七年级数学几何图形的初步认识知识点02625
七年级数学几何图形初步认识知识点
七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
人教版 数学 七年级 上册 第四章 几何图形初步 知识点
第四章几何图形初步一.几何图形的概念和分类几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
二.常见的立体图形柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
三.常见的平面图形多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
圆:一条线段绕它的端点旋转一周而形成的图形。
扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
四.从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
五.圆柱和圆锥的侧面展开图棱柱和棱锥的展开图:根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----三棱锥。
C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。
七年级几何图形知识点
七年级几何图形知识点几何学是我们学习数学的一个重要分支,它研究空间形状、尺寸和相对位置的性质。
在初中数学中,几何学是一个必须掌握的部分,而几何图形则是几何学研究的主要对象之一。
在七年级数学中,我们需要学习一些基本的几何图形和相关的知识点。
本文将为您介绍七年级几何图形的知识点,帮助您掌握这些基础知识。
一、点、线、面几何图形的构成要素可以分为点、线和面三个基本要素。
其中,点是没有大小的基本单位,用大写字母表示,比如A、B、C;线是由无数个点组成的,有长度而没有宽度,用小写字母或者两个大写字母表示,比如AB、AC、BC;面是由无数个线段组成的,有长度和宽度,用小写字母表示,比如三角形ABC。
二、基本的几何图形在七年级,我们需要学习一些基本的几何图形,包括线段、射线、直线、角、三角形、四边形、圆等。
1.线段线段是由两个不同的点A、B组成的一条直线段,并且有一个确定的长度。
线段AB可以用符号“AB”表示,也可以用符号“$ \overline{AB} $”表示。
2.射线射线是由一个起点O和一个方向确定的一条无限延伸的直线段,在O点称为射线的起点。
射线可以用符号“$ \vec{OA} $”表示,其中A为射线上任意一点。
3.直线直线是由无数个点组成的,长度无穷大的一条线,可以用符号“t”表示。
4.角角是由两条射线共同起点形成的空间图形。
起点称为角的顶点,两条射线分别称为角的两条边,可以用大写字母或者小写字母表示,比如∠A、∠BAC、∠C。
5.三角形三角形是由三条线段组成的一个封闭图形,它有三个顶点、三条边和三个角。
三角形有很多种不同的分类方法,比如按照边长可以分为等边三角形、等腰三角形和普通三角形等。
6.四边形四边形是由四条线段组成的一个封闭图形,它有四个顶点、四条边和四个角。
四边形也有很多不同的分类方法,比如按照对边是否平行可以分为平行四边形、菱形等。
7.圆圆是一个平面上所有离一个固定点O距离相等的点构成的集合,点O称为圆心,所有在圆上的点到圆心的距离都相等,这个固定的距离称为圆的半径。
七年级几何初步知识点
七年级几何初步知识点几何学是高中数学重要的学科之一,而几何初步知识点则是打好几何学基础的关键。
本文将重点介绍七年级几何初步知识点,希望对初学者有所帮助。
一、点、线、面几何的基本元素为点、线、面。
点是没有长度、宽度和高度的最基本图形元素。
而线是由两个点组成的,没有宽度和高度,但具有长度。
面则是由三条或以上的线组成的,具有宽度和高度。
二、角角是由两条射线公共端点构成的图形,射线的端点为角的顶点。
在角是平面上的图形时,角的大小是介于0到360度之间的。
当角是立体上的图形时,角的大小是介于0到180度之间的。
三、三角形三角形是由三条线段所围成的图形。
三角形的三边可以分别称作为a、b、c,它们的对应角可以分别称为A、B、C。
三角形的周长可以通过所有三边的长度之和来计算,即P=a+b+c。
而三角形的面积可以以b为底,最高处为h计算,即A=1/2bh。
四、直角三角形直角三角形是一种特殊的三角形,其中一个角度为90度。
直角三角形的 hypothenuse(斜边)长度等于a²+b²开方,而其面积等于1/2ab。
五、相似当两个图形形状相同但大小不同时,我们称这两个图形为相似。
比例因子就是一个图形放大或缩小的比例。
例如,当两个图形A和B相似时,我们可以这样表示它们的比例因子k=AB/A'B'。
六、平行四边形平行四边形是四边形,它们的对边是平行的。
平行四边形的周长可以通过a和b的长度之和乘以2,即P=2(a+b)来计算。
而平行四边形的面积可以通过底和高的乘积来计算。
七、圆圆是由一个点到平面上所有其他点的距离相等的点的集合。
