴平移,交y轴正半轴于D,交x轴正半轴于E点(如图所示),DQ⊥y轴交双曲线于Q点,QF⊥x轴于F点,交DE于H,M是EH的中点,连接QM、OM.下列结论:①QM+OM的值不变;②QM/OM的值不变.可以证明,其中有且只有一个是正确的,请你作出正确的选择并求值.解:(1)∵正方形OBAC的面积为16,∴A(4,4);(2分)将A点代入反比例函数y=k /x (x>0)中,得反比例函数的解析式:y=16/ x ;(2)将y=16/ 3 代入y=16 /x 得:P(3,16 /3 );设存在点D,延长PC交x轴于E点;∵∠COE=∠DOB=90°,∠ECO=∠DCP,∴∠CEO=∠ODB;而OC=OB,∴△COE≌△BOD,∴OE=OD;而C(0,4),P(3,16 /3 ),∴直线CP的解析式为y=4 /9 x+4;当y=0时,x=-9,∴E(-9,0),故D(0,9),∴直线l的解析式为:y=-11/ 9 x+9(3)选②,值为1.连FM,∵DE∥BC,∴OE=OD=QF,而M是Rt△FHE的斜边中点,∴EM=HM=FM;∵∠OEH=∠QFM=45°,∴△QMF≌△OME;∴QM=OM;∴QM OM =1.。

人教版八年级数学下册正方形知识点及同步练习、含答案

人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

88. 2024年数学八年级下册几何基础练习题(含答案)

88. 2024年数学八年级下册几何基础练习题(含答案)

88. 2024年数学八年级下册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 在一个直角三角形中,如果一个角是30度,那么它的对边与斜边的比例是()。

A. 1:2B. 1:3C. 1:4D. 1:52. 一个圆的半径是5厘米,那么它的直径是()。

A. 2.5厘米B. 5厘米C. 10厘米D. 15厘米3. 在一个等腰三角形中,如果底边长是10厘米,那么腰长是()。

A. 5厘米B. 10厘米C. 15厘米D. 20厘米4. 一个正方形的边长是8厘米,那么它的面积是()。

A. 32平方厘米B. 64平方厘米C. 128平方厘米D. 256平方厘米5. 在一个直角三角形中,如果一个角是45度,那么它的两个锐角的比例是()。

A. 1:1B. 1:2C. 1:3D. 1:46. 一个圆的周长是31.4厘米,那么它的半径是()。

A. 5厘米B. 10厘米C. 15厘米D. 20厘米7. 在一个等边三角形中,如果边长是6厘米,那么它的高是()。

A. 3厘米B. 6厘米C. 9厘米D. 12厘米8. 一个长方形的面积是48平方厘米,如果长是8厘米,那么宽是()。

A. 6厘米B. 8厘米C. 10厘米D. 12厘米9. 在一个直角三角形中,如果一个角是60度,那么它的两个锐角的比例是()。

A. 1:1B. 1:2C. 1:3D. 1:410. 一个圆的直径是10厘米,那么它的面积是()。

A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米二、判断题(每题2分,共10分)1. 在一个等腰三角形中,底边与腰的比例是1:2。

()2. 一个圆的半径是5厘米,那么它的周长是31.4厘米。

()3. 在一个等边三角形中,如果边长是6厘米,那么它的高是3厘米。

()4. 一个正方形的面积是64平方厘米,那么它的边长是8厘米。

()5. 在一个直角三角形中,如果一个角是45度,那么它的两个锐角的比例是1:1。

人教版八年级数学下册46.菱形(提高)典型例题讲解+练习及答案.doc

人教版八年级数学下册46.菱形(提高)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】菱形(提高)责编:常春芳【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、(2016•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2015春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2014春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.。

2024年数学八年级下册几何基础练习题(含答案)

2024年数学八年级下册几何基础练习题(含答案)

2024年数学八年级下册几何基础练习题(含答案)试题部分:一、选择题(每题2分,共20分)1. 下列图形中,哪一个不是平面图形?A. 正方形B. 三角形C. 球体D. 圆形2. 下列哪个选项描述的是三角形的高?A. 连接三角形的一个顶点和对边中点的线段B. 连接三角形的一个顶点和对边垂足的线段C. 连接三角形的一个顶点和对边任意点的线段D. 连接三角形的一个顶点和对边中点的线段3. 下列哪个选项描述的是平行四边形的对角线?A. 平行四边形内部的两条对边B. 平行四边形内部的两条不相交的线段C. 平行四边形内部的两条相交于一点且互相平分的线段D. 平行四边形内部的两条相交于一点的线段4. 下列哪个选项描述的是圆的半径?A. 圆心到圆上任意一点的线段B. 圆心到圆上最远点的线段C. 圆心到圆上最近点的线段D. 圆心到圆上任意两点的线段5. 下列哪个选项描述的是矩形的对角线?A. 矩形内部的两条对边B. 矩形内部的两条不相交的线段C. 矩形内部的两条相交于一点且互相平分的线段D. 矩形内部的两条相交于一点的线段6. 下列哪个选项描述的是等腰三角形的底边?A. 等腰三角形最长的边B. 等腰三角形最短的边C. 等腰三角形两腰之间的边D. 等腰三角形两腰之一的边7. 下列哪个选项描述的是正方形的对角线?A. 正方形内部的两条对边B. 正方形内部的两条不相交的线段C. 正方形内部的两条相交于一点且互相平分的线段D. 正方形内部的两条相交于一点的线段8. 下列哪个选项描述的是圆的直径?A. 圆心到圆上任意一点的线段B. 圆心到圆上最远点的线段C. 圆心到圆上最近点的线段D. 圆心到圆上任意两点的线段9. 下列哪个选项描述的是矩形的对角线?A. 矩形内部的两条对边B. 矩形内部的两条不相交的线段C. 矩形内部的两条相交于一点且互相平分的线段D. 矩形内部的两条相交于一点的线段10. 下列哪个选项描述的是等腰三角形的底边?A. 等腰三角形最长的边B. 等腰三角形最短的边C. 等腰三角形两腰之间的边D. 等腰三角形两腰之一的边二、判断题(每题2分,共10分)1. 一个平面图形的面积可以用平方单位来表示。

矩形的判定(分层作业)-八年级数学下册(人教版)(解析版)

 矩形的判定(分层作业)-八年级数学下册(人教版)(解析版)

