结构力学第三章叠加法作弯矩图

合集下载

土木之结构力学I智慧树知到答案章节测试2023年青岛理工大学

土木之结构力学I智慧树知到答案章节测试2023年青岛理工大学

第一章测试1.几何组成分析时,有多余约束就是几何不可变体系。

()。

A:错B:对答案:A2.几何可变体系一定没有多余约束.()A:对B:错答案:B3.瞬变体系可以用作结构。

()。

A:错B:对答案:A4.体系自由度是确定体系位置,所需独立坐标的数目。

()A:对B:错答案:A5.有多余约束的超静定结构,可以去掉一个约束,仍然保持为几何不变体系。

()A:对B:错答案:B第二章测试1.叠加法做弯矩图是竖标的叠加,不是形状的叠加()A:对B:错答案:A2.结构支座反力计算顺序与几何组成有关()A:对B:错答案:A3.铰结点处无外力矩作用时,弯矩为零()A:对B:错答案:A4.悬臂端无外力矩作用时,弯矩为零()A:对答案:A5.二力杆是两端为铰结、中间无连接、跨中无外荷载的直杆。

()A:错B:对答案:B第三章测试1.影响线与外荷载位置无关。

()A:错B:对答案:B2.影响线纵标无单位。

()A:对B:错答案:B3.影响线横坐标代表的是单位力1的位置。

()A:对B:错答案:A4.影响线可以用于求荷载位置确定时,量值的大小。

()A:对B:错答案:A5.影响线可以用于在荷载位置变动时,确定最不利荷载位置。

()A:对B:错答案:A第四章测试1.荷载作用下梁和刚架的位移计算均可以利用图乘法进行计算。

()A:错B:对答案:A2.静定结构和超静定结构在温度变化下都会产生内力。

()A:对B:错答案:B3.结构产生支座移动,不会产生内力和变形,只会产生刚体位移。

()A:错答案:A4.位移计算的一般公式是一个普遍公式,可以适用于不同的材料性质和结构类型。

()A:错B:对答案:B5.由变形体体系虚功原理,可知外力虚功等于虚应变能。

()A:错B:对答案:B第五章测试1.力法可以计算静定结构。

()A:错B:对答案:A2.温度变化下超静定结构内力与杆件刚度绝对值有关。

()A:对B:错答案:A3.荷载作用下超静定结构内力与杆件相对刚度有关。

结构力学 第三章 作业参考答案

结构力学 第三章 作业参考答案

B
M图(kN m)
(1) (2)
解: (1)求支座反力
∑M = 0 ∑F = 0
A y
取左边或者右边为隔离体,可得:
∑M ∑F
x
C
=0
⇒ FBx =
M h
(3) (4)
=0
最后容易做出结构的弯矩图。
3—18 试作图示刚架的 M 图。
C 0.8kN/m 0.5kN/m D E
14.625 4.225 12.8375
3—19 试作图示刚架的 M 图。
20kN
24 16
C
24
16
B FAx A FBy FAy
FBx
1m
2m
2m
2m
M图(kN m)
(1) (2) (3)
解:对整体:
∑M ∑F
y
A
=0
FBy × 4 + FBx ×1 = 20 × 2 FAy + FBy = 20 FAx − FBx = 0 FBx × 2 − FBy × 2 = 0
40kN m
10kN m M图(kN m)
32.5kN
20kN
20kN F(kN) S
解:求支座反力。取整体:
47.5kN
∑M ∑F
A
=0
FB × 8 − 20 ×10 − 10 ×10 × 3 − 40 = 0 FAy + FB − 10 ×10 − 20 = 0
然后即可做出弯矩图,利用弯矩图即可作出剪力图。
然后即可做出整个刚架的弯矩图。结点受力校核如下图。
D
qL 4 qL 2 qL 2
qL 4
qL 4
E
qL 2 qL 2

材料力学基础—结构力学弯矩图

材料力学基础—结构力学弯矩图
一 、 梁
q 2 q P
MM == P q L P L 2 =qL
L L L L L/2
( ( (1 19 0 )) ( ) 1)
P作用下的M图: qL2
2PL
qP
PL
qM=qL 2 q P=qL
LL
P=qL L
P=2qL
LL
L
( (21)1 () 2)
P作用下的M图:
( (( 31 3 )2 ))
先计算支反M= 力qL 2,再q作MP 图=q:L
(15) 1 M
(13)
2
L
q q qL
( L 1211 M)
L L (7)
P=qL
1 qL LP P= =q qL L 4
L M M L= =q qL L 142 2( qM L12 2q q )L81LqLP P= 2=q qL L
L L (8)L L
P作用下的M图:
4 qL 2
qL
1 2
M=qL 2 q
q作用q下的M图:
P=qP L
P
qL 2
L
L
L
L
(4)
qL2
q
q作q用下的M图:
1 qL 2 2
L
L
(5)
(12)
P与q作用下的M图:
3 qL 2 L
q
2
(13)
qL L L
(7)
P与q作用下的M图:
L
M
L/4
1
qL
(14)
2
L
L
2
(8)
P 2P
q LL L q q
(7)
L L L L L L
L ( ( (77 7 )) )

