小学奥数逻辑推理题及答案
小学奥数六年级逻辑推理练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《⼩学奥数六年级逻辑推理练习及答案【三篇】》供您查阅。
【第⼀篇】 在下边的表格的每个空格内,填⼊⼀个整数,使它恰好表⽰它上⾯的那个数字在第⼆⾏中出现的次数,那么第⼆⾏中的五个数字依次是().分析:根据题意,采⽤假设法,依次排除不合适的数,即可得到正确的答案. 解答:先考虑表格中最右边4下⾯的填数, 如果4下⾯填1,这表明第⼆⾏中必有1个4, 由于4填在某数的下⾯,该数在第⼆⾏中就必须出现4次, 所以4必须填在1的下⾯, 这样0,2,3下⾯也都是1, 但第⼆⾏中并没有出现这些数, 所以不能满⾜要求; 同样可推知,在4下⾯不能填⼤于1的数, 所以4下⾯应该填0. 再看3下⾯的填数, 如果在3下⾯填1,那么第⼆⾏中有⼀个3,⽽且1下⾯已不能填0, 所以第⼆⾏中最多有两个0,从⽽3不能填在0的下⾯, 如果3填在1下⾯,则0和2下⾯都必须填1, 但2下⾯填1,说明第⼆⾏中有⼀个2,⽭盾, 如果3填在2下⾯,那么第⼆⾏中必须有三个2,这是不可能的. 综上所述,3下⾯不能填1,当然也不能填⼤于1的数,所以也必须填0. 如果第⼆⾏中再有⼀格填0,那么就出现三个0. 这样,在第⼀⾏的0下⾯空格中要填3,从⽽第⼀⾏中3下⾯就不能是0. 这与上⾯⽭盾.同样可推知第⼆⾏不能有四个0,所以第⼆⾏中只能有两个0,就是说在第⼀⾏的0下⾯填2. 再看第⼀⾏中剩下的1与2下⾯的填数.若在1下⾯填2,第2⾏必有两个1,这不可能,所以1下⾯必须填1. 最后我们看到第⼀⾏的2下⾯必须填2. 综上所述,第⼆⾏五个数字依次应填2,1,2,0,0. 点评:解答此题的技巧是:⽤假设法,即先假设其中填⼀个数,再根据题⽬推断,如果推出⽭盾则假设错误,反之假设正确.【第⼆篇】 在⼆⾏三列的⽅格棋盘上沿骰⼦的某条棱翻动骰⼦(相对⾯上分别标有1点和6点,2点和5点,3点和4点),在每⼀种翻动⽅式中,骰⼦只能向前或向右翻动.开始时,骰⼦如图1那样摆放,朝上的点数是2;最后翻动到如图2所⽰的位置.此时,骰⼦朝上的点数不可能是下列选项中的( )A.3 B.4 C.5 D.1 解答:解:如图所⽰:第⼀种路径:滚动到位置1处,1在下,则6在上;滚动到位置2处,2在下,5在上;滚动到3处,3在下,则4在上; 第⼆种路径:滚动到位置1处,1在下,则6在上;滚动到4处,3在下,4在上;滚动到3处,2在下,5在上; 第三种路径:滚动到5处,3在下,4在上;滚动到4处,1在下,6在上,滚动到3处,4在下,3在上; 所以最后朝上的可能性有3、4,5,6,⽽不会出现1,2. 故选:D. 点评:解决本题需要学⽣经历⼀定的实验操作过程,当然学⽣也可以将操作活动转化为思维活动,在头脑中模拟翻转活动,较好地考查了学⽣空间观念.【第三篇】 ⼀、填空1.观察下⾯这组图形的变化规律,在标号处画出相应的图形.2.下图是由9个⼩⼈排列的⽅阵,但有⼀个⼩⼈没有到位,请你从右⾯的6个⼩⼈中,选⼀位⼩⼈放到问号的位置.你认为最合适的⼈选是⼏号. 1.解答:这道题中的每⼀个图形是由⾥外两部分组成的,我们分开来看.先看外⾯的图形.外⾯的图形都是由△、□、○组成,并每⼀横⾏(或每⼀竖⾏)中都没有重复的图形.这样我们可以先确定①、②、③外⾯的图形.通过题⽬中给出的图形,我们不能确定出③的外部图形,因为不论③所在的横⾏还是③所在的竖⾏都只给出1个图形,所以我们应先确定出①和②的外部图形.①所在的横⾏中只有○和△,所以①的外部图形是□,②所在的竖⾏只有△和○,所以②的外部图形也是□,③所在的横⾏只有□和○,所以③的外部图形是△.然后按照这种⽅法确定内部图形,可知①的内部图形是□,②的内部图形是△,③的内部图形是○,形状确定好以后,我们还要注意各个图形的内部图形是有不同颜⾊的,分别由点状、斜线和空⽩三种组成,确定的⽅法和确定形状是完全相同的,请你⾃⼰把三个图的颜⾊确定出来.最后①、②、③应分别为:2.仔细观察,可发现图中⼩⼈的排列规律:即每⾏(列)的⼩⼈"⼿臂"(向上、⽔平、向下)."⾝腰"(三⾓形矩形、半圆),及"脚"(圆脚、⽅脚、平脚)各不相同.从中可知问号处的⼩⼈应是向上伸臂.矩形腰,圆脚的⼩⼈.即最合适的⼈选是6号.。
小学奥数---逻辑推理

小学奥数---逻辑推理一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.64.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.65.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.06.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第位是疯子.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃,红桃,方块,梅花.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?小学奥数---逻辑推理参考答案与试题解析一.选择题(共6小题)1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去;那么丁不去.最后去参加活动的两个人是()A.甲、乙B.乙、丙C.甲、丙D.乙、丁【分析】①根据如果甲去,那么乙也去,可得甲在,乙必然也在;②又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,同时满足①②的条件和“如果丙去;那么丁不去”只能是乙、丙参加了活动,据此解答即可.【解答】解:根据如果甲去,那么乙也去,可得甲在,乙必然也在,又根据如果丙不去,那么乙也不去,可得如果乙去了,丙也一定去了,如果丙去;那么丁不去,可得:如果丙不去;那么丁去,同时乙也不去,则根据“甲去,那么乙也去”可得甲也不去,这样只有丁去,这与两个人参加一项活动相矛盾.同时满足条件只能是乙、丙参加了活动.故选:B.2.森林里举行比赛,要派出狮子、老虎、豹子、大象中的两个动物去参加,如果派狮子去,那么也要派老虎去;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去.那么,最后能去参加比赛的是()A.狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象【分析】通过分析可知:从题意出发:(1)狮子去则老虎去,逆否命题:老虎不去则狮子也不去,(2)不派豹子则不派老虎,逆否命题:派老虎则要派豹子,(3)派豹子则大象不愿意去,逆否命题:大象去则不能派豹子从(2)出发可以看出答案为B.据此解答即可.【解答】解:题目要求有两个动物去,可以使用假设法,若狮子去,则老虎去,老虎去则豹子也去.三个动物去,矛盾,所以狮子不去.若豹子不去则老虎不去,那么只有大象去,矛盾,所以豹子去.豹子去则大象不去,由两种动物去得到结论,老虎要去.所以答案是B,豹子和老虎去.故选:B.3.6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分.A.3 B.4 C.5 D.6【分析】6人参加乒乓球赛,每两人都要比赛一场,即每人都要与另外5人赛一场,又比赛是在两人之间进行的,所以共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分为一人五场全胜5×2=10分,又比赛结果有两人并列第二名,两人并列第5名,由于30=10+6+6+4+2+2,所以第四名是4分.