人教版初中数学八年级下册18.2.2矩形的判定同步练习夯实基础篇一、单选题:1.下列给出的判定中不能判定一个四边形是矩形的是()A .有三个角是直角B .对角线互相平分且相等C .对角线互相垂直且相等D .一组对边平行且相等,一个角是直角【答案】C【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【详解】解:A 、有三个角是直角的四边形是矩形,该选项说法正确,不合题意;B 、对角线互相平分且相等的四边形是矩形,该选项说法正确,不合题意;C 、对角线互相平分且相等的四边形是矩形,该选项原说法错误,符合题意;D 、一组对边平行且相等,一个角是直角的四边形是矩形,该选项说法正确,不合题意;故选:C .【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.如图,四边形ABCD 是平行四边形,添加下列条件,能判定这个四边形是矩形的是()A .=BAD ABCB .AB BDC .AC BD D .=A B BC【答案】A【分析】由矩形的判定和平行四边形的性质分别对各个选项进行判断即可;【详解】解:A 、∵四边形ABCD 是平行四边形,+=180°ABC BAC ,=ABC BAC ∵,==90°ABC BAC ,平行四边形ABCD 是矩形,故选项A 符合题意;B 、∵四边形ABCD 是平行四边形,AB BD ,++=180°BAD ABD DBC ,90ABD ,90°BAD ,选项B 不能判定这个平行四边形为矩形,故选项B 不符合题意;C 、∵四边形ABCD 是平行四边形,AC BD ,平行四边形ABCD 是菱形,故选项C 不符合题意;D 、∵四边形ABCD 是平行四边形,=A B BC ,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:A .【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识,熟练掌握矩形的判定是解题的关键.3.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC 交AD 于E ,若4,8AB BC ,则AE 的长为()A .3B .4C .5D .【答案】C 【分析】根据矩形ABCD ,得到AD =BC =8,∠ADC =90°,OA =OC ,从而得证△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,利用勾股定理计算即可.【详解】如图,连接EC ,∵矩形ABCD ,OE AC ,4,8AB BC ,∴AD =BC =8,AB =CD =4,∠ADC =90°,OA =OC ,∵OE AC ,∴∠AOE =∠COE =90°,∵OE=OE ,∴△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,在Rt △DEC 中,222CE DE CD ,∴222(8)4x x ,∴x =5,∴AE =5,故选C.【点睛】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理,熟练掌握矩形的性质,三角形全等,勾股定理是解题的关键.4.如图,平行四边形ABCD的对角线AC,BD相交于点O, AOB是等边三角形,OE BD交BC于点E,CD=2,则CE的长为()DA.1B C.235.如图,在四边形ABCD 中,对角线AC BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若8AC ,6BD ,则四边形EFGH 的面积为()A .48B .24C .32D .12∴EF ∥GH ,FG ∥HE 且EF ⊥FG .四边形EFGH 是矩形.∴四边形EFGH 的面积=EF •EH =3×4=12,即四边形EFGH 的面积是12.故选:D .【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的性质,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AD ,BD ,BC ,CA 的中点,若四边形EFGH 是矩形,则四边形ABCD 需满足的条件是()A .AB DCB .AC BD C .AC BD D .AB DC∵//EF AB ,//HE CD ,∴AB CD ,故选:A .【点睛】本题考查矩形的判定定理,三角形中位线的定义和性质,关键是利用三角形中位线定理证明四边形EFGH 是平行四边形,再利用 FE HE 推出AB CD .7.如图,在直角三角形ABC 中,90ACB ,3AC ,4BC ,点M 是边AB 上一点(不与点A ,B 重合),作ME AC 于点E ,MF BC 于点F ,则EF 的最小值是()A .2B .2.4C .2.5D .2.6【答案】B 【分析】根据题意可证四边形ECFM 是矩形,得EF =CM ,再由垂线段最短得CM 最短进而可得EF 最短,最后进行计算即可.【详解】连接CM ,∵ME AC ,MF BC ,∴ MEC = MFC =90°,当CM AB ,1122ABC S AC BC AB CM △,∴113422CM AB , ABC 中,二、填空题:8.如图,平行四边形ABCD中,对角线AC,BD相交于点O,欲使四边形ABCD变成矩形,则还需添加______.(写出一个合适的条件即可)【答案】AC=BD(答案不唯一)【分析】根据矩形的判定条件求解即可.【详解】解:添加条件AC=BD,利用如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC=BD,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点睛】本题主要考查了矩形的判定,熟知矩形的判定条件是解题的关键.9.一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯两次,就能得到矩形踏板.理由是______.【答案】三个角都是直角的四边形是矩形(或:“有一个角是直角的平行四边形是矩形”)【分析】使用矩形的判定定理,有三个角是直角的四边形是矩形【详解】因为木板的对边平行,在进行两次锯开时都是沿着垂直于对边的方向,所以会出现4个直角,有三个角是直角的四边形是矩形.故答案是三个角是直角的四边形是矩形.【点睛】本题考查矩形的判定,需要熟记矩形的判定定理并灵活运用.10.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,AC 与BD 应满足的的条件是___________.,,,E F G H ∵分别为,,CD AD AB 1,2EF AC GH EF GH AC 四边形EFGH 为平行四边形,要使平行四边形EFGH 为矩形,则AC BD,.故答案为:AC BD【点睛】本题考查了三角形中位线定理、平行四边形的判定、矩形的判定,熟练掌握三角形中位线定理是解题关键.AB CD,PM、PN、QM、QN分别为角平分线,则四边形PMQN是__________.11.如图,//∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.12.如图,矩形ABCD中,BE⊥AC于点E,若∠ACB=23°,则∠DBE=_______度.【答案】44【分析】由矩形的性质可知∠OBC=∠ACB=23°,则可求得∠AOB度数,由直角三角形的性质可得∠DBE的度数.【详解】解:∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD,∴OB=OC,∴∠ACB=∠OBC=23°,∵∠AOB=∠ACB+∠OBC=46°,且BE⊥AC,∴∠DBE=44°.故答案为:44【点睛】本题主要考查矩形的性质,等腰三角形的性质,利用矩形的对角线相等且平分求得∠OBC的度数是解题的关键.13.如图,在面积为36的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,则DP的长是_____【答案】6【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=36,易得DP=6.