结构力学I-第三章 静定结构的受力分析(梁、刚架)

结构力学I-第三章 静定结构的受力分析(梁、刚架)

14:32
LOGO
梁的内力计算的回顾
FQ FN M0 Fx O FQ+ ΔFQ FN+ ΔFN M+ ΔM δ(x) x
直杆增量关系
增量关系
FN Fx FQ Fy M M 0
*另一种表述
M
Fy
y
dFN qx dx dFQ qy dx dM FQ dx
MA
FB=12 kN
ME m, 20KN
q
M D 18KN m,
M E 26KN m, 区段叠加法,
L M并可求出: 。 B 16KN m
MF
M F 18KN m,
F sE 3. 作弯矩图以及剪力图
L MG 6KN m,
Page 21
R MG 4KN m,
绘制: 1 由内力方程式画出图形; 2 利用微分关系画出图形。
直杆微分关系
dFN qx dx dFQ q y dx dM FQ m dx
FQ FN
qy FQ+ dFQ
m qx O FN+ dFN M+ dM x
M
y
dx
集中力怎么办?
Page 14
计算思路:从刚片出发、从结点出发;
平面几何不变体系的组成规律 三角形规律:二元体(两杆一铰)、两刚片、三刚片; 灵活运用 撤去二元体,几何不变—>大刚片,虚铰选择,三刚片选择
Page 1
LOGO
第二章 结构的几何构造分析
回顾
灵活应用:虚铰、刚片的选择、无穷远处虚铰特性;
无多不变
3 能否运用三刚片规则?

结构力学 叠加法

结构力学 叠加法

2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。

在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。

所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。

这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。

叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。

也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。

例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。

求梁的极值弯矩和最大弯矩。

解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。

于是两图共有部分,其正、负纵坐标值互相抵消。

剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。

叠加后的弯矩图仍为抛物线。

如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。

求极值弯矩时,先要确定剪力为零的截面位置。

由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。

令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。

当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。

这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。

因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。

由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。

材料力学结构力学弯矩图

材料力学结构力学弯矩图

qL
(47)
B、A处无水平支反力,直接 作M图
q=20kN/m
25kN.m
25kN.m q
65kN.m 50kN 50kN
L
25kN.m 25kN.m
0.5m
0.5m
2m
(48)
B、A处无水平支反力,AC、 DB无弯曲变形,EC、ED也 无弯曲变形
P
E
L
C N=P/2
D
L
1.5L
4m
2qL2
2qL2
注:P力通过点弯矩为0
第8页/共72页
aa
用“局部悬臂梁法”直接作M图:
P
P
P
Pa
P
2Pa
A Pa
a Ba
a
a
(23)
注:AB段弯矩(2为3)常数。
(33)
2L 2L
LL
用“局部悬臂梁法”直接作M图:
P P
PL PL
3PL
L
L
L
L
((2344))
(24)
2PL 2PL
P P
qa
qa
第9页/共72页
L
L
L
q
2qL2
2qL2
A
L
(50)
(60)
P
利用反对称性,直接作M图
105
105
N=P/2
无弯矩 105 105
L
L
P (51)
P
2
2
(61)
第22页/共72页
a
先计算A或B处支反力,再作M图
B
Pa 2 P Pa 2
A
2a
((6522))
a

结构力学弯矩图

结构力学弯矩图

结构⼒学弯矩图画弯矩图的基本理论1.1 指定截⾯上的弯矩计算弯矩等于截⾯⼀侧所有外⼒对截⾯形⼼⼒矩的代数和,画在受拉⼀侧。

1.2 荷载、剪⼒、弯矩三者之间的微分关系即:当荷载为常数时,剪⼒图为斜直线,弯矩图为⼆次曲线;当荷载为零时,剪⼒图为平⾏线或为零线,弯矩图为斜直线或为平⾏线、零线。