【解答】解:共需要赛6×(6﹣1)÷2=15场,所以总分是15×2=30分,最高分5×2=10分,由于30=10+6+6+4+2+2,所以第四名是4分.故选:B.4.六名同学参加围棋比赛,每两个人都要比赛一场,胜者得2分,负者得0分,比赛结果有两个并列第二名,两个并列第五名,则第一名得了()分.A.10 B.12 C.8 D.6【分析】第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.【解答】解:第一名胜五场,得10分;第二名两人并列,都是胜3场,得6分;第四名胜2场,得4分;第五名两人并列,只胜一场,得2分.因此第一名得了胜五场,因此得2×5=10(分)故选:A.5.甲、乙、丙、丁四人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,则丁胜了()场.A.1 B.2 C.3 D.0【分析】四人比赛乒乓球,每两人要赛一场,则每人都要和其他三人赛一场,每人要赛三场,共比赛4×3÷2=6场,由于没有平局,则每场都有一队胜,一队负.由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.【解答】解:由题意可知,每人要赛三场,共比赛4×3÷2=6场,由于甲,乙,丙三人胜的场数相同,若甲,乙,丙各胜1场,则丁胜6﹣1×3=3场,即丁全胜,不合题意(甲胜了丁).若甲,乙,丙各胜2场,则丁胜6﹣2×3=0场,即丁全输,符合题意.故选:D.6.甲、乙、丙、丁坐在同一排1号至4号的座位上,小红看着他们说:“甲的两边不是乙,丙的两边不是丁,甲的座位号比丙大.”那么,坐在1号座位的是()A.甲B.乙C.丙D.丁【分析】由题意知,一排1号至4号的座位上分别坐一人,由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;据此解答.【解答】解:由“甲的两边不是乙”可知甲跟丙、丁相邻,由“丙的两边不是丁”可知丙的两边是甲和乙,由此可得甲和丙是紧挨着的,再由“甲的座位号比丙大”可得甲和丙的位置关系应是“丙﹣甲”,再结合“丙的两边是甲和乙”可得:“乙﹣丙﹣甲”,由于甲跟丙、丁相邻,所以丁只能在4号座位上,这样四人在1号至4号的座位上的顺序就是:“乙﹣丙﹣甲﹣丁”,所以坐在1号座位的是乙;故选:B.二.填空题(共5小题)7.甲、乙、丙、丁4人站成一排,从左至右依次编号是1、2、3、4号,他们有如下对话:甲:我左右两人都比我高.乙:我左右两人都比我矮.丙:我是最高的.丁:我右边没有人.如果他们4人都是诚实的好孩子,那么甲、乙、丙、丁的编号按顺序组成的4位数是2314.【分析】4人都是诚实的好孩子,也就是4人都是说真话,丁说它的右边没有人,那么丁排在4号;再从甲乙的话可知甲乙都不排在1号,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号,从而求解.【解答】解:首先根据“丁:我右边没有人”可以得出丁在4号;再根据“甲:我左右两人都比我高.乙:我左右两人都比我矮.”可知,甲乙两边都有人,那么丙排在1号;又丙是最高的,所以他比排在2号的人要高,甲符合这个特征,所以甲排在2号;剩下的乙排在3号;综上可知:甲、乙、丙、丁的编号按顺序组成的4位数是2314.故答案为:2314.8.小明、小亮、小光三人昨天和今天连续两天去肯德基吃饭.吃饭时,他们每人要的不是鸡块就是汉堡,并且(1)如果小明要的是鸡块,那么小亮要的就是汉堡;(2)小明或小光要的是鸡块,但是不会两人都要鸡块;(3)小亮和小光不会两人都要汉堡.已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.【分析】若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则小光要的是鸡块,然后进一步解答即可.【解答】解:若小明要的是鸡块,则小亮与小光都要了汉堡,与(3)矛盾,所以小明要的是汉堡;则根据(1)小光只要的是鸡块,那么小亮要的是汉堡,也可以是鸡块;所以,已知三人中有一人昨天要鸡块,今天要汉堡.这个人是小亮.故答案为:小亮.9.小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:“我是疯子.”第二位说:“你胡说,你才不是疯子呢!”第三位说:“别说了,我是疯子.”一那么.这三个人中第3位是疯子.【分析】按题意,运用假设法,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,最后不难得出结论.【解答】解:根据分析,(1)假设第一位是疯子,则第二位是骗子,第三位也是骗子,矛盾;(2)假设第二位是疯子,则第一位是骗子,第三位也是骗子,矛盾;(3)假设第三位是疯子,则第一位是骗子,第二位是牧师,成立,所以第三位是疯子.故答案是:3.10.有排成一排的四张扑克牌,正好是四种花色都有,A、K、Q、J各一张.并且已知(1)A的左边是红桃,右边是J;(2)K在Q的左边;(3)黑桃的左边是J,并且与方块不相邻.这四张牌分别是黑桃A,红桃Q,方块K,梅花J.【分析】由(1)(2)(3)先排出个别扑克牌的顺序,再根据它们之间的位置关系,推出问题的答案.【解答】解:由(1)可知顺序为:红桃,A,J;由(2)可知顺序:Q,K由(3)可知顺序:黑桃,J由(1)(3)知,A是黑桃.由(1)(2)(3)可知顺序:K,Q,A,J,由A的左边是红桃,可知Q是红桃.又因为黑桃与方块不相邻,因此J不是方块,只能是梅花,因此,K是方块.黑桃是A 红桃是Q,方块是K,梅花是J.故答案为:A,Q,K,J.11.甲、乙、丙、丁四人中只有1人会开汽车.甲说:“我会开”.乙说:“我不会开”.丙说:“甲不会开”.丁什么也没说.已知甲、乙、丙三人的话中只有一句是真话.会开车的是乙.【分析】据题意,假设结论(即会开车的分别是甲、乙或丙),然后根据他们所说的话,推出与题意矛盾的即为错误结论,从而得出正确答案.【解答】解:假设甲会开车,那么,甲和乙说的是真话,所以和已知矛盾,所以甲不会开车,假设乙会开车,那么甲和乙说的是假话,丙说的是真话,符合题意,假设丙会开车,那么乙和丙说的是真话,也和题意矛盾,所以,乙会开车.故答案为:乙.三.解答题(共4小题)12.小力比小強小兩歲,小強比小傑大4歲,小虎比小傑大3歲.小虎和小力誰大?【分析】小强比小杰大4岁,小虎比小杰大3岁,则小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,所以小虎大.【解答】解:小强比小虎大4﹣3=1岁,又小力比小强小两岁,2>1,答:小虎大.13.动物大会上,小兔、小鹿、乌龟比高矮.小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”猜一猜,三个小动物谁高谁矮.【分析】由小鹿说:“我比小兔高!”,乌龟说:“我不比小兔高!”,我们用大于号进行排列,小鹿>小兔,小兔>乌龟,所以,小鹿>小兔>乌龟.据此解答即可.【解答】解:由题意可知:小鹿>小兔小兔>乌龟所以小鹿>小兔>乌龟.所以小鹿最高,乌龟最矮.答:小鹿最高,乌龟最矮.14.有四个嫌疑犯;甲、乙、丙、丁,他们的话如下,甲说,我不是罪犯乙说,丁是罪犯丙说,乙说罪犯丁说,我不是罪犯以上四人只有一个人说假话,请问:谁是罪犯?