【详解】如图,作DE⊥BC,交BC延长线于E,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中APD CED ADP CDE AD DC===,∴△ADP ≌△CDE ,∴DP =DE ,S △ADP =S △CDE ,∴四边形BEDP 为正方形,S 四边形ABCD =S 正方形BEDP ,∴DP 2=36,∴DP =6.故答案为6.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形和矩形的性质.本题的关键的作辅助线构造两个全等的三角形.三、解答题:14.如图,在ABC 中,AB AC ,AD 平分BAC 交BC 于点D ,分别过点A 、D 作AE BC ∥、DE AB ∥,AE 与DE 相交于点E ,连接CE .(1)求证:AE BD ;(2)求证:四边形ADCE 是矩形.【答案】(1)见解析(2)见解析【分析】(1)根据AE BC ∥、DE AB ∥证明四边形ABDE 为平行四边形,即可得出答案;(2)由等腰三角形的性质得出BD CD ,AD BC ,得出AE CD ,90ADC ,先证出四边形ADCE 是平行四边形.再证明四边形ADCE 是矩形即可.【详解】(1)证明:∵AE BC ∥、DE AB ∥,∴四边形ABDE 是平行四边形,∴AE BD ;(2)证明:∵AB AC ,AD 平分BAC ,∴BD CD ,AD BC ,∵AE BD ,∴AE CD ,∵AE CD ∥,∴四边形ADCE 是平行四边形,∵AD BC ,∴90ADC∴四边形ADCE 是矩形.【点睛】本题主要考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质,由等腰三角形的性质得出BD CD ,AD BC ,是解决问题的关键.15.如图,四边形ABCD 是平行四边形,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形.(2)若AF 是DAB 的平分线.若6CF ,8BF ,求DC 的长.DAF DFA ,10AD FD ,10616DC DF FC .【点睛】本题考查了平行四边形的性质,矩形的性质和判定,角平分线的定义,等角对等边,能综合运用定理进行推理是解此题的关键.16.如图,在四边形ABCD 中,AD BC ,90ABC BCD .对角线,AC BD 交于点,O DE 平分ADC 交BC 于点E ,连接OE .(1)求证:四边形ABCD 是矩形;(2)若2CD ,DBC =30 ,求△BED 的面积.17.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,AE BD 于点E ,DF AC 于点F ,且AE DF .(1)求证:四边形ABCD 是矩形.(2)若:4:5BAE EAD ,求EAO 的度数.∴904050OBA OAB ,∴504010EAO OAB BAE .【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.能力提升篇一、单选题:1.如图,点P 是Rt ABC 中斜边(AC 不与A ,C 重合)上一动点,分别作PM AB 于点M ,作PN BC 于点N ,点O 是MN 的中点,若9AB ,12BC ,当点P 在AC 上运动时,则BO 的最小值是()A .3B .3.6C .3.75D .4【点睛】本题主要考查矩形的判定与性质,垂线段最短,勾股定理及面积法等知识,熟练掌握矩形的判定与性质是解题的关键.2.如图,在Rt ABC △中,90A ,M 为BC 的中点,H 为AB 上一点,过点C 作CG AB ∥,交HM 的延长线于点G ,若10AC ,8AB ,则四边形ACGH 周长的最小值是()A .28B .26C .22D .18【答案】A 【分析】通过证明BMH CMG △≌△可得BH CG ,可得四边形ACGH 的周长即为AB AC GH ,进而可确定当MH AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得H G 的长,进而可求解.【详解】解:CG AB ∥∵,B MCG ,M ∵是BC 的中点,BM CM ,在BMH V 和CMG V 中,B MCG BM CM BMH CMG,()BMH CMG ASA △≌△,HM GM ,BH CG ,10AC ∵,8AB ,四边形ACGH 的周长18AC CG AH GH AB AC GH GH ,当GH 最小时,即MH AB 时四边形ACGH 的周长有最小值,90A ∵,MH AB ,GH AC ∥,四边形ACGH 为矩形,10GH ,四边形ACGH 的周长最小值为181028 ,故选:A .【点睛】本题主要考查轴对称 最短路径问题,全等三角形的判定与性质,确定GH 的值是解题的关键.3.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD 交BC 于点E ,15CAE .连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB ;④150 AOE ;⑤AOE COE S S ,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题:4.如图,在平行四边形ABCD 中,90A ,10AD ,=8AB ,点P 在边AD 上,且BP BC ,点M 在线段BP 上,点N 在线段BC 的延长线上,且=PM CN ,连接MN 交CP 于点F ,过点M 作ME CP 于E ,则=EF ___________.,根据等角对等边可得5.如图,在矩形ABCD 中,4AB cm ,12AD cm ,点P 从点A 向点D 以每秒1cm 的速度运动,Q 以每秒4cm 的速度从点C 出发,在B 、C 两点之间做往返运动,两点同时出发,点P 到达点D 为止(同时点Q 也停止),这段时间内,当运动时间为______时,P 、Q 、C 、D 四点组成矩形.【答案】2.4s 或4s 或7.2s【分析】根据已知可知:点Q 将由,C B C B C 根据矩形的性质得到AD ∥BC ,设过了t 秒,当AP=BQ 时,P 、Q 、C 、D 四点组成矩形,在点Q 由C B 的过程中,则PA=t ,BQ=12-4t ,求得t=2.4(s ),在点Q 由B C 的过程中,t=4(t-3),求得t=4(s ),在点Q 再由C B 中,t=12-4(t-6),求得t=7.2(s ),在点Q 再由B C 的过程中,t=4(t-9),t=13(s ),故此舍去,从而得到结论.【详解】解:根据已知可知:点Q 由,C B C B C在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,,则四边形APQB是矩形,则以P、Q、C、D四点为顶点组成矩形.若AP BQ设过了t秒,则PA=t,BQ=12-4t,∴t=12-4t,∴t=2.4(s),的过程中,在点Q由B C设过了t秒,则PA=t,BQ=4(t-3),t=4(t-3),解得:t=4(s),在点Q再由C B过程中,设过了t秒,则PA=t,BQ=12-4(t-6),t=12-4(t-6),解得:t=7.2(s),的过程中,在点Q再由B C设过了t秒,则PA=t,BQ=4(t-9),t=4(t-9),解得:t=13(s)>12(s),故此舍去.故答案为:2.4s或4s或7.2s;【点睛】本题考查了矩形的性质与判定,此题属于动点型题目.解题时要注意数形结合与方程思想的应用.三、解答题:6.如图,在平行四边形ABCD 中,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF BF ,.(1)求证:四边形BFDE 是矩形.(2)已知60DAB AF ,是DAB 的平分线,若6AD ,则□ABCD 的面积为______.7.如图,在Rt ABC 中,90,5,3ACB AB BC ,D 是AC 的中点,CE AB ∥,动点P 以每秒1个单位长度的速度从点B 出发向点A 移动,连接PD 并延长交CE 于点F ,设点P 移动的时间为t 秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当4PF 时,求t的值.【点睛】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.。