1.3 区段叠加法区段叠加法是以⼀段梁的平衡为依据,⽐拟相应跨度简⽀梁的计算⽽得到的⽅法:以⼀段梁的两端弯矩值的连线为基线,叠加该段相应简⽀梁的弯矩图。

1.4 刚结点处⼒矩的分配与杆端弯矩的传递利⽤⼒矩分配法中的结点分配和传递的原理,计算出结点的分配系数,将结点的不平衡⼒矩快速分配和传递给其他杆的近端及远端。

1.5 剪⼒分配法的应⽤对于在结点⽔平荷载作⽤下的排架(横梁EA为⽆穷⼤)、框架及框排架结构(横梁EI为⽆穷⼤),可以根据各个柱⼦的侧移刚度,计算出剪⼒分配系数,得到各柱的剪⼒。

在弯矩为零处作⽤该柱的剪⼒,按悬臂柱即可计算其柱端弯矩。

速画弯矩图的基本技巧2.1 单跨静定梁和超静定梁的弯矩图熟练掌握单跨静定梁在简单荷载作⽤下的弯矩图,单跨超静定梁的载常数和形常数。

2.2 集中⼒及约束处弯矩图的特征集中⼒处的弯矩图有尖⾓,尖⾓的⽅向同荷载的指向;集中⼒偶处的弯矩图有突变,突变的幅值等于⼒偶的⼤⼩,突变的变化与⼒偶的效应对应。

例如:对于⽔平杆,弯矩图若从左向右绘制,遇到顺时针转向的⼒偶,有增加右段杆下侧受拉的效应,因此弯矩图形向下突变。

固定端处的弯矩⼀般不为零;⾃由杆端、杆端铰⽀座及铰结点处,若⽆外⼒偶作⽤,该处的弯矩恒等于零;当直线段的中间铰上⽆集中⼒作⽤时,由于中间铰两侧的剪⼒相同,因此,中间铰两侧杆的弯矩图形连续,并且经过中间铰(铰结点处的弯矩恒等零);当直线段的滑动约束上⽆集中⼒作⽤时,由于滑动约束两侧的剪⼒为零,因此,滑动约束两侧杆的弯矩图形为⼀平⾏线;在两杆相连的刚结点处,两杆的杆端弯矩⼤⼩相同、同侧(⾥侧或外侧)受拉;在三杆相连的刚结点处,当已知两杆的杆端弯矩时,另外⼀杆的弯矩值可按结点的⼒矩平衡求得。

结构力学-第三章

结构力学-第三章
M FN FQ M+dM
dx dx
FN+d FN FQ+dFQ
内力图-表示结构上各截面内力值的图形 横坐标--截面位置;纵坐标--内力的值
1.结构力学的截面内力分量及其正负号规定
FN FN
轴力—截面上应力沿杆轴切线方向的 合力,使杆产生伸长变形为正,画轴力图 要注明正负号;
剪力—截面上应力沿杆轴法线方向的
C
25 5 20 25 50 20
F
55
G
85 40 10
H
50
40k N A 25 2m B 2m C 2m 5 50 20 50 40k N D 1m
80k N· m E 2m 2m 1m 55 40 40 20 F
20k N/m G 4m 85 40 10 2m H
M 图(k N· m)
20k N/m
A
2
2
YA
C
YB
XC
YC
B
XB
2)取右部分为隔离体 Fp l M C 0, X B l YB 2 0, X B 4 () Fp Fy 0, YC YB 0, YC YB 2 () Fp Fx 0, X B X C 0, X C 4 ()
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。 q F
A B C D E F G H
q F
E C A B D F G H
F A F A B C D E B C D E
q F q F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。

结构力学 第三章 静定结构

结构力学 第三章 静定结构
• 由结点弯矩平 衡校核弯矩计算是 否正确。
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁

由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m

结构力学课件-快速作弯矩图的方法和技巧

结构力学课件-快速作弯矩图的方法和技巧

快速作弯矩图
(Quick drawing of bending moment diagram)
➢ 一、直接绘M图的几点技巧 ➢ 二、本节例题
一、直接绘M图的几点技巧 1、充分利用M图的形状特征与横向荷载的关系
➢无横向荷载作用的直杆区段:弯矩图为直线;
➢有横向荷载作用的直杆区段:只要知道两杆端截面M值,用 区段叠加法作M图(熟记简支梁在常见荷载下M图)
l q q
主观题 10分
直接作出下图所示结构的弯矩图。
作答
3、充分利用刚结点的力矩平衡条件
➢无外力偶作用的两杆相交刚结点:两杆端弯矩竖标相等且位于同侧 (内侧或外侧)
MAC
MAB A
A MAC
MAB
A MAB
MAC MAB =MAC
A MAC
MAB MAB =MAC
➢有外力偶作用的两杆相交刚结点:两杆端弯矩竖标有突变;
M图
m=2.5ql2 C
1.5ql2
M DC
1 ql2 2
M CD ql 2
D
1 ql2 2
l
m=2.5ql2
C q
2ql Al
③作FS图:根据已作出的弯矩图,利用杆段的
F=2ql
平衡条件先求杆端剪力,从而作出剪力图
D q
ql2
C
FSCD
2ql
D 0.5ql2
FSDC
B l
MC 0
Fy 0
例:直接作图示结构的M图
G q
H q
I q
A 3a
B
C
DEF
2a a 2a a
1.125 4.5
4.5
4.5 4.5
2.25
4.5

经典__材料力学结构力学弯矩图

经典__材料力学结构力学弯矩图
(42)
a a/2 L
Pa
Pa
2
2
Pa Pa
2 Pa
P
2
P
2Pa
a
a
((4335) )
三 、 简 支 式 刚 架
15qa2 4
21qa2 qa8 2qa2
PL
P
PL
L ( (4346) )
qa2
q
qa2
支座B无反力,AB段无变形 不用计算支反力, 直接作M图
计算A支座水平反力, 即可作M图
a
2m 2m
1 qa 2 2
q
qa 2
a
a
( 2 8 )
(38)
10010kN/m
P=40kN
60
100
80 40kN
2m 2m 2m 2m (30)
(39)
2m 2m
qL2+2cqoLs 22 α
qL2
2cos2αq

L
L
(33)
(40)
q
aa
q qa2 2
2
qa
qa
qa2
2
a
a
((4314))
15 3
3
计算A处支反力为0,直接作 M图
Pa/2 P Pa/2
A
a a/2 a/2
(55)
(65)
q=20kN/m
A
(54)
(47)
B、A处无水平支反力,直接 作M图
q=20kN/m
25kN.m
25kN.m q
65kN.m 50kN50kN
25kN.m 25kN.m
0.5m
0.5m
(48)
B、A处无水平支反力,AC、 DB无弯曲变形,EC、ED也 无弯曲变形

《结构力学》第三章 单跨静定梁

《结构力学》第三章 单跨静定梁

l
l/2 l/2
MM
l
l
练习: 利用微分关系等作弯矩图
M
1 ql2 2
P 1 ql2
4
l
l/2 l/2
l
M
2M
MM
l
l
lM
M
l
练习: 利用微分关系等作弯矩图
1 ql2 2
P 1 ql2
4
q
1 ql2
l
l/2 l/2
2l
l
M
2M
M
MM
M
M
M
M MM
M
l
l
MM
练习: 利用微分关系,叠加法等作弯矩图
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
种结构型式?
简支梁(两个并列) 多跨静定梁
连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
B
C
x
l
l
RD
q
q(l x)2 / 8
RD
B
解: RD q(l x) / 2()
M B qx2 / 2 q(l x)x / 2 q(l x)2 / 8 qx2 / 2 q(l x)x / 2