圆的半径为r,直径为2r。
圆的周长可以通过公式C=2πr来计算,而圆的面积则可以用公式A=πr²来计算。
总结以上是七年级几何初步知识点的介绍。
尽管这些概念看起来简单,但是它们是几何的基础,对学生的思维发展至关重要。
如果您对初步几何知识有更多的疑问或需要更多的练习,请不要犹豫,尽快寻找老师或同学帮助,这将有助于您更好地掌握这些概念。
初一几何图形初步知识点归纳总结
初一几何图形初步知识点归纳总结几何学是数学的一个重要分支,研究空间、形状和位置关系。
初一阶段学习几何图形是基础,是打好数学基础的重要一环。
本文将针对初一阶段的几何图形知识点进行归纳总结,以帮助同学们更好地掌握这些概念。
1. 点、线、面的基本概念在几何学中,点、线和面是最基本的概念。
- 点:点是一个没有大小和形状的基本要素,通过点可以构成线和面。
- 线:由无数个点连成的路径称为线,线没有宽度和高度,只有长度。
- 面:由无数个点连成的二维图形称为面,面有高度和宽度。
2. 常见的几何图形初一阶段的几何图形主要包括:点、线、面、角、三角形、四边形、圆等。
- 点:一个没有大小和形状的基本要素。
- 线段:两个不同的点用直线连起来,称为线段,线段有特定的长度。
- 射线:一个起点,一个方向,无限延伸的线段称为射线。
- 直线:无限延伸的线段,没有起点和终点。
- 角:由两条射线共享一个起点组成的图形称为角,常用符号“∠”表示。
- 三角形:由三条线段组成的图形称为三角形。
常见的三角形有:等边三角形、等腰三角形、直角三角形等。
- 四边形:由四条线段组成的图形称为四边形。
常见的四边形有:矩形、正方形、菱形等。
- 圆:平面上所有距离圆心相等的点构成的图形称为圆,常用符号“O”表示。
3. 几何图形的性质不同的几何图形具有不同的性质和特点。
- 点:点没有大小和形状,可以用坐标表示。
- 线:线没有宽度和高度,只有长度。
任意两点都可以确定一条直线。
- 射线:射线是一条有起点和方向的线段,无限延伸。
- 角:角有大小和形状,可以通过角度来度量。
- 三角形:三角形的内角和为180度。
等边三角形的三条边相等,等腰三角形有两条边相等,直角三角形有一个直角。
- 四边形:矩形的对边相等且垂直,正方形的四条边相等且垂直,菱形的对角线相等且垂直。
- 圆:圆的所有点到圆心的距离相等。
4. 几何图形的计算初一阶段的几何图形主要涉及到周长、面积的计算。
- 周长:指一条封闭曲线的长度。
七年级几何图形初步知识点
七年级几何图形初步知识点
几何图形是数学中的一个重要分支,是我们日常生活和工作中
必不可少的基础知识。
本文将为大家介绍初中七年级学生需要掌
握的几何图形初步知识点,包括点、线、角、三角形、四边形等。
一、点
点是几何图形的基本单元,没有形状和大小。
在坐标系中,点
通常用一个字母表示,如A、B、C等。
二、线
线是由一系列点连接而成的,没有宽度和厚度。
直线是连接两
点的最短路径,通常用两端点表示。
而线段是在直线上任取两点,所以线段具有长度。
三、角
角是由两条射线(即具有一个起点,无终点)共同起点组成的,通常用大写字母来表示角的顶点。
角的大小用弧度(radian)或角
度(degree)表示,其中一个弧度等于57.3度。
四、三角形
三角形是由三条线段组成的平面图形,可以按照角度或线段长
度的关系来分类。
按照角度分,三角形可以分为锐角三角形、钝
角三角形和直角三角形。
按照线段长度分,三角形可以分为等边
三角形、等腰三角形和普通三角形。
五、四边形
四边形是由四个顶点、四条线段和四个内角组成的平面图形。
按照内角之和的大小可以分为平行四边形、矩形、正方形、菱形
和梯形等。
六、圆
圆是平面上一条曲线,其上任意两点间的距离均相等。
圆可以由平面上所有到定点的距离相等的点组成,这个定点叫做圆心,圆心到圆周的距离叫做半径。
以上就是初中七年级几何图形初步知识点的介绍,这些知识是学习几何的基础,需要将其掌握好才能更好地应用到实际生活和工作中。
希望本文能对大家有所帮助。
七年级上册几何初步知识点
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。
人教新课标初一数学第四章图形的初步认识知识点总结
(2)常见图形视图的画法(见下方右图)
【拓展】正方体的十一种展开图分类研究(重点掌握)
(1)六个面分三行有序排列,且第一行2个,中间一行3个,第三行1个
(2)六个面分三行有序排列,且,中间一行4个,两侧各有1个面
(3)六个面分三行有序排列,且每行都有2个面(下方左图)
(4)六个面分两行有序排列,且每行都有3个面(下方右图)
4.1.2点、线、面、体
知识点归纳
一、点、线、面、体
几何图形是由点、线、面、体组成的。
点、线、面、体经过运动变化,就组合成
各种各样的几何图形,形成丰富多彩的图形世界。
面与面相交的地方形成线,线与线相交的地方形成点,点是构成图形的基本元素。
点动成线,线动成面,面动成体。
1、点:在几何体中,线与线相交的地方是点。
它是组成图形的最基本的元素,一切图形都是由点组成的。