人教版八年级数学下册专题复习(十一) 几何图形的面积等分

人教版八年级数学下册专题复习(十一)  几何图形的面积等分

思维特训(十一)几何图形的面积等分方法点津面积等分基本模型:1.三角形的中线把三角形面积等分;2.夹在两条平行线间的距离相等,同底等高的两个三角形面积相等;3.过平行四边形对角线中点(对称中心)的任意一条直线把平行四边形面积等分.典题精练类型一作一个图形的面积等于已知图形1.(1)如图11-S-1①,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.①写出图①中面积相等的三角形:________;②当点P在直线m上移动到任一位置时,总有________与△ABC的面积相等;(2)如图11-S-1②,已知一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积?图11-S-1类型二等分面积2.阅读下列材料:小明遇到一个问题:AD是△ABC的中线,M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.他的作法是:如图11-S-2①,连接AM,过点D作DN∥AM交AC于点N,作直线MN,直线MN即为所求直线.请你参考小明的作法,解决下列问题:(1)如图②,在四边形ABCD中,AE平分四边形ABCD的面积,M为CD边上一点,过点M作一直线MN,使其等分四边形ABCD的面积(要求:在图②中画出直线MN,并保留作图痕迹);(2)如图③,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图③中画出直线AE,并保留作图痕迹).图11-S-23.有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如三角形的中线所在的直线一定是三角形的“二分线”.解决下列问题:(1)在图11-S-3①中,试用三种不同的方法分别画出平行四边形ABCD的“二分线”;(2)解决问题:兄弟俩分家时,有原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图②所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗(画图,并说明结果)?图11-S-34.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图11-S-4①,在四边形ABCD中,取对角线BD的中点O,连接OA,OC,AC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于点E,则直线AE即为一条“好线”.(1)试说明:直线AE是“好线”的理由;(2)如图②,AE为一条“好线”,F为AD边上的一点,请作出经过点F的“好线”,并对画图作适当说明(不需要说明理由).图11-S-45.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图11-S-5①,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由.(2)如图②,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC 于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”.(3)如图③,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.图11-S-5典题讲评与答案详析1.解:(1)①图①中符合条件的三角形有:△CAB与△P AB,△BCP与△APC,△ACO 与△BPO.②△P AB(2)如图,连接EC,过点D作直线DM∥EC交BC的延长线于点M,作直线EM,直线EM即为所求的直线.2.解:(1)如图①,连接AM,过点E作EN∥AM,交AD于点N,再作直线MN即可.(2)如图②,取对角线BD的中点O,连接AO,CO,AC,过点O作OE∥AC交CD于点E,直线AE就是所求直线.3.解:(1)答案不唯一,示例如下:(2)能解决这个问题.连接AC,BD相交于点O,过点O,P作直线与DC,AB分别交于点E,F,如图所示.则一人分四边形ADEF,一人分四边形CEFB.4.解:(1)∵OE∥AC,∴S△AOE=S△COE,∴S△AOF=S△CEF.又∵折线AOC能平分四边形ABCD的面积,∴直线AE平分四边形ABCD的面积,即AE是“好线”.(2)连接EF,过点A作EF的平行线交CD于点G,连接FG,则FG为一条“好线”.∵AG∥EF,∴S△AGE=S△AFG. 设AE与FG的交点是O,则S△AOF=S△GOE.又∵AE为一条“好线”,∴FG为一条“好线”.5.解:(1)不能.理由:如图①,取AB的中点D,连接CD,则S△ADC=S△DBC,且过点C只能画CD一条直线平分△ABC的面积.∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出△ABC的一条“等分积周线”.(2)证明:如图②,连接AE,DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF.∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴在Rt△ABE和Rt△DCE中,根据勾股定理,得AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,解得x=5,∴BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE.∴AF+AB+BE=DF+CE+DC.∵S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,∴直线EF为四边形ABCD的“等分积周线”.(3)如图③,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则直线EF是△ABC的“等分积周线”.理由:由作图可得AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2.∵AB =BC,∴∠A=∠C.在△ABF和△CFG中,AF=CG,∠A=∠C,AB=CF,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG.又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴直线EF是△ABC的“等分积周线”.。

人教版八年级下册数学 第18章《平行四边形》讲义 第12讲 平行四边形-复习训练(有答案)

人教版八年级下册数学 第18章《平行四边形》讲义 第12讲  平行四边形-复习训练(有答案)

第12讲平行四边形复习训练考点一、平行四边形的性质及判定 【知识要点】(1)、平行四边形的边、角、对角线性质, 对称性 (2)、平行四边形判定方法 (3)、三角形中位线【典型例题】例1、下列图形中是中心对称图形,但不是轴对称图形的是( ) A 、菱形 B 、矩形 C 、正方形 D 、平行四边形例2、如图,□ABCD 与□DCFE 的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为 例3、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E,与DC 交于点F,且点F 为边DC 的中点,DG ⊥AE,垂足为G,若DG=1,则AE 的长为( ) A 、2B 、4C 、4D 、8例4、平面直角坐标系中,□ABCD 的顶点,A ,B ,D 的坐标分别是(0,0)(5,0),(2,3),则顶点C 的坐标是( )A 、(3,7)B 、(5,3)C 、(7,3)D 、 (8,2)(例2) (例3) (例4) 例5、如图,E 是平行四边形内任一点, 若S 平行四边形ABCD=8,则图中阴影部分的面积是( ) A 、3B 、4C 、5D 、6例6、如图,将平行四边形ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G 处。

(1)求证:AE =AF (2)求证:△ABE ≌△AGF例7、如图所示:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.例8、如图,在△ABC 中,AB =4,AC =3,BC =5,以三边为边,在BC 的同侧分别作三个等边三角形即△ABD、△BCE、△ACF。

(1)求证:四边形EFAD是平行四边形;(2)求四边形EFAD的面积。

1、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可能是()A、1:2:3:4B、2:2:3:3C、2:3:2:3D、2:3:3:22、顺次连结四边形各边的中点,所成的四边形必定是()A、等腰梯形B、直角梯形C、矩形D、平行四边形3、如图,在ABCD中,AB=5,AD=8,∠BAD、∠ADC的平分线分别交BC于E、F,则EF的长为()A、1B、2C、3D、44、如图,在□ABCD中,EF∥AD, GH∥AB,EF、GH相交于点O,则图中共有个平行四边形.(3)(4)5、如图,△ABC 中,∠ACB=90°,点D、E分别为AC,AB中点,点F在BC延长线上,且∠CDF=∠A。

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在△ABC中,若AB=AC,点D是BC的中点,则下列结论正确的是()A. AD垂直于BCB. BD=DCC. ∠BAC=90°D. ∠ABC=∠ACB2. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线平行,则它们的任意一对对应角相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列关于全等三角形的判定,错误的是()A. SASC. AASD. SSD5. 在△ABC中,若∠A=60°,∠B=70°,则边BC与边AC的长度关系是()A. BC > ACB. BC = ACC. BC < ACD. 无法确定6. 下列关于相似三角形的性质,正确的是()A. 对应角相等B. 对应边成比例C. 对应角互补D. 对应边相等7. 若等腰三角形的底角为45°,则其顶角的度数是()A. 45°B. 90°C. 135°D. 180°8. 在平行四边形ABCD中,若AB=6cm,AD=8cm,则对角线AC的长度可能是()A. 4cmB. 10cmC. 12cm9. 下列关于圆的性质,错误的是()A. 圆的半径都相等B. 圆的直径是半径的两倍C. 圆的周长与半径成正比D. 圆的面积与半径成正比10. 在直角坐标系中,点P(a,b)关于y轴对称的点是()A. (a,b)B. (a,b)C. (a,b)D. (b,a)二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。