《结构力学》静定结构内力计算

《结构力学》静定结构内力计算

只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12

解 (1)求支反力

结构力学 叠加法

结构力学 叠加法

2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。

在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。

所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。

这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。

叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。

也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。

例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。

求梁的极值弯矩和最大弯矩。

解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。

于是两图共有部分,其正、负纵坐标值互相抵消。

剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。

叠加后的弯矩图仍为抛物线。

如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。

求极值弯矩时,先要确定剪力为零的截面位置。

由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。

令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。

当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。

这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。

因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。

由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。

结构力学 区段叠加法作弯矩图

结构力学 区段叠加法作弯矩图

l
+
MA 1/8qL2
+
MB 1/8qL2 MA
+
MB
区段叠加法——用叠加法作某一段梁弯矩图的方法 用叠加法作某一段梁弯矩图的方法 区段叠加法 原理
任意段梁都可以当作简支梁,并可以利用叠加法来作该段梁 任意段梁都可以当作简支梁 并可以利用叠加法来作该段梁 的弯矩图
MA
q
MB B
梁分一段: 梁分一段: A端截面弯矩:M=MA 端截面弯矩: 端截面弯矩 B端截面弯矩: B端截面弯矩:M=MB 端截面弯矩
叠加法作弯矩图 教学目的: 教学目的:
1、掌握叠加原理; 、掌握叠加原理; 2、会用叠加法作弯矩图; 、会用叠加法作弯矩图; 3、会用区段叠加法作弯矩图 、
重 点
1、叠加法绘制弯矩图 、 2、区段叠加法绘制弯矩图。 2、区段叠加法绘制弯矩图。
难 点
区段叠加法绘制弯矩图
叠加原理: 叠加原理: 几个载荷共同作用的效果, 几个载荷共同作用的效果,等于各个载荷单独作用效果之和 指载荷引起的反力、 “效果”——指载荷引起的反力、内力、应力或变形 效果” 指载荷引起的反力 内力、 “之和”——代数和 之和” 代数和 叠加原理成立的前提条件: 叠加原理成立的前提条件:小变形条件
A
l
A
B
MB
MA 1/8qL2
6kN
梁分两段: 段和 段和BD段 梁分两段:AB段和 段。 AB段A端弯矩 AB=0, 段 端弯矩 端弯矩M , B端弯矩 BA=-4KN•m 端弯矩M 端弯矩 BD段B端弯矩 BD=-4KN•m 段 端弯矩 端弯矩M D端弯矩 DB=0 端弯矩M 端弯矩
2kN m
步骤: 步骤:
1. 荷载分解 2. 作分解荷载的弯矩图 3. 叠加作荷载共同作用下 的弯矩图

结构力学 第三章 作业参考答案

结构力学 第三章 作业参考答案

∑M = 0 ∑F = 0 ∑F = 0
A
FBy × l − q × l ×
l =0 2
(1) (2) (3)
y
FAy + FBy = 0 FAx + FBx − q × l = 0
FBx × l − FBy × l =0 2
x
取右边部分为隔离体:
∑M
C
=0
(4)
解以上方程可得:
ql ⎧ ⎪ FAx = 4 ⎪ 3ql ⎪ => ⎨ FBx = 4 ⎪ ql ⎪ ⎪ FAy = FBy = 2 ⎩
3—10 试不计算反力绘出梁的 M 图。
16
12
4
A
B
8 2m 2m 4m 4m
12 4m
6m
2m
解:从悬臂端和 AB 开始作图。利用区段叠加法和铰结点的弯矩为零,即可做出全部的弯矩图。
3—12 试不计算反力绘出梁的 M 图。
5
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
1m
D 80
30
40 E
20 40
40 C F
80 E
40
A
解: (1) 求支座反力
B
40
∑F = 0 ∑M = 0 ∑F = 0
y A x
FC − 10 × 4 − 20 = 0 FA − FB = 0
⇒ FC = 60 kN ⇒ FC = 10 kN
(1) (2) (3)
FB ×1 − 50 − 10 × 4 × 6 − 20 × 10 = 0 ⇒ FB = 10 kN
(1)

结构力学第三章叠加法作弯矩图

结构力学第三章叠加法作弯矩图
2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
MA A
MB
B
l
MB
MA
MA A
q B
MB
l
MA
ql 8
2
MB
8kN· m
2kN/m
3m
3m
2m
(1)悬臂段分布荷载作用下
4kN· m
2kN· m
(2)跨中集中力偶作用下
4kN· m
4kN· m
(3)叠加得弯矩图
6kN· m
4kN· m
2kN· m
+
所以:M2=375kN.m (左拉) FN1=141×0.707=100kN
FQ1= 50 +5×5 -141×0.707 =-25kN
(取外力矩逆时针转向为正方向) (下拉)
M1=125 +141×0.707×10-50×5-5/2×5²=812.5kNm
注意:外力矩的正负是为了区分它的两种不同的转向。
qba30因此上图梁中ab段的弯矩图可以用与简支梁相同的方法绘制即把m以直线然后在此直线上叠加上节间荷载单独作用在简支梁上时的弯矩图为此必须先求出mql区段弯矩图叠加法32qlqlqlqlqlqlql区段弯矩图叠加法3310knm15kn60knm2m2m2m2m20knm3055303030303030303030303030348kn4knm16knm1m2m2m1m1730237kn1m1m35利用上述关于内力图的特性和弯矩图的分段叠加法可将梁的弯矩图的一般作法归纳如1选定外力的不连续点如集中力作用点集中力偶作用点分布荷载的起点和终点等为控制截面求出控制截面的弯矩值连一虚线然后以该虚线为基线叠加上简支梁在跨间荷载作用下的弯矩图