【分析】因为他们中只有一个人讲的话错了,也就是只有一个人说了假话,从题中分析,因为乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断是乙是罪犯.【解答】解:乙、丙说的相矛盾,所以肯定乙和丙中有一人说了假话,如果是乙说真话,则和丁说的相矛盾,不符合题意,所以是乙说了假话,那么就说明其他三人说了真话,所以推断乙是罪犯.综上所述,罪犯一定是乙.答:乙是罪犯.15.甲、乙、丙、丁四个小朋友在楼下玩球,不小心把王奶奶家的玻璃打碎了,王奶奶问他们四人是谁打碎的,甲说:“是乙打碎了玻璃”.乙说:“是丁打的.”丙说:“不是我打的.”丁说:“乙说得不对.”如果这四人中只有丁说了实话,那么是谁打碎了玻璃?【分析】这四人中只有丁说了实话,那么根据“乙说是丁打的”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个,然后根据甲和丙说的话进行判断(甲丙说谎),从而得出结论.【解答】解:这四人中只有丁说了实话,那么根据丁说:“乙说得不对.”、乙说:“是丁打的.”可得:不是丁打的,那么只能是甲、乙、丙三个人中的一个;又因为甲说谎,所以可能是甲或丙;又因为丙也说谎,且丙说:“不是我打的.”,从而可以肯定是丙打碎了玻璃.答:是丙打碎了玻璃.第11页(共11页)。
小学奥数思维训练-逻辑推理问题(通用,含答案)

小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。
三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。
”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。
”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。
”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。
现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。
你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。
乙:甲第三个进去,丙第一个进去。
丙:甲第一个进去,乙第三个进去。
小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

推理问题专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。
通常,我们把主要依靠推理来解的数学题称为推理问题。
推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。
例1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。
为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。
那么,两个轻球分别是几号?分析与解答从第一次看,(3)、(4)两球中有一个轻;从第二次看,(5)、(6)两球中有一个轻;从第三次看,(1)、(3)、(5)中有一个轻,(2)、(4)、(8)中也有一个轻。
综合上面的分析可以推出,两个轻球的编号分别是(4)和(5)。
随堂练习:1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。
请说出他们各是几号。
2,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。
这个商品的编号是多少?例2一个正方体6个面上分别写着1、2、3、4、5、6。
根据下图摆放的三种情况,判断每个数字对面上的数字是几。
分析与解答如果直接思考哪个数字的对面是几,有一定的困难。
我们可以这样想:这个数字的对面不会是几。
(1)从(A)、(B)两种摆法中可以看出:4的对面不会是2、5,也不会是1、6,那么,4对面一定是3;(2)从(B)、(C)两种摆法中可以看出:1的对面不会是4、6,也不会是2、3,那么,1的对面一定是5;(3)剩下2的对面一定是6。
随堂练习:1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。
小学奥数逻辑推理题及答案

【导语】逻辑推理能⼒是⼀种以敏锐的思考分析、快捷的反应、迅速地掌握问题的核⼼,在最短时间内作出合理正确选择的能⼒。
以下是⽆忧考整理的《⼩学奥数逻辑推理题及答案》相关资料,希望帮助到您。
1.⼩学奥数逻辑推理题及答案 A、B、C、D四⼈进⾏象棋⽐赛,每两⼈都要赛⼀场,结果A胜了D,并且A、B、C三⼈⽣的场数相同。
问D胜了机场? 解答: D⼀场没胜: 每两⼈都要赛⼀场,共有6场⽐赛。
A、B、C三⼈胜的场数相同,因此,A、B、C不可能全胜。
也不可能只胜⼀场,否则,D就胜了三场。
因此,A、B、C只可能各胜2场。
因此,D胜场数=6-2-2-2=0 2.⼩学奥数逻辑推理题及答案 1、张、王、吴三位⽼师都在某校任教,他们分别教⾳乐、体育、美术中的⼀科,其中: (1)张⽼师不教美术 (2)吴⽼师不会画画也不会唱歌。
你能说出三位⽼师各教什么课程吗? 2、三个盒⼦中有⼀个盒⼦放着珍珠,每个盒⼦上各写着⼀句话,但只有⼀句真话,其余都是谎话。
第⼀个盒⼦是红⾊的,上⾯写着:“珍珠在这⾥”;第⼆个盒⼦是蓝⾊的,上⾯写着“珍珠不在红盒⼦⾥”;第三个盒⼦是黄⾊的,上⾯写着:“珍珠不在这⾥”请问,珍珠到底在哪个盒⼦⾥? 答案解析: 1、吴⽼师教体育,张⽼师教⾳乐,王⽼师教美术。
2、珍珠在第三个盒⼦中;假设法,通过分析,第⼀个盒⼦与第⼆个盒⼦写的正好相反,说明⼀个是真话,⼀个是假话。
假设第⼀个盒⼦说的是对的,则第三个盒⼦“珍珠不在这⾥”也是对的,所以⽭盾,所以第⼀个盒⼦错的,第⼆个盒⼦对的,那么第三个盒⼦是错的,所以珍珠在第三个盒⼦中。
3.⼩学奥数逻辑推理题及答案 四年级有三个班,每班有两个班长,开班会时,每次每班只要⼀个班长参加。
第⼀次到会的有A,B,C;第⼆次到会的`有B,D,E;第三次到会的有A,E,F。
请问哪两位班长是同班的? ⽤数字"1"表⽰到会,⽤数字"0"表⽰没到会,可列下表 从第⼀次到会的情况看,A只能和D,E,F同班 从第⼆次到会的情况看,A只能和D,E同班 从第三次到会的情况看,A只能和D同班 利⽤上述表格,仿照上述⽅法,推出与B,C分别同班的同学。
五年级奥数:逻辑推理(B)(含答案)

五年级奥数:逻辑推理(B)(含答案)一、填空题1。
从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话。
一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”。
那个人回答。
外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的。
”第三个人回答:“他说他是毛毛族的。
”那么,第一个人是族,第二个人是族,第三个人是族。
2。
有四个人各说了一句话。
第一个人说:“我是说实话的人。
”第二个人说:“我们四个人都是说谎话的人。
”第三个人说:“我们四个人只有一个人是说谎话的人。
”第四个人说:“我们四个人只有两个人是说谎话的人。
”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话。
3。
某地质学院的三名学生对一种矿石进行分析。