()2. 平行线的同旁内角互补。

()3. 两个等腰三角形的底角相等,则这两个三角形全等。

()4. 在直角三角形中,斜边上的中线等于斜边的一半。

人教版八年级数学下册期末复习专题——几何计算(含答案)

人教版八年级数学下册期末复习专题——几何计算(含答案)

人教版八年级数学下册期末复习专题——几何计算(含答案)一,典例讲解:如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.解:(1)由折叠知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AN=CM,可证△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形(2)∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8-x,CM=10-6=4,在Rt△CEM中,(8-x)2+42=x2,解得x=5,∴四边形AECF的面积为EC·AB=5×6=30二.对应训练:1.如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,-),求D点的坐标2.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.3.如图,▱OABC的顶点O、A.C的坐标分别是(0,0),(2,0),(0.5,1),求点B的坐标4.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,求△ABC的面积5.如图,在平面直角坐标系中,直线y=与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,求△CEF的面积6.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x 轴上运动时,点C随之在y轴上运动.在运动过程中,求点B到原点的最大距离7.已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).(1)求此一次函数的解析式;(2)当y=-5时求x的值;(2)求此函数图象与两坐标轴所围成的三角形的面积.8.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.9.如图,C为线段BD上一动点,分别过点B、D作AB BD,ED BD,连结AC、EC,已知线段AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值10.已知等边△ABC,点A在坐标原点,B点的坐标为(6,0),求点C的坐标11.数a、b在数轴上的位置如图所示,化简:12.如图,数轴上点A 表示的数为a ,化简:442+-+a a a答案:二.对应训练:1.略2.(1)设直线AB 的解析式为y =kx +b ,∵直线AB 过点A(1,0),B(0,-2),∴⎩⎪⎨⎪⎧k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2 (2)设点C 的坐标为(x ,y),∵S △BOC =2,∴12×2×x=2,解得x =2,∴y =2×2-2=2,∴点C 的坐标是(2,2)3.略4.略5.略6.略7.(1)将A (-3,-2),B (0,4)分别代入y=kx+b 得-2=-3k+b ,4=b 解得K=2,b=4,∴y=2x+4(2)略;(3)48.(1)证明:∵AD ⊥BC ,∠BAD=45°,∴△ABD 是等腰直角三角形,∴AD=BD ,∵BE ⊥AC ,AD ⊥BC ∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE ,在△ADC 和△BDF 中,,∴△ADC ≌△BDF (ASA ),∴BF=AC , ∵AB=BC ,BE ⊥AC ,∴AC=2AE ,∴BF=2AE ;(2)解:∵△ADC ≌△BDF ,∴DF=CD=,在Rt △CDF 中,CF===2,∵BE ⊥AC ,AE=EC ,∴AF=CF=2,∴AD=AF+DF=2+. 9.解:(1)(2)解:当点C 为AE 和BD 的交点时,根据两点之间线段最短,所以AC+CE 的值最小(3)解:如图(1),C为线段BD上一动点,分别过点B,D作AB BD,ED BD,连接AC,ED。