结构力学第三章静定结构受力分析1-6

结构力学第三章静定结构受力分析1-6
5m
45° 141kN
125kN.m
5m
Q1= 50 +5×5-141×0.707 =-25kN M1=125 +141×0.707×10-50×5 -5/2×5² =812.5kNm (下拉)
6
§3.2 荷载与内力之间的关系
1 ) 微分关系 ↓↓↓↓↓↓↓ Q+d dN/dx= - q x qx N+d N Q dQ/dx=-qy , qy向下为正 →→→→→ N x M+d dM/dx=Q M M 微分关系给出了内力图的形状特征 dx y A B 2) 增量关系 Q Q+ΔQ
6
C
三铰刚架的反 力计算方法二 (双截面法) O1 a
↓↓↓↓↓↓↓↓↓↓↓
q
29
a
a q
a
a
Y1
a O2
↓↓↓↓↓↓↓↓↓↓↓
19
斜梁的弯矩图也可用叠加法绘制,但叠加的是相应水平 简支梁的弯矩图,竖标要垂直轴线。
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MB
斜梁的内力除 弯矩和剪力外 还有轴力,内 力图中要包括 轴力图。
MA
l
MB MA
ql2/8
20
§3.5多跨静定梁(statically determinate multi-span beam)
25
§3.6 静定平面刚架受力分析
(statically determinate frame)
几何可 变体系 桁架 刚架
一、刚架的定义:若干直杆全部或部分用刚节点联结而成的结构 二、刚架的特点 ①内部空间大,便于使用。 ② 弯矩分布较为均匀,节省材料。 ③刚结点将梁柱联成一整体,增大了结构的刚度,变形小。

分段叠加法作弯矩图

分段叠加法作弯矩图

l/2
q 1 ql2 16
l/2
q
1 ql2 16
分段叠加法作弯矩图的方法:
(1)计算控制截面的弯矩值: 选定外力的不连续点(集中力作用点、集中力偶作用点、
分布荷载的始点和终点)为控制截面,
(2)分段叠加作弯矩图: 当控制截面间无荷载时,弯矩图为连接控制截面弯矩值
的直线; 当控制截面间存在荷载时,弯矩图应在控制截面弯矩值作
M图 FQ图
A支座的反力 大小为多少, ql2 / 2 M图 方向怎样? FQ图
M图
FQ图
1.无荷载分布段(q=0),FQ图为水平线,M图为斜直线. 2.均布荷载段(q=常数),FQ图为斜直线,M图为抛物线,且 凸向与荷载指向相同. 3.集中力作用处,FQ图有突变,且突变量等于力值; M图 有尖点,且指向与荷载相同;从左向右看,剪力图突变 方向与力的方向相同。 4.集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化;从左向右看,顺时针力矩,M图向下突变。
1m
1m
7kN
练习2
本章重点: 梁和刚架的内力图
60kN
24kN
A
D0
B
E
0.2m
18kN
0.2m
0.2m
66kN
M图
FQ图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 FQ图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
FQ图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
用叠加法作直杆M 图的步骤

直杆弯矩图的叠加法

直杆弯矩图的叠加法

转贴
[解] 此组合结构‎中,除AC、BC杆为受‎弯杆件外,其余均为轴‎力杆。

(1)求支座反力‎
由整体平衡‎条件,得VA=VB=75kN,HA=0.
(2)通过铰C作‎I—I截面,由该截面左‎边隔离体的‎平衡条件Σ‎M c=0,得NDE=135kN‎(拉力);由ΣY=0,Qc=—15kN;由ΣX=0,得NC =—135kN‎(压力)。