甲判断:不是铁,不是铜。
乙判断:不是铁,而是锡。
丙判断:不是锡,而是铁。
经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了。
那么,三人中是对的, 是错的, 只对了一半。
4。
甲、乙、丙、丁四人参加一次数学竞赛。
赛后,他们四个人预测名次的谈话如下: 甲:“丙第一名,我第三名。
”乙:“我第一名,丁第四名。
”丙:“丁第二名,我第三名。
”丁没说话。
最后公布结果时,发现他们预测都只对了一半。
请你说出这次竞赛的甲、乙、丙、丁四人的名次。
甲是第名,乙是第名,丙是第名,丁是第名。
5。
王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事。
殷华也没做这件事。
”王:“我没做这件事。
陈刚也没做这件事。
”殷:“我没做这件事。
也不知道谁做了这件事。
”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是。
6。
三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0)。
小学四年级奥数逻辑推理

小学四年级数学逻辑推理例题详解例1对某班同学进行了调查,知道如下情况:①有哥哥的人没有姐姐;②没有哥哥的人有弟弟;③有弟弟的人有妹妹;试问:1有姐姐的人一定没有哥哥,对吗2有弟弟的人一定没有哥哥,对吗3没有哥哥的人一定有妹妹,对吗解答:根据条件①得到1是对的;“有弟弟且有哥哥”并不与①②③矛盾,因此得到2是不对的;根据条件②③得到3是对的;例2 有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:①甲比乙住的楼层高,比丙住的楼层低,丁住第四层;②医生住在教师的楼上,在工人的楼下,工程师住最低层;试问:甲、乙、丙、丁各住在这座楼的几层各自的职业是什么解答 1由已知条件,丁住在第四层,是最高层,于是甲、乙、丙只能住在1,2,3这三层之中了.因为条件①还告诉我们,“甲比乙住的高”比“丙住的低”,所以甲肯定住在第二层,而丙住在第三层,乙住在第一层.2由条件②知道,工程师住在最低层,说明工程师是住在一层.那么,医生、教师、工人一定住在2,3,4层,条件②还告诉我们,“医生住在教师的楼上”.这说明医生不是住三层就是住四层,又由于“医生住在工人的楼下,”所以医生只能住在三层.工人住在四层,教师住在二层了.我们把1与2联系起来,就得到最后的答案:甲:教师,住二层;乙:工程师,住一层;丙:医生,住三层;丁:工人,住四层.例3徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷;1木工只和车工下棋,而且总是输给车工2王、陈两位是邻居;3陈师傅与电工下棋互有胜负;4徐师傅比赵师师傅下得好;5木工的家离工厂最远;卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大;问:谁是工程师、谁是医生、谁是飞行员解析:因为卢刚和医生不同岁,医生比丁飞年龄小,可以判断卢刚和丁飞不是医生,所以陈瑜是医生;陈瑜比丁飞小,陈瑜比飞行员年龄大,所以丁飞是工程师,卢刚是飞行员;例5:有一个正方体,每个面分别写上汉字:数学奥林匹克;三个人从不同角度观察的结果如下图所示;这个正方体的每个汉字的对面各是什么字解析:先找出出现次数最多的字奥数林“奥”的对面不是:林、匹、数、学;所以是“克”“数”的对面不是:学、奥、克、林;所以是“匹”“林”的对面是“学”例 6 有三个小朋友们在谈论谁做的好事多;冬冬说:“兰兰做的比静静多;”兰兰说:“冬冬做的比静静多;”静静说:“兰兰做的比冬冬少;”这三位小朋友中,谁做的好事最多谁做的好事最少解答:我们用“>”来表示每个小朋友之间做好事多少的关系;兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少;例7甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的;”乙说:“我没有打碎破璃;”丙说:“是乙打碎的;”他们当中有一个人说了谎话,到底是谁打碎了玻璃解答:由题意推出结论,必须符合他们中只有一个人说了谎,推理时可先假设,看结论和条件是否矛盾;如果是甲打碎的,那么甲说谎话,乙说的是真话,丙说的是谎话;这样两人说的是谎话,与他们中只有一人说谎相矛盾,所以不是甲打碎的;如果是乙打碎的,那么甲说的是谎话,乙说的是谎话,丙说的是真话,与他们中只有一人说谎相矛盾,所以不是乙打碎的;如果是丙打碎的,那么甲说的是真话,乙说的是真话,而丙说的是谎话;这样有两个说的是真话,符合条件中只有一个人说的是谎话,所以玻璃是丙打碎的;例8甲、乙、丙、丁4人比赛乒乓球,每两个都要赛一场;结果甲胜了丁,并且甲、乙、丙3人胜的场数相同,问:丁胜了几场解答:4个人每两人比赛一场一共6场,甲乙丙胜场一样,甲又胜了丁,则甲至少胜一场,三人加起来3场,那么丁胜利三场,可是这样与甲胜丁一场矛盾,故甲至少胜2场,三人刚好6场,所以丁一场都不胜;分析:①假设甲乙丙同胜1场;∵甲胜丁, ∴甲输给了乙丙;又∵甲乙丙同胜1场;∴乙输给了丙丁;∴丙就胜了甲乙,即胜了两场;与假设相矛盾,∴假设不成立②假设甲乙丙丁同胜3场那么甲乙丙丁将全胜,显然不符合;该假设不成立③则,甲乙丙同胜2场∵一共进行4×3÷2=6场;三人胜的场数相同刚好6场,所以丁一场都不胜;。
小学奥数逻辑推理题及答案

几道逻辑推理题(含答案)1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
以下哪项与上文推理方法相同?(A)跳远运动员每天早晨跑步。
如果早晨有人跑步,则他不是跳远运动员。
(B)如果每日只睡4小时,对身体不利。
研究表明,最有价值的睡眠都发生在入睡后第5小时。
(C)家长和小孩做游戏时,小孩更高兴。
因此,家长应该多做游戏。
(D)如果某汽车早晨能起动,则晚上也可能起动。
我们的车早晨通常能启动,同样,它晚上通常也能启动。
(E)油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
这位改革家明显犯了一个逻辑错误。
下列选项哪个与该错误相类似?(A)天下雨,地上湿。
现在天不下雨,所以地也不湿。
(B)这是一本好书,因为它的作者曾获诺贝尔奖。
(C)你是一个犯过罪的人,有什么资格说我不懂哲学?(D)因为他躺在床上,所以他病了。
(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果?(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案。
4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:"或者是我射中的,或者是李将军射中的。
"王说:"不是钱将军射中的。
小学奥数 逻辑推理 题集含答案