2、线:面与面相交的地方形成线。
点动成线,线分为直线和曲线两种。
3、面:包围着体的是面。
有平面和曲面之分。
要得到一个与几何体有关的平面,常采用:①展开;②从不同的方向看,即视图。
4、体:几何体简称体。
由面围成的,也可以看成由平面平移而成或看成由平面绕某一直线旋转而成。
二、几何图形的组成
几何图形是由点、线、面、体组成的;如:三角形由3条边和3个顶点组成,弓形由一条圆弧曲线和一条弦以及两个交点组成,长方体由6个面、12条棱以及8个顶点组成,圆柱由两个圆面作底面及一个曲面组成,相交部分的两个圆是两条直线。
三、几种常见立体图形的画法(见下页)。
人教版七年级数学第四章《几何图形初步》知识点汇总
人教版七年级数学第四章《几何图形初步》知识点汇总第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。
②几何图形分为图形和图形。
③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。
④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。
02、常见的立体图形①柱体:A棱柱:B 圆柱②椎体:A棱锥B 圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。
②圆锥的平面展开图是。
③n棱柱的侧面展开图是n个形,n棱柱有个底面,都是,n 棱柱的平面展开图是。
④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。
⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。
_____是构成图形的基本元素点动成_____、____动成____、____动成____。
06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。
②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。
08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。
初一(七年级)上册数学知识点:几何图形初步
初一(七年级)上册数学知识点:几何图形初步初一(七年级)上册数学知识点:几何图形初步是由数学网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:几何图形初步吧!本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形直线、射线、线段和角。
一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质两点之间,线段最短是另一个重点。
四、难点立体图形与平面图形之间的转化是难点;探索点、线、面、体运动变化后形成的图形是难点;画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。
五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
(完整版)七年级数学第四章几何图形初步知识点,推荐文档
第四章 几何图形初步1.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,它们是立体图形。
2.平面图形:有些几何图形(如角、三角形、长方形、圆、线段等)的各部分都在同一个平面内,它们是平面图形。
3.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.正方体的展开图:11种4.1.1立体图形与平面图形 4.立体图形的三视图:①主视图:从正面看;②左视图:从左面看;③俯视图:从上面看。
(会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型)1.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
2.包围着体的是面。
面有平面和曲面两种。
面动成体。
3.面和面相交的地方形成线。
线有直线和曲线。
线动成面。
4.1平面图形 4.1.2点、线、面、体 4.线和线相交的地方是点,点动成线。
点是构成图形的基本元素。
1.关于直线的基本事实:经过两点有一条直线,并且只有一条直线.简称:两点确定一条直线.2.相交、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
如图:O 点为直线AD 和直线CB 的交点,也是直线AD 和直线CB 的公共点。