(3)分别由结点‎D、E的平衡条‎件,得NDA=NEB=151kN‎(拉力),NDF=NEG=67.5kN(压力)。

更多结构工‎程师好资料‎!(4)根据铰C处‎的剪力Qc‎及轴力Nc‎,并按直杆弯‎矩图的叠加‎法就可绘出‎受弯杆AF‎C、BGC的弯‎矩图。

(5)M、Q、N图分别如‎图2—17b、c、d所示。

广义力和广‎义位移
以各种不同‎方式作用在‎结构上的力‎,如集中力、集中力偶、分布力、分布力偶等‎都称为广义力,它可以是外‎力,也可以是内‎力。

与广义力对‎应的位移称‎为广义位移‎。

或能唯一地决定结构‎几何位置改‎变的彼此独‎立的量称为‎广义位移,如线位移、角位移、相对线位移、相对角位移‎等。

更多结构工‎程师好资料‎!
本节主要介‎绍静定结构‎在广义力、温度变化、支座位移等‎因素作用下‎的广义位移‎计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业
3-1 a d eFra bibliotekf h用区段叠加法画弯矩图 对图示简支梁把其 中的AB段取出,其隔 离体如图所示: 把AB隔离体与相 应的简支梁作一对 比: 显然两者是完全 相同的。
Fp
A
q
L B
M
q MA
A B
MB
FQBA
FQAB q MA
A
B
MB
MA
A
B
MB FYB
FYA
Fp
A
q
L B
M
因此上图梁中AB段的弯矩图可以用与简支梁 相同的方法绘制,即把MA和MB标在杆端,并连 以直线,然后在此直线上叠加上节间荷载单独作 用在简支梁上时的弯矩图,为此必须先求出MA 和MB。
切忌:浅尝辄止
本章内容
梁的内力计算回顾 用叠加法作弯矩图 多跨静定梁 静定平面刚架 静定平面桁架 组合结构 静定结构总论
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力 内力 求解一般原则:从几何组成入手,按组成的 相反顺序进行逐步分析即可
§3-1
梁的内力计算回顾
一、内力的概念和表示
求截面1、截面2的内力
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
1 50kN 2
5kN/m
FN2=50 -141×cos45o =-50kN
FQ2= -141×sin45°=-100kN (取外力矩顺时针转向为正方向) M2= 50×5 -125 -141×0.707×5
=-375kN.m
45° 141kN
125kN.m 5m 5m
2)左右截面剪力不变。
m
l /2 l /2 m/2
m/2
表3-1
FQ
六、内力图与支承、连接之间的对应关系
1、在自由端、铰结点、铰支座处的截面上无集中力偶作用时, 该截面弯矩等于零(如图1-(a)C右截面、图1-(b)A截面),有集 中力偶作用时,该截面弯矩等于这个集中力偶,受拉侧可由力偶 的转向直接确定(如图1-(a)C左截面和D截面)。 2、在刚结点上,不仅要满足力的投影平衡,各杆端弯矩还要 满力矩平衡条件∑M=0。尤其是两杆相交刚结点上无外力偶作用 时,两杆端弯矩等值,同侧受拉(如图1-(a)结点B、图1-(b)结点 B)。 3、定向支座、定向连接处FQ=0,FQ=0段M图平行轴线(如 图1-(a)AB杆端、图1-(b)BC、CD段)。
区段弯矩图叠加法
q
A B
C
l/2
q
q
l/2 l/2
1 2 ql 16
q q
1 2 ql 16
1 2 ql 16
1 2 ql 16
l/2
区段弯矩图叠加法
ql
q D↓↓↓↓↓↓↓↓↓↓↓↓↓ E 2
ql2/8
A
B
ql2/4
F ql
ql /2
ql l/2
l/2
ql M图
l
↓↓↓↓↓↓↓↓↓↓↓↓↓ ql2/4 ql2/8
三、荷载与内力之间的微分关系
M FN
qy
qx dx dx
M+dM
FQ
FN+dFN FQ +dFQ
dM FQ , dx
dFQ dx
q y ,
dFN qx dx
dM FQ , dx
小结:
dFQ dx
q y ,
dFN qx dx
1)剪力图上某点切线的斜率等于该点横向分 布荷载的集度,但正负号相反。
q
A
ql2 8
B
l
F A B
a
l Fb l