小学奥数逻辑推理题集含答案一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子的父母戴帽子的颜色是、、 .二、解答题11. 刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹?12. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?13. 老吴、老周、老杨分别是工程师、会计师和农艺师,还分别是业余作家、画家和音乐家,但不知道每人的职业及业余爱好,只知道:(1)业余音乐家、作家常和老吴一起看电影;(2)画家常请会计师讲经济学的道理;(3)老周一点也不爱好文学;(4)工程师埋怨自己对绘画、音乐一窍不通. 请你指出每个人的职业和爱好.14. 四个人聚会,每人各带了2件礼品,分赠给其余三个人中的二人,试证明:至少有两对人,每对人是互赠过礼品的.———————————————答 案——————————————————————1. CA 、C 的预测截然相反,必一对一错.因为只有一人对,不论A 、C 谁对,B 必 错,所以甲是最后一名,C 对. 2. E如右图,E 坐在A 、B 之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因 为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5. 埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B 是法国人,由(3)和D 是墨西哥人,由(1)知A 是埃及人,而C 是朝鲜人.6. 86240.因为每人猜对两个数字,三人共猜对 张:842±1 2⨯3=6(个)数字,而电话号码只有5位, 王:26048 所以必有一位数字被两人同对猜对.如右 李:49↑80图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、 李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240. 7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一甲丁小明位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有3⨯3-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对2⨯3=6(个)数字,因为电话号码只有张: 7 9 5 3 85位,所以相同的一组是正确的,即左起第四位是李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735.8. 51天.):天, 306÷24=12…18,所以所求天数为4⨯12+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子.孩子衣服颜色父母帽子颜色(O型血)(AB型血)(A型血)(A型血)(B型血)(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.,张健和小萍分别是兄妹.12.13.表解如下:由(3)北京运动员是乒乓球运动员, 故张是足球运动员郑是乒乓球运动员由(4)吉林运动员不是游泳运动员,故李是田径运动员,而胡是游泳运动员由(5)知胡是上海 运动员而郑是浙江运动员.张明是北京选手 李勇是吉林选手14. 设此四人为甲、乙、丙、丁并用画在平面上的四个点分别表示他们,称为它们的代表点,当某人(例如甲)赠了1件礼品给另一个(例如乙)时,就由甲向乙的代表点画一条有指向的线,无非有以下两个可能:(1)甲、乙、丙、丁每人各收到了2件礼品.(2)上面的情形不发生.这时只有以下一个可能,即有一个人接受了3件礼品 (即多于2件礼品;因为一人之外总共还有三个人,所以至多收到3件礼品).(或许会有人说,还有两个可能:有人只收到1件礼品及有人什么礼品也没收到.其实,这都可归以“有一人接受了3件礼品”这个情形.因为,当有一人(例如甲)只接受了1件礼品的情形发生时,四人共带来的8件礼品中还剩下7件在甲以外的三个人中分配,如果他们每人至多只收到2件礼品,则收受礼品数将不超过6件,这不可能,所以至少有一人收到2件以上(即3件)礼品,同样,当甲未收到礼品时,8件礼品分给乙、丙、丁三人,也必定有人收到3件礼品).当(1)发生时,例如甲收到乙、丙的礼品,由于甲发出的礼品中至少有1件给了乙或丙,为确切计,设乙收到了甲的礼品,于是我们先有了一对人:(甲、乙),他们互赠了礼品,如果丙也收到甲的礼品,那么又有了第二对互赠了礼品的人(甲、丙);如果收到甲礼品的另一人是丁(如右图)丁的2件礼品必定分赠了乙及丙(甲已收足了本情形中限定的2件礼品)丙或乙的另一件礼品给了丁,则问题也解决(这时另一对互赠了礼品的人便是(乙、丁)或(丙、丁)但丙的另一件礼品只能给丁,因为这时乙已收足了2件礼品,所以,当本情形发生时,至少能找到两对互赠过1件礼品的人.当(2)发生时,不失一般性,设甲收到了来自乙、丙、丁的各1件礼品,但甲又应向他们之中的某两人(例如乙、丙)各赠送1件礼品,于是(甲、乙),(甲、丙)便是要找的两对人.总上可知,证明完毕.老吴是业余画家,老周是业余音乐家,老杨是业余作家.工程师是老杨,会计师是老周农艺师是老吴.十八逻辑推理(B)一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. ←世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.↑在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?13.有一个如图那样的方块网,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴.每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示A 方块里的人能看见8个人的头,B 方块里的人能看见5个人的头,C 方块里的人能看见3个人的头,自己看不见自已的头.在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图中找出有戴帽子的人的方块,并把它涂成黑色.14. 某校学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书至少被一个同学都读过,问:能不能找到两个学生甲、乙和三本书A 、B 、C ,甲读过A 、B ,没读过C ,乙读过B 、C ,没读过A ?说明判断过程.———————————————答 案——————————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.图1 图24. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1时才有可能,由此推知三个班3次比赛7. 3B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.8. 3,1.共赛了4⨯6÷2=12(场),其中平了4场,分出胜负的8场,共得3⨯8+2⨯4=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.这样,可12. ←四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18分.若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.所以,一个队至少要积7分才能保证必然出线.↑有可能出线.当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.13.答案如右图所示←站在第一行第五列的人能看见1顶帽子,说明他周围的3人中有2人没戴帽子.