部编数学八年级下册专题38一次函数的应用之几何问题(解析版)含答案

部编数学八年级下册专题38一次函数的应用之几何问题(解析版)含答案

专题38一次函数的应用之几何问题1.如图,在平面坐标系中,直线:l y kx b =+分别与x 轴,y 轴交于点3,02A æö-ç÷èø,点()0,3B .(1)求直线l 的解析式;(2)若点C 是y 轴上一点,且ABC V 的面积是154,求点C 的坐标;(3)在(2)的条件下,当点C 在y 轴负半轴时,在平面内是否存在点D ,使以A ,B ,C ,D 为顶点的四边形是平行四边形?若存在,直接写出点D 的坐标;若不存在,请说明理由.2.如图①,在矩形OACB 中,点A 、B 分别在x 轴、y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)请直接写出点C 的坐标;(2)如图②,点F 在BC 上,连接AF ,把ACF V 沿着AF 折叠,点C 刚好与线段AB 上一点C ¢重合,求线段CF 的长度;(3)如图③,点(,)P x y 为直线26y x =-在第一象限内的图象上的个动点,点D 在线段AC 上(不与点A 、C 重合),是否存在直角顶点为P 的等腰直角BDP △,若存在,请求出点P 的坐标:若不存在,请说明理由.Q BPD D 是等腰三角形,\ BP PD =,90BPD Ð=°,\EF BC ∥,\BEP Ð=90PFD Ð=°,\BPE DPF DPF PDF Ð+Ð=Ð+Ð,\BPE PDF Ð=Ð,\()BPE PDF AAS D D ≌,\6(26)122PF BE a a ==--=-,EP DF =,Q 1228EF EP PF a a =+=+-=,\4a =,\点(4,2)P ,点D 为(8,6)在端点上,点(4,2)P 不符合题意,舍去;②当点P 在BC 的上方时,如图④,过点P 作EF BC ∥,交y 轴于E ,交AC 的延长线于F ,同理可证BPE PDF D D ≌,\266212BE PF a a ==--=-,3.如图,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y =2x-6经过线段OA的中点D,与y轴交于点G,E是线段CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)写出点B的坐标是( , );(2)当43OABCBEGFS S=正方形四边形时,求点E的坐标;(3)在点E的整个运动过程中,①当四边形BEGF为菱形时,求点E的坐标;②若N为平面内一点,当以B,E,F,N为顶点的四边形为矩形时,m的值为 .(请直接写出答案)4.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M 在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.5.如图1,在平面直角坐标系中,直线AB 分别交x 轴、y 轴于A(a ,0)、B(0,b)两点,且a ,b 满足(a ﹣b )2+|a ﹣4t|=0,且t >0,t 是常数.直线BD 平分∠OBA ,交x 轴于D 点.(1)若AB 的中点为M ,连接OM 交BD 于N ,求证:ON =OD ;(2)如图2,过点A 作AE ⊥BD ,垂足为E ,猜想AE 与BD 间的数量关系,并证明你的猜想;(3)如图3,在x 轴上有一个动点P (在A 点的右侧),连接PB ,并作等腰Rt △BPF ,其中∠BPF =90°,连接FA 并延长交y 轴于G 点,当P 点在运动时,OG 的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【答案】(1)见解析;(2)BD =2AE ,证明见解析;(3)OG 的长不变,OG =4t【分析】(1)根据直线解析式求出点A 、B 的坐标,然后得出AOB D 是等腰直角三角形,再根据角平分线的定义求出22.5ABD Ð=°,根据等腰三角形三线合一的性质OM AB ^,然后根据直角三角形两锐角互余的性质与三角形的一个外角等于与它不相邻的两个内角的和求出67.5OND Ð=°,67.5ODB Ð=°,利用等角对等边得到ON OD =;(2)延长AE 交BO 于C ,得ABE CBE D @D ,得到2AC AE =,再证OAC OBD D @D 得到BD AE =,从而得到2BD AE =;()ABE CBE ASA \D @D ,AE CE \=,2AC AE \=,AE BD ^Q ,90OAC ADE \Ð+Ð=°,又90OBD BDO Ð+Ð=°,ADE BDO Ð=Ð(对顶角相等),OAC OBD \Ð=Ð,在OAC D 与OBD D 中,OAC OBD OA OB BOD AOCìÐ=Ðïïïï=íïïïÐ=Ðïî,()OAC OBD ASA \D @D ,BD AC \=,2BD AE \=;(3)OG 的长不变,且4OG t =.过F 作FH OP ^,垂足为H ,90FPH PFH \Ð+Ð=°,90BPF Ð=°Q ,90BPO FPH \Ð+Ð=°,FPH BPO \Ð=Ð,BPF D Q 是等腰直角三角形,BP FP \=,在OBP D 与HPF D 中,90FPH BPO BOP FHP BP FPìÐ=ÐïïïïÐ=Ð=°íïïï=ïî,()OBP HPF AAS \D @D ,FH OP \=,4PH OB t ==,=,Q,OA OB=+=+AH PH AP OB AP\=+=,AH OA OP OP\=,FH AH\Ð=Ð=°,45GAO FAH\D是等腰直角三角形,AOG\==.OG OA t4【点睛】本题综合考查了一次函数,全等三角形的判定与全等三角形的性质,以及等腰直角三角形的性质,角平分线的定义,等腰三角形三线合一的性质等等知识点,熟悉相关性质是解题的关键.6.如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.【点睛】本题主要考查一次函数的图象的平移和正方形的性质的综合,掌握待定系数法和求直线和坐标轴的交点坐标是解题的关键.7.已知,一次函数364y x =-+的图像与x 轴、y 轴分别交于点A 、点B ,与直线54y x = 相交于点C ,过点B 作x 轴的平行线l .点P 是直线l 上的一个动点.(1)求点A ,点B 的坐标.(2)若AOC BCP S S =△△,求点P 的坐标.(3)若点E 是直线54y x =上的一个动点,当△APE 是以AP 为直角边的等腰直角三角形时,求点E 的坐标.8.如图,将一矩形纸片OABC 放在平面直角坐标系中,()0,0O ,()6,0A ,()0,3C .动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t (秒).(Ⅰ)OE =_____________,OF =_____________;(用含t 的代数式表示)(Ⅱ)当1t =时,将OEF V 沿EF 翻折,点O 恰好落在CB 边上的点D 处.①求点D 的坐标及直线DE 的解析式;②点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,S 为MBN △的面积,当点M 与点B 重合时,0S =.求S 与b 之间的函数关系式,并求出自变量b 的取值范围.∵OEF V 沿EF 翻折得到DEF V ,∴53FD OF ==.∴1410BM b=-+.9.已知,直线y=2x-2与x轴交于点A,与y轴交于点B.(1)如图①,点A的坐标为_______,点B的坐标为_______;(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.①求点C的坐标;②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;(3)若∠ABN=45º,求直线BN的解析式.令y=0,则2x-2=0,即x=1过点C 作CD⊥x 轴,垂足是D,∵∠BOA=∠ADC=90°,∠BAO=∠CAD,CA=AB,∴△BOA≌△CAD(AAS),∴CD=OB=2,AD=OA=1,∴C(2,2);②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.故答案是:m<0或m>2;(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.∵∠AOB=∠BAN=∠AHN=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,∴∠ABO=∠HAN,∵AB=AN,∴△ABO≌△NAH(AAS),∴AH=OB=2,NH=OA=1,∴N(3,-1),设直线BN的解析式为y=kx+b,则有:312k bb+=-ìí=-î,解得132kbì=ïíï=-î,∴直线BN的解析式为y=13x-2,当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:y3x2=--.∴满足条件的直线BN的解析式为y=13x-2或y=-3x-2.【点睛】本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE= ,OF= (用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S 与b之间的函数关系式,并求出自变量b的取值范围.11.如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.12.已知11y kx =+过点(2,-1),与x 轴交于点A,F 点为(1,2).(Ⅰ)求k 的值及A 点的坐标;(Ⅱ)将函数1y 的图象沿y 轴方向向上平移得到函数2y ,其图象与y 轴交于点Q,且OQ=QF,求平移后的函数2y 的解析式;(Ⅲ)若点A 关于2y 的对称点为K,请求出直线FK 与x 轴的交点坐标.13.在平面直角坐标系中,直线1l:142y x=-+分别与x轴、y轴交于点A、点B,且与直线2l:y x=于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且BODV的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,直线AB交x轴于点A(4 ,0),交y轴于点B(0 ,-4),(1)如图,若C的坐标为(-1, ,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH ,求证:∠OHP=45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -V V 的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P (0 ,-1);(2)证明见解析;(3)不变;4.【分析】(1)利用坐标的特点,得出△OAP ≌△OB ,得出OP=OC=1,得出结论;(2)过O 分别做OM ⊥CB 于M 点,ON ⊥HA 于N 点,证出△COM ≌△PON ,得出OM=ON ,HO 平分∠CHA ,求得结论;(3)连接OD ,则OD ⊥AB ,证得△ODM ≌△ADN ,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=4.【详解】解:∵AH ⊥BC 于H ,∴∠OAP +∠OPA=∠BPH +∠OBC=90°,∴∠OAP=∠OBC在△OAP 和△OBC 中,90COB POA OA OB OAP OBC Ð=Ð=°ìï=íïÐ=Ðî∴△OAP ≌△OBC (ASA ),∴OP=OC=1,则点P (0 ,-1)(2)过点O 分别作OM ⊥CB 于M 点,ON ⊥HA 于N 点,15.如图,直线12y x b=-+与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式012x b kx£-+£的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣12x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.16.无刻度直尺作图:图1 图2(1)直接写出四边形ABCD的形状.(2)在图1中,先过E点画一条直线平分四边形ABCD的面积,再在AB上画点F,使得AF=AE.(3)在图2中,先在AD上画一点G,使得∠DCG=45°;连接AC,再在AC上画点H,使得GH=GA.【答案】(1)四边形ABCD是菱形,理由见解析(2)见解析(3)见解析【分析】(1)只需要证明AB=CD=AD=BC即可得到结论;(2)如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH并延长交AB于F,则直线EG,点F即为所求;(3)如图所示,取格点T,连接CT交AD于G,取格点M、N,连接MN交BC于P,连接GP交AC于H,则点G、H即为所求;(1)求直线AB 的解折式;(2)如图2,已知P 为直线l :152y x =-+上一点,且512ABI ABCO S S =四边形△,求点P 的坐标;(3)若点D 为第一象限内一动点,且45ODC Ð=°,求BD 的最小值.∴∠BDA =90°,∵BC ∥OA ,BC =2,OA =6,∴AD =6−2=4,在Rt △ABD 中,BD =(22213AB AD -=∴PQ=|yQ−yP|=31922m m -++∵xA−xB=6−2=4,∴S△ABP=12PQ•(xA−xB)=12×4×|4−S四边形ABCO=12×(2+6)×6=24,∵∠ODC=45°,∠MOD=90°,18.如图,直线y =x +9与直线y =-2x -3交于点C ,它们与y 轴分别交于A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)点F 在x 轴上,使10BFC S =△,求点F 的坐标;(3)点P 在x 轴上,使∠PBO +∠PAO =90°,直接写出点P 的坐标.。