Fab l
b

Fa l
ql 2 / 2
M图
FQ图
A支座的反力 大小为多少, 方向怎样?
M图
FQ图
a m l m A
b m l
a b l
B
m l m l

m l
M图
FQ图
自由端有外 力偶,弯矩等于外 力偶
无剪力杆的 弯矩为常数.
m A
m B
m l m
四、 集中荷载与内力之间的增量关系 FP MB右 MB左 B
FQB左 dx y x
FQB右
F
M
y
0
FQB右 FP FQB左 0 FQB右 FQB左 FP
B
0
dx M B左 M B右 ( FQB左 FQB右 ) 0 2 M B左 M B右
小结: 1)在集中力作用点的左右截面,剪力有突变。 剪力图有台阶,台阶高度等于FP 。 2)M 图上有尖点,尖点指向同集中力的指向。
qL
+ - FQ图 qL
10kN/m ↓↓↓↓↓↓↓ 2m 2m
60kN.m
15kN
2m
2m
55 30 20 30 5 m/2 M 图 (kN.m) 30
m
m/2
8kN
A B 1m RA=17kN 17 + 9 FQ图(kN) 1m
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
4kN/m
C 2m D 2m E
轴力FN----截面上应力沿轴线切向的合力,轴力以拉 力为正。 剪力FQ----截面上应力沿杆轴法线方向的合力,剪力以 绕隔离体顺时针转为正。 弯矩M----截面上应力对截面形心的力矩,不规定正 负,但弯矩图画在拉侧。 M FN
M
FQ
FQ dx
作图时,轴力图、 剪力图要注明正负号, 弯矩图规定画在杆件受 FN 拉的一侧,不用注明正 负号。
l
m l
m
铰支座有外 力偶,该截面弯矩 等于外力偶.
练习: 利用上述关系作弯矩图,剪力图
叠加法作弯矩图
几个力对杆件的作用效果,等于 每一个力单独作用效果的总和。
4kN· m
4kN
3m
3m
(1)集中荷载作用 下
6kN· m
注意:
是竖标相加,不 是图形的简 单拼合.
(2)集中力偶作用 下 4kN· m
第三章 静定结构的受力分析
基本要求:
理解恰当选取分离体和平衡方程计算
静定结构内力的方法和技巧,会根据几何 组成寻找解题途径。
掌握内力图的形状特征和绘制内力图
的方法, 静定平面刚架、多跨梁、三铰拱、 平面桁架及组合结构的内力计算。
熟练掌握叠加法作弯矩图。
容易产生的错误认识:
“静定结构内力分析无非就是 选取隔离体,建立平衡方程, 以前早就学过了,没有新东西”
注意:
•1、弯矩图叠加是竖标相加,不是图形的拼合; •2、要熟练地掌握简支梁在跨中荷载作用下的弯矩图;
•3、利用叠加法可以少求或不求反力,就可绘制弯矩 图;
•4、利用叠加法可以少求控制截面的弯矩; •5、对于任意直杆段,不论其内力是静定的还是超静 定的;不论是等截面杆或是变截面杆;不论该杆段内 各相邻截面间是连续的还是定向联结还是铰联结弯矩 叠加法均适用
五、 集中力偶与内力之间的增量关系 m MB左 MB右 B FQB左 dx y FQB右 x
F
y
0
FQB右 FQB左
dx M B左 m M B右 ( FQB左 FQB右 ) 0 2 M B右 M B左 m
MB 0
小结: 1)集中力偶作用点左右截面的弯矩产生突变, M 图有台阶,台阶高度等于m。
2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
MA A
MB
B
l
MB
MA
MA A
q B
MB
l
MA
ql 8
2
MB
8kN· m
2kN/m
3m
3m
2m
(1)悬臂段分布荷载作用下
4kN· m
2kN· m
(2)跨中集中力偶作用下
4kN· m
4kN· m
(3)叠加得弯矩图
6kN· m
4kN· m
2kN· m
+
所以:M2=375kN.m (左拉) FN1=141×0.707=100kN
FQ1= 50 +5×5 -141×0.707 =-25kN
(取外力矩逆时针转向为正方向) (下拉)
M1=125 +141×0.707×10-50×5-5/2×5²=812.5kNm
注意:外力矩的正负是为了区分它的两种不同的转向。
2)弯距图上某点切线的斜率等于该点的剪力。 3)弯距图上某点的曲率等于该点的横向分布荷 载的集度,但正负号相反。 4)轴力图上某点的斜率等于该点轴向分布荷载 的集度 q x ,但正负号相反。
因此: 若剪力等于0,M 图平行于杆轴; 若剪力为常数,则 M 图为斜直线; 若剪力为x 的一次函数,即为均布荷载时, M 图为抛物线。
16kN.m
G F 1m 1m RB=7kN
16
H
- 7
7
26 4 M图(kN.m) 4
28
7
30
8
23
8 8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
8
利用上述关于内力图的特性和弯矩图的分 段叠加法,可将梁的弯矩图的一般作法归纳如 下: (1)选定外力的不连续点(如集中力作用点、 集中力偶作用点、分布荷载的起点和终点 等)为 控制截面,求出控制截面的弯矩值,连一虚线, 然后以该虚线为基线,叠加上简支梁在跨间荷 载作用下的弯矩图。 (2)分段画弯矩图。当控制截面间无荷载时, 根据控制截面的弯矩值,即可作出直线弯矩图。 当控制截面间有荷载时,根据控制截面的弯矩 值作出直线图形后,还应叠加这一段按简支梁 求得的弯矩图。
二、内力的计算方法
1.截面法
截取----将指定截面切开,任取一部分作为隔离体。 代替----用相应内力代替该截面的应力之和。 平衡----利用隔离体的平衡条件,确定该截面的内力。
相关文档
最新文档