3.直线、射线、线段的表示方法 (1)直线:用一个小写字母表示,如:直线l ,或用两个大些字母(直线上的)表示,如直线AB (A 、B 两点是直线上的点).(2)射线:直线的一部分,用一个小写字母表示,如:射线l ,或用两个大些字母表示,如:射线OA (O 、A 两点是射线上的点,用两个字母表示时,端点的字母放在前边).(3)线段:直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).4.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图。
直线.射线.线段 5.中点:点M 把线段AB 分成相等的两条线段AM 和MB ,点M 叫做线段AB 的中点。
初一数学几何知识点梳理
初一数学几何知识点梳理七年级上册数学第四章几何图形初步知识点一、几何图形初步认识1、几何图形:把从实物中抽象出来的各种图形的统称。
(长方体、圆柱、球、长方形、正方形、圆、线段、点、以及小学学过的三角形、四边形等,都是从形形色色的物体中外形中得出的,都是几何图形。
)2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
(如线段、角、三角形、长方形、圆等)3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
(长方体、正方体、圆柱、圆锥、球等)4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、点,线,面,体包围着体的是面,面有平的面和曲的面两种。
面和面相交的地方形成线,线和线相交的地方是点。
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线1、线段:线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
3、直线:将线段的两端无限延长就形成了直线。
直线没有端点。
4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5、相交:两条不同的直线有一个公共点时,称这两条直线相交。
6、两条直线相交有一个公共点,这个公共点叫交点。
7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8、线段的性质:两点的所有连线中,线段最短。
(两点之间,线段最短)9、距离:连接两点间的线段的长度,叫做这两点的距离。
三、角1、角:有公共端点的两条射线组成的图形叫做角。
角有顶点和两条边。
2、角的度量单位:度、分、秒。
3、角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
两条射线叫做角的两条边。
②一度的1/60是一分,一分的1/60是一秒。
角的度、分、秒是60进制。
七年级数学初步几何知识点
七年级数学初步几何知识点初步几何知识点是数学中的重要内容,尤其在七年级,它是基础而重要的学科。
在初步几何中,会涉及到一些基本概念和方法,如点、线、面、角等等。
此外,初步几何还会与初步代数相结合,常出现优美的图形、无比复杂的构造和计算问题。
在本文中,我们将介绍七年级初步几何知识点的相关内容。
1. 点、线、面在初步几何中,点、线、面是最基本也是最常见的几何概念。
点是几何的基本单元,不可再分,通常用大写字母A、B、C等表示。
线由无数点连成,表示一个直线,通常用小写字母a、b、c等表示。
面是由无数线构成,表示一个平面,通常用大写字母P、Q、R等表示。
2. 角角是由两条射线沿着同一端点的形成的区域。
角度通常用度数来表示,以小圆圈的形式标记。
圆周角度数是360度,因此一个弧所对的角度数是它所处的圆周角度数的$1/360$。
3. 三角形三角形是由三个线段,也就是三边所环绕的图形。
三角形分为等边三角形、等腰三角形和一般三角形。
等边三角形的三边均相等,等腰三角形的两边相等,一般三角形的三边均不相等。
4. 四边形四边形是由四边所环绕的图形,包括矩形、正方形、平行四边形和梯形。
正方形是一种特殊的矩形,其中的四边相等且四个角度数均为90度。
5. 圆形圆形是由半径为$r$的固定点到固定点之间所有点的集合。
圆形中心是由圆中的所有点到圆心的距离相等的点。
圆周长是由圆周上的所有点之间的直线段长度之和。
圆的面积等于圆周长的平方除以$4\pi$。
6. 相似图形相似图形是指在比例尺下尺寸相同,形状比例相同的几何图形。
如果两个图形是相似的,那么它们的长度比例是相等的。
综上所述,初步几何知识点在数学中具有重要意义,在七年级学习初步几何知识可以为以后的数学学习打下坚实的基础。
掌握好初步几何知识,往往可以在现实生活中获得帮助,如绘制平面图、计算体积等等。
我们希望本文的介绍能对广大七年级学生和初学数学的人有所帮助。
初一数学几何图形初步知识点
初一数学几何图形初步知识点4.1几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。