↑站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论←可知他本人没有戴帽子.→站在第二行第五列的人能看到4顶帽子,且他周围的五人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论←可知他本人没戴帽子.↓利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子.︒站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子.±站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子.综合结论︒可知:这1人不可能是第二行第1、2列的人,也不可能是第四行第二列的人.所以只能是站在第三行第二列的人或第四行第1列的人."站在第五行第1列的人能看到2顶帽子,说明结论±所说戴帽子的人站在第四行第一列.≥站在第二行第二列的人能看到6顶帽子,说明站在第一行第1、2列的2人都戴帽子.14. 解法一首先从读书数最多的学生中找一人叫他为甲,由题设,甲至少有一本书C未读过,设B是甲读过的书中的一本,根据题设,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C,未读过A.因此可以找到满足要求的两个学生.解法二将全体同学分成两组.若某丙学生所读的所有的书,都被另一同学全部读过,而后一同学读过的书中,至少有一本书,丙未读过,则丙同学就分在第一组.另外,凡一本书也未读过的同学也分在第一组,其余的同学就分在第二组.按照以上分组方法,不可能将全体同学都分在第一组,因为读书数最多的同学一定在第二组.在第二组中,任找一位同学叫做甲,由题设有书C,甲未读过.再从甲读过的书中任找一本书叫做B,由题设,可找到同学乙,乙读过B、C书,由于甲属于第二组,所以甲一定读过一本书A,乙未读过A,否则甲只能分在第一组.这样,甲读过A、B,未读过C;乙读过B、C,未读过A.。
趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理一、题目。
1. 甲、乙、丙三人进行跑步比赛。
甲说:“我跑得不是最快的,但比丙快。
”请你说出他们三人的跑步速度顺序。
- 解析:根据甲说的话,甲不是最快的且比丙快,那么最快的只能是乙,其次是甲,最后是丙。
所以三人的速度顺序为乙>甲>丙。
2. 有A、B、C、D四位同学参加数学竞赛。
他们对自己的成绩进行了预测。
A 说:“我肯定得第一名。
”B说:“我不会得最后一名。
”C说:“我不可能得第一名。
”D说:“我肯定得最后一名。
”竞赛结果出来后,发现他们四人中只有一人预测错误。
那么谁预测错误了呢?- 解析:假设A预测错误,那么A不是第一名,C说自己不可能得第一名是正确的,D说自己肯定得最后一名是正确的,B说自己不会得最后一名也是正确的,这样就符合只有一人预测错误;假设B预测错误,那么B就是最后一名,可是D说自己是最后一名,这样就矛盾了;假设C预测错误,那么C就是第一名,这与A说自己是第一名矛盾;假设D预测错误,那么D不是最后一名,B说自己不是最后一名,这样就没有人是最后一名了,也矛盾。
所以A预测错误。
3. 张、王、李三位老师分别教语文、数学、英语。
已知:张老师不教英语;王老师不教语文;教英语的老师不教数学;教语文的老师和王老师是好朋友。
请问三位老师分别教什么科目?- 解析:由可知张老师不教英语;由可知王老师不教语文;由可知王老师不教语文。
从知道教英语的老师不教数学,那么英语老师只能教语文或者英语。
假设张老师教语文,因为王老师不教语文,教英语的老师不教数学,所以王老师教数学,李老师教英语;假设张老师教数学,因为张老师不教英语,王老师不教语文,所以王老师教英语,李老师教语文。
4. 有红、黄、蓝、白、黑五种颜色的小球,它们之间的关系是:红色球比白色球大;蓝色球比黄色球大且比黑色球小;黄色球比白色球大;黑色球比红色球小。
请按照球的大小顺序排列这五种颜色的球。
- 解析:由可知黄<蓝<黑;由可知白<红;由可知白<黄;由可知黑<红。
小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。
说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。
2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。
A说:“我肯定考得最好”。
-------(1)|B说:“我不会是最差的”。
-------(2)C说:“我没有A考得好,但也不是最差的”。
--------(3)D说:“可能我考得最差。
”-------(4)成绩一公布,只有一人说错了。
请你按照考试分数由高到低排出他们的顺序。
分析:假设法。
假设A是最差的,那么第(1)和(2)都是错的话。
矛盾了。
假设B是最差的,那么第(2)和(4)都是错的话。
矛盾了。
假设C是最差的,那么第(3)和(4)都是错的话。
矛盾了。
、所以证明了D是最差的。
那么第(4)句话是对的。
第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。
所以:第(1)句话是错的,第(3)必须对的。
根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。
所以A 是第二好,C是第三好,D是最差的。
由高到低排列为:B、A、从、D。
3、王涛、李明、江兵三人在一起谈话。
他们当中一位是校长,一位是老师,一位是学生家长。
现在只知道:(1)江兵比家长年龄大。
(2)王涛和老师不同岁。
(3)老师比李明年龄小。
你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。
因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。
四年级奥数— 逻辑推理一

四年级奥数—逻辑推理一一、拓展提优试题1.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.2.是三位数,若a是奇数,且是3的倍数,则最小是.3.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.4.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.5.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.6.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?7.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?8.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.9.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.10.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.11.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.12.