初二数学几何试题及答案解析

初二数学几何试题及答案解析

初二数学几何试题及答案解析一、选择题(每题3分,共15分)1. 下列哪个选项是矩形的性质?A. 对角线相等B. 对边平行C. 对角线互相垂直D. 四个角都是直角答案:D解析:矩形的定义是四个角都是直角的平行四边形,因此选项D是正确的。

2. 一个三角形的两边长分别为3和4,第三边的长度可能是多少?A. 1B. 7C. 5D. 6答案:C解析:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

因此,第三边的长度应该在1和7之间,即1 < 第三边 < 7。

选项C的5满足这个条件。

3. 一个等腰三角形的底角为45°,那么顶角的度数是多少?A. 45°B. 90°C. 60°D. 135°答案:B解析:等腰三角形的两个底角相等,所以另一个底角也是45°。

三角形内角和为180°,所以顶角的度数为180° - 45° - 45° = 90°。

4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B解析:圆的面积公式为A = πr²,其中r是半径。

将半径5代入公式,得到面积为π × 5² = 25π。

因此,正确答案是B。

5. 下列哪个选项是菱形的性质?A. 对角线相等B. 对角线互相垂直C. 对边平行D. 四个角都是直角答案:B解析:菱形的定义是四边相等且对角线互相垂直的平行四边形,因此选项B是正确的。

二、填空题(每题3分,共15分)6. 一个等边三角形的内角和为______。

答案:180°解析:任何三角形的内角和都是180°,等边三角形也不例外。

7. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度为______。

答案:10解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根。

【北京市特级教师同步复习精讲】-人教版八年级数学下册专题讲解+课后训练:勾股定理 课后练习一及详解.doc

【北京市特级教师同步复习精讲】-人教版八年级数学下册专题讲解+课后训练:勾股定理 课后练习一及详解.doc

勾股定理课后练习(一)主讲教师:傲德题一:一个直角三角形的斜边长为5cm,一条直角边比另一条直角边长1cm,则这个直角三角形的面积是.题二:如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a,b,斜边长为c和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)证明勾股定理..题四:一个直角三角形两边长分别为10和24,则第三边长的平方为.题五:如图,是2002年8月在北京召开的第24届国际数学家大会的会标,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,小正方形的面积是1,直角三角形较长的直角边为a,较短的直角边为b,则(a b)(a2+b2)的值等于.P在矩形勾股定理课后练习参考答案题一:6cm2.由勾股定理得:x=3题二:见详解.(2)证明:∵大正方形的面积表示为1∴(a即直角三角形两直角边的平方和等于斜边的平方.解法二:(1)如图:题三:36.,=6+30=36题四: 676或476. 详解:设第三边为x(1)若24是直角边,则第三边x 是斜边,由勾股定理,得102+242=x 2,所以x 2=676; (2)若24是斜边,则第三边x 为直角边,由勾股定理,得102+x 2=242,所以x 2=476 所以第三边长的平方为676或476.题五: 13.详解:观察图形,根据勾股定理,知a 2+b 2即大正方形的面积是13,又根据直角三角形的面积公式,知2ab 即其中四个直角三角形的面积和=13-1=12 ∵(a -b )2=a 2+b 2-2ab =13-12=1 ∵又a >b ∴a -b =1 ∴(a -b )(a 2+b 2)=13.题六: (1)(12,4);(2)P 1(-72P 2(0,4)、P 3(2,4)、P 4(4,4).详解:(,);=4。

八年级数学几何最值问题(人教版)(专题)(含答案)

八年级数学几何最值问题(人教版)(专题)(含答案)

几何最值问题(人教版)(专题)一、单选题(共10道,每道10分)1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,则PB+PE的最小值是( )A. B.C. D.答案:C解题思路:1.思路分析2.解题过程根据正方形的性质,点B和点D关于AC对称,此时连接DE,与AC的交点即为点P,线段DE的长即为所求.∵正方形ABCD的边长为2,E为AB的中点,∴AE=1,AD=2,∴,故选C试题难度:三颗星知识点:略2.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A.3B.C. D.答案:C解题思路:定点:D,E动点:P(在定线段AC上运动)要使PD+PE最小,需要通过对称把PD,PE转移到直线AC异侧.如图,由正方形的性质知,D,B关于AC所在直线对称,所以PD=PB,故所求可转化为“PB+PE的最小值”.根据“两点之间线段最短”,当B,P,E共线时,PB+PE最小,最小值为BE的长度.∵正方形ABCD的面积为12,∴,∴,故选C.试题难度:三颗星知识点:略3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为边BC,CD,BD上的动点,则PK+QK的最小值为( )A.1B.C.2D.答案:B解题思路:如图,作点Q关于BD的对称点,根据菱形的对称性,点落在AD边上,则题目转化为求的最小值,根据两点之间线段最短,的最小值为线段的长度,当⊥AD时,最小.如图,过点C作CE⊥AD,则.∵四边形ABCD为菱形,∴∠CDE=180°-∠A=60°,CD=AB=2,∴,故选B.试题难度:三颗星知识点:略4.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( )A. B.C. D.答案:B解题思路:1.思路分析2.解题过程通过题意可知,EF和CD的长固定,所以若要四边形CDEF的周长最小,则DE+CF最小即可.如图,CF向左平移两个单位到,此时就转化为要求即可.作出点D关于x轴的对称点,此时连接,与x轴的交点即为点E.根据题意可得,点的坐标为(1,4),点的坐标为(0,-2),∴的直线解析式为:,∴点E的坐标为,∴点F的坐标为.故选B试题难度:三颗星知识点:略5.如图,正方形ABCD的边长为2,顶点A,D分别在x轴、y轴上.当点A在x轴上运动时,点D随之在y轴上运动,则在运动过程中,点B到原点O的最大距离为( )A. B.C. D.答案:B解题思路:如图,取AD的中点M,连接OM,MB.∵OM为Rt△AOD斜边上的中线,∴,在Rt△AMB中,由勾股定理,得,在△OBM中,根据三角形的三边关系定理,得OM+BM OB,即,当O,M,B三点共线时,OM+BM=OB,此时OB最大,最大值为.故选B.试题难度:三颗星知识点:略6.如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为( )A.24B.25C. D.26答案:B解题思路:取BC的中点M,连接OM,MD.∵OM为Rt△BOC斜边上的中线,∴,在Rt△DMC中,由勾股定理,得,在△ODM中,根据三角形的三边关系定理,得OM+DM OD,即,当O,M,B三点共线时,OM+DM=OD,此时OD最大,最大值为.故选B.试题难度:三颗星知识点:略7.动手操作:在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC 边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点在BC边上可移动的最大距离为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:略8.如图,折叠矩形纸片ABCD,使点B落在AD上的点E处,折痕的两端点分别在AB,BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是( )A. B.C. D.答案:D解题思路:当点M与点A重合时,AE最大,如图,此时AE=6;当点N与点C重合时,AE最小,如图,此时AE=2.∴,故选D.试题难度:三颗星知识点:略9.如图,在矩形ABCD中,AB=5,BC=12,E是BC边上一动点,则以BD为对角线的所有平行四边形BEDF中,EF的最小值是( )A. B.5C.6D.12答案:B解题思路:在平行四边形BEDF中,EF=2OE,由“直线外一点到直线上所有点的连线中,垂线段最短”可知,当OE⊥BC时,OE最短,如图,此时,,∴EF的最小值为5.试题难度:三颗星知识点:略10.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△,连接,则的最小值是( )A. B.C. D.4答案:A解题思路:如图,连接ED,由题意,,在Rt△AED中,AE=2,AD=6,∴,由翻折得BE=B′E=2,由三角形三边关系得:B′D-B′E,∴当,B′,D三点共线时,B′D-B′E,B′D取最小值,当,B′,D三点共线时,如图,∴B′D=DE-B′E=,∴B′D 的最小值是.试题难度:三颗星知识点:略第11页共11页。