4.2直线、射线、线段1、直线公理:经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:如图的直线可记作直线AB或记作直线m.(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.(2)如图,点O既在直线m上,又在直线n上,我们称直线m、n相交,交点为O.7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.注意:射线有一个端点,向一方无限延伸.8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.注意:线段有两个端点.4.3角1.角的定义:有公共端点的两条射线组成的图形叫角。
这个公共端点是角的顶点,两条射线为角的两边。
七年级数学几何图形的初步认识知识点(K12教育文档)
七年级数学几何图形的初步认识知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学几何图形的初步认识知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学几何图形的初步认识知识点(word版可编辑修改)的全部内容。
第二章 几何图形的初步认识2.1从生活中认识几何图形知识点:一、认识几何图形几何图形二、几何图形的构成1、面与面相交成___,线与线相交成___。
2、点动成___,___动成面,面动成___.3、___、___、___是构成几何图形的基本要素,体是由___围成的.4、面有___面和___面,线有___线和___线。
引申探讨:n 棱柱有几个顶点、几条棱、几个面2。
2 点和线知识点:1、点的表示: A B 用一个大写的字母,例如:点A、点B2、线段的表示:方法一:用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA。
方法二:用一个小写字母。
例如线段a。
3、射线的表示:用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB4、直线的表示:方法一 :用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA.方法二:用一个小写字母.例如直线a.5、线段、射线、直线的比较:6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)引申探讨:1、一条直线上有n个点,会有几条线段?2、握手问题、票价问题、车票问题.2。
七年级上册数学几何图形初步认识的知识点
七年级上册数学几何图形初步认识的知识点七年级上册数学几何图形初步认识的知识点初一(七年级)上册数学知识点:几何图形初步是由数学网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:几何图形初步吧!本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形直线、射线、线段和角。
一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质两点之间,线段最短是另一个重点。
四、难点立体图形与平面图形之间的转化是难点;探索点、线、面、体运动变化后形成的图形是难点;画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。
五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
七年级数学几何图形的初步认识知识点
第二章 几何图形的初步认识2.1从生活中认识几何图形知识点:一、认识几何图形几何图形二、几何图形的构成1、面与面相交成___,线与线相交成___。
2、点动成___,___动成面,面动成___。
3、___、___、___是构成几何图形的基本要素,体是由___围成的。
4、面有___面和___面,线有___线和___线。
引申探讨:n 棱柱有几个顶点、几条棱、几个面2.2 点和线知识点:平面图形 立体图形柱体 锥体 球体 台体圆柱 棱柱 圆锥 棱锥 圆台 棱台1、点的表示: A B 用一个大写的字母,例如:点A、点B2、线段的表示:方法一 :用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA.方法二:用一个小写字母.例如线段a.3、射线的表示:用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB4、直线的表示:方法一 :用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA.方法二:用一个小写字母.例如直线a.5、线段、射线、直线的比较:6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)引申探讨:1、一条直线上有n个点,会有几条线段?2、握手问题、票价问题、车票问题。
2.3线段的长短知识点:1、线段长短的比较方法:(两种)(1)度量法:是从数量的角度来比较(2)叠合法:是从图形的角度来比较另外了解估测法:依据已有的经验来判断2、线段的画法:3、线段的性质:两点之间的所有连线中,线段最短。