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.13.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此14.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…15.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.【参考答案】一、拓展提优试题1.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.2.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.3.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.4.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.5.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.6.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.7.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..8.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.9.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.10.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.11.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.12.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.13.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.14.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.15.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.。
小学奥数逻辑推理练习题及答案

小学奥数逻辑推理练习题及答案1. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:蓝色、黄色和红色的旗帜分别代表国家A、B和C,以下是三个旗帜的信息:- A国的旗帜不是蓝色。
- B国的旗帜不是黄色。
- C国的旗帜不是红色。
结论:根据以上信息,以下结论正确的是:A. A国的旗帜是黄色。
B. B国的旗帜是蓝色。
C. C国的旗帜是红色。
D. A国的旗帜是蓝色。
答案:B. B国的旗帜是蓝色。
2. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:五位老师正在一起讨论他们教的学科和身高的关系,以下是一些信息:- 老师A比老师B矮,但比老师C高。
- 老师D比老师C矮,但比老师E高。
结论:根据以上信息,以下结论正确的是:A. 老师B比老师E矮。
B. 老师A比老师D矮。
C. 老师C比老师B高。
D. 老师A比老师C高。
答案:C. 老师C比老师B高。
3. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:请根据下面的数字序列推断下一个数字:1, 4, 9, 16, 25, __结论:根据以上数字序列,下一个数字应该是:A. 30B. 36C. 42D. 49答案:B. 364. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:小明、小红、小李和小刚四人排成一排,以下是一些信息: - 小明在小李的左边。
- 小红在小刚的右边。
结论:根据以上信息,以下结论正确的是:A. 小刚在小红的左边。
B. 小红在小李的右边。
C. 小明在小刚的左边。
D. 小红在小明的左边。
答案:C. 小明在小刚的左边。
5. 问题:下列是一道逻辑推理题,请选择正确的答案。
问题:请根据下面的图形选择正确的图形以继续图形序列:图形序列:△, ▢, ◯, __结论:根据以上图形序列,以继续序列的正确图形是:A. △B. ▢C. ◯D. ■答案:D. ■通过以上五个小学奥数逻辑推理练习题及答案的讲解,我们可以锻炼孩子们的逻辑思维和推理能力。
这些题目涵盖了不同类型的逻辑推理问题,包括旗帜推理、身高排列、数字序列推断、人物排列和图形推理。
五年级奥数逻辑推理练习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《五年级奥数逻辑推理练习题及答案【三篇】》供您查阅。
【第⼀篇】数学竞赛后,⼩明、⼩华、⼩强各获得⼀枚奖牌,其中⼀⼈得⾦牌,⼀⼈得银牌,⼀⼈得铜牌.王⽼师猜测:“⼩明得⾦牌;⼩华不得⾦牌;⼩强不得铜牌.”结果王⽼师只猜对了⼀个.那么⼩明得()牌,⼩华得()牌,⼩强得()牌.分析:这⾥以⼩明所得奖牌分三种情况进⾏分析:(1)若⼩明得⾦牌时;(2)若⼩明得银牌时;(3)若⼩明得铜牌时;然后根据题意,讨论所有可能出现的情况,舍弃不合理的情形,进⽽得出答案. 解:①若“⼩明得⾦牌”时,⼩华⼀定“不得⾦牌”,这与“王⽼师只猜对了⼀个”相⽭盾,不合题意; ②若⼩明得银牌时,再以⼩华得奖情况分别讨论:如果⼩华得⾦牌,⼩强得铜牌,那么王⽼师没有猜对⼀个,不合题意;如果⼩华得铜牌,⼩强得⾦牌,那么王⽼师猜对了两个,也不合题意; ③若⼩明得铜牌时,仍以⼩华得奖情况分别讨论:如果⼩华得⾦牌,⼩强得银牌,那么王⽼师只猜对⼩强得奖牌的名次,符合题意;如果⼩华得银牌,⼩强得⾦牌,那么王⽼师猜对了两个,不合题意; 综上所述,⼩明、⼩华、⼩强分别获铜牌、⾦牌、银牌; 答:⼩明得铜牌,⼩华得⾦牌,⼩强得银牌; 故答案为:铜,⾦,银. 点评:逻辑问题通常直接采⽤正确的推理,逐⼀分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.【第⼆篇】 1.找规律⽤循环⼩数表⽰1÷7,2÷7,3÷7的商,⽐较⼀下它们的循环节中的数字有什么特点,从中可以找出什么规律?应⽤找出的规律,写出4÷7,5÷7,6÷7的循环节后,再除⼀下,看看找到的规律对不对? 分析与解答通过计算知,⽤7分别去除1,2,3后所得到循环节的位数相同,所出现的数字也相同虽然排列顺序不同,但只要找到⼗分位上的数字后,再依次排列即可。
奥数部分—简单的逻辑推理及习题答案全解

奥数部分——简单的逻辑推理1、A、B、C、D四人,已知B不是最高的,但他比A、D高,而A不比D高,请把他们按高矮排列。
2、甲、乙、丙、丁四人同时参加了读书竞赛,赛后他们各自预测名次,甲说:“丙第一名,我第三名。
”乙说:“我第一名,丁第四名。
”丙说:“丁第二名,我第三名。
”丁没说话。
最后成绩公布时,发现他们的预测都只对了一半。
那么,这次竞赛他们的名次分别是什么?3、有一次上课坐在一个小组的三个人中有人讲话,小张指责小王和小李:“你们都在说谎。
”小李却说:“小张正在说谎。
”小王则说:“小李正在说谎。
”他们中只有1个人讲的是真话,试问:谁讲的是真话,谁讲的是假话?4、甲、乙、丙、丁四位同学的校服上印有不同的号码。
赵同学说:甲是2号,乙是3号。
钱同学说:丙是2号,乙是4号。
孙同学说:丁是2号,丙是3号。
李同学说:丁是1号,乙是3号。
已知赵、钱、孙、李每人都说对了一半,那么丙是几号?5、甲、乙、丙三人对晓明的藏书数目作了一个估计,甲说:他至少有1000本书。
乙说:他的书不到1000本。
丙说:他最少有1本书。
这三个人的估计中只有一句是对的。
晓明究竟有多少本书?6、小利、小江、小敏、小磊四个同学,有一个同学在英语竞赛中获奖,其余同学问他们谁是获奖者,小利说:我不是,小江说:是小磊,小敏说:是小江,小磊说:不是我。
他们当中只有一个人没有说真话,那么获奖者是谁?7、有三名学生在看1、2、3号运动员进行“羽毛球冠军争夺赛。
”赛前,对于谁会得“冠军”称号,三名学生都说了两句话:甲说:不是2号,是3号。
乙说:不是2号,是1号。
丙说:不是3号,是2号。
比赛结果表明,他们的话有一人全对,有一人对一半错一半,另一人全错。
请你想一想,冠军是谁?8、有三位老师比年龄,他们每人说的3句话中有2句是对的,请你分析一下他们各有多少岁?刘老师:我22岁,比小陈小2岁,比小李大1岁。
陈老师:我不是年龄最小的,小李和我相差3岁,小李是25岁。
逻辑推理六年级奥数题及答案

逻辑推理六年级奥数题及答案
逻辑推理六年级奥数题及答案
逻辑推理:(中等难度)
"迎春杯"数学竞赛后,甲、乙、丙、丁四名猜测他们之中谁能获奖.甲说:"如果我能获奖,那么乙也能获奖."乙说:"如果我能获奖,那么丙也能获奖."丙说:"如果丁没获奖,那么我也不能获奖."实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的`.那么没能获奖的同学是___。
逻辑推理答案:
首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与"他们之中只有一个人没有获奖"矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。
【逻辑推理六年级奥数题及答案】。
【经典】小学六年级奥数— 逻辑推理一

【经典】小学六年级奥数—逻辑推理一一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.3.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.4.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.5.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.6.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.7.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.8.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?9.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.13.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.14.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.3.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.4.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.5.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.6.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.7.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.8.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.9.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.13.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.14.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
六年级下册数学试题-奥数专练:逻辑推理(含答案)全国通用

很多同学喜欢逻辑推理,说明它有神奇魅力。
在小升初考试中,逻辑推理题依旧频繁的出现在各重点中学的试卷里,北京人大附中英语实验班选拔考试,甚至还出现了多道英语的奥数逻辑题,所以加强这方面的训练对于我们学生来说依然是十分必要的。
一、逻辑推理的“生命线”:逻辑推理找矛盾,真假不清暂先定。
找矛盾的依据是逻辑推理的四大定律。
⑴同一律。
在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。
⑵矛盾律。
在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。
例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的,甚至两个都是错的。
⑶排中律。
在同一推理过程中,对同一对象的两个恰好相反的判断必有一个是对的,它们不能同时都错。
例如“这个数大于8”和“这个数不大于8”是两个恰好相反的判断,其中必有一个是对的,一个是错的。
⑷理由充足律。
在一个推理过程中,要确认某一判断是对的或不对的,必须有充足的理由。
二、逻辑推理的几种主要类型:1.真假命题判断;2.数值限定推演;3.列表与对阵图。
某楼住着4个女孩和两个男孩,他们的年龄各不相同,最大的10岁,最小的4岁。
最大的男孩比最小的女孩大4岁,最大的女孩比最小的男孩也大4岁。
最大的男孩多少岁?三名学生进行了若干科目的考试,以考得的名次进行记分。
考得第一名得分最多,其次是第二名,第三名得分最少。
各科都是如此记分。
已知甲最后得22分,乙最后得9分,丙也是得9分。
并且已知乙英语考试得了第一名,问数学第二是谁?甲、乙、丙、丁四人对A先生的藏书数目做了一个估计,甲说:“A先生500本书”;乙说:“A先生至少有1000本书”;丙说:“A先生的书不到2000本”。
丁说:“A先生最少有1本书”,这四个人的估计中,只有一句是对的,问A先生究竟有多少本书?★★★(2006年浙江省小学数学活动课夏令营)足球世界杯小组赛的每个小组有四个队参加单循环(每两个队之间都踢一场)比赛,每组的前两名可以出线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数逻辑推理题及答案This manuscript was revised by the office on December 10, 2020.几道逻辑推理题(含答案)1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
以下哪项与上文推理方法相同(A)跳远运动员每天早晨跑步。
如果早晨有人跑步,则他不是跳远运动员。
(B)如果每日只睡4小时,对身体不利。
研究表明,最有价值的睡眠都发生在入睡