八年级下册人教版数学几何题

八年级下册人教版数学几何题

八年级下册人教版数学几何题一、一个等腰三角形的底边长为6厘米,腰长为8厘米,那么这个等腰三角形的周长是多少厘米?A. 16厘米B. 20厘米C. 22厘米D. 24厘米(答案)C。

解析:等腰三角形的两腰相等,所以两腰的总长为8厘米乘以2等于16厘米,再加上底边长6厘米,周长为16厘米加6厘米等于22厘米。

二、一个矩形的长是宽的2倍,如果宽增加2厘米,长减少3厘米,那么新的矩形面积与原来的矩形面积相比,会如何变化?A. 增加4平方厘米B. 减少4平方厘米C. 不变D. 无法确定(答案)B。

解析:设原矩形的宽为x厘米,则长为2x厘米。

原面积为x乘以2x等于2x 平方厘米。

宽增加2厘米后变为x加2厘米,长减少3厘米后变为2x减3厘米。

新面积为(x加2)乘以(2x减3)等于2x平方加4x减3x减6等于2x平方加x减6。

新面积与原面积之差为(2x平方加x减6)减2x平方等于x减6。

因为x为原矩形的宽,必然为正数,所以x减6小于0,即新面积比原面积小,且小了6减x的绝对值,即4平方厘米(因为原矩形的长宽关系,x必然小于3,所以6减x大于3且小于6,题目中只有4平方厘米的选项,故选B)。

三、一个平行四边形的底边长为10厘米,高为6厘米,如果将它变形为一个矩形,且矩形的长与平行四边形的底边长相等,那么矩形的面积是多少?A. 40平方厘米B. 50平方厘米C. 60平方厘米D. 无法确定(答案)D。

解析:平行四边形的面积等于底乘以高,即10厘米乘以6厘米等于60平方厘米。

但是,将平行四边形变形为矩形时,虽然长与平行四边形的底边长相等,但高可能会发生变化,因此无法确定矩形的面积。

四、一个菱形的两条对角线长度分别为6厘米和8厘米,那么这个菱形的面积是多少平方厘米?A. 24平方厘米B. 32平方厘米C. 48平方厘米D. 64平方厘米(答案)A。

解析:菱形的面积等于两条对角线长度乘积的一半,即6厘米乘以8厘米再除以2等于24平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学几何题训练含答案
八年级习题练习
四、证明题:(每个5分,共10分)
1、在平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F ,求
证:BE =DF 。

2、在平行四边形DECF 中,B 是CE 延长线上一点,A 是CF 延长线上一点,连结AB 恰过点D ,求证:AD ·BE =DB ·EC
五、综合题(本题10分)
3.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x
2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .
(1)求证:AD 平分∠CDE ;
(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
F
E
D
C
B A
F
E
D
C
B
A
4. 如图,四边形ABCD中,AB=2,CD=1 ,∠A=60度,∠D=∠B=90度,求四边形ABCD的面积S
5.如图,梯形ABCD中,AD//BC,AB=DC. 如果P是BC上任意一点(中点除外),PE//AB,PF//DC,那么AB=PE+PF 成立吗?如果成立,请证明,如果不成立,说明理由。

参考答案
证明题1、证△ABE≌△CDF;
2、⇒




=



=


A
BDE
AC
DE
B
ADF
BC
DF
△ADF∽△DBE
BE
DF
DB
AD
=

综合题
1.(1)证:由y=x+b得 A(b,0),B(0,-b).
∴∠DAC=∠OAB=45 º
又DC⊥x轴,DE⊥y轴∴∠ACD=∠CDE=90º
∴∠ADC=45º即AD平分∠CDE.
(2)由(1)知△ACD和△BDE均为等腰直角三角形.
∴AD=2CD,BD=2DE.
∴AD·BD=2CD·DE=2×2=4为定值.
(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD
设OB=a (a>0),∴B(0,-a),D(2a,a)
2上,∴2a·a=2 ∴a=±1(负数舍去)
∵D在y=
x
∴B(0,-1),D(2,1).
又B在y=x+b上,∴b=-1
即存在直线AB:y=x-1,使得四边形OBCD为平行四边形.
4.如图,延长AD与BC交于点E
∵∴
∵∠A=60度,∠B=90度,AB=2
∴∠E=30度
AE=4(30度所对的边为斜边的一半)
BE^2=AE^2 - AB^2(勾股定理)
BE=√ 4^2-2^2=√ 12=2√ 3
同上理,已知CD=1
∴CE=2,DE=√ 3
∴四边形ABCD的面积=S△ABE - S△CED = 1/2(BE*AB)-1/2(DE*CD)=1/2*2√ 3*2 - 1/2*√3*1=(3*√ 3)/2
5.由平行易得:三角形pce相似于三角形bca 易得:pe=ag,且bg/ba=bp/bc=bf/bd
由上可知:gf//bp
易证:三角形gbp全等于三角形fpb
所以:bgfp为等腰梯形---可得bg=fp
所以有结果:bg+ag=pe+pf=AB。

相关文档
最新文档