(简记为:两点之间,线段最短。
)引申探讨:蚂蚁爬行问题2.4 线段的和与差知识点:一、线段的和与差的概念及作图方法二、线段的和与差的计算三、线段的中点几何图形初步一、本节学习指导本节知识点比较简单,都是基础,当看书应该就能理解。
二、知识要点1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
人教版七年级数学几何图形初步知识汇总_知识点总结
人教版七年级数学几何图形初步知识汇总_知识点总结
期末考试即将到来,同学们一定在忙着备考,可是这备考也是需要合适的复习资料的。
我们为大家准备了七年级数学几何图形初步知识点,希望大家认真复习,为期末考试做好准备。
4.1几何图形
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;
完整内容:初一上册数学几何图形复习知识点~
4.2直线、射线、线段
1.直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
一条直线可以用一个小写字母表示,如直线l;
完整内容:七年级上册数学线段射线直线知识点~
4.3角
角(angle)由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点(vertex). 期末考试考查面涵盖很广,刚刚过去的半学期,同学们究竟学得怎么样?学习效果可以通过数学练习题来检验。
七年级数学几何图形初步知识点希望能够真正的帮助到大家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
几何图形的初步认识
2.1从生活中认识几何图形
知识点: 一、认识几何图形
几何图形
二、几何图形的构成 1、面与面相交成___,线与线相交成___。
2、点动成___,___动成面,面动成___。
3、___、___、___是构成几何图形的基本要素,体是由___围成的。
4、面有___面和___面,线有___线和___线。
引申探讨:n 棱柱有几个顶点、几条棱、几个面
平面图形 立体图形 柱体 锥体 球体 台体 圆柱 棱柱 圆锥 棱锥 圆台 棱台
2.2 点和线
知识点:
1、点的表示: A B 用一个大写的字母,例如:点A、点B
2、线段的表示:
方法一 :用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA.
方法二:用一个小写字母.例如线段a.
3、射线的表示:
用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB
4、直线的表示:
方法一 :用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA.
方法二:用一个小写字母.例如直线a.
5、线段、射线、直线的比较:
6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)
7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)
引申探讨:1、一条直线上有n个点,会有几条线段?
2、握手问题、票价问题、车票问题。
2.3线段的长短
知识点:
1、线段长短的比较方法:(两种)
(1)度量法:是从数量的角度来比较
(2)叠合法:是从图形的角度来比较
另外了解估测法:依据已有的经验来判断
2、线段的画法:
3、线段的性质:两点之间的所有连线中,线段最短。
(简记为:两点之间,线段最短。
)
引申探讨:蚂蚁爬行问题
2.4 线段的和与差
知识点:
一、线段的和与差的概念及作图方法
二、线段的和与差的计算
三、线段的中点
2.5 角以及角的度量
知识点:
一、角的概念
二、角的表示方法:
1、用大写英文字母表示
(1)用三个大写英文字母表示(此时要把表示顶点的字母写在中间)。
(2)用一个大写字母表示(只有在某个顶点处只有一个角,而且这个字母必须用顶点的字母表示)。
2、用阿拉伯数字表示。
3、用小写希腊字母表示。
三、角的度量
2.6 角的大小
知识点:
一、角的大小比较(两种)
1、度量法:是从数量的角度来比较
2、叠合法:是从图形的角度来比较
二、用尺规做一个角等于已知角
2.7 角的和与差
知识点:
一、角的运算
二、角平分线
三、余角和补角的意义
四、互余、互补的性质
2.8 平面图形的旋转
知识点:
一、平面图形旋转的概念
三要素:旋转中心、旋转方向、旋转角
二、平面图形旋转的性质
旋转不改变图形的形状和大小
三、旋转图形的画法
(1)确定旋转中心、旋转方向、旋转角;
(2)确定图形中的关键点;
(3)将图形中的关键点与旋转中心连接起来,然后按照旋转方向分别将它们旋转一个旋转角,得到此关键点的对应点;
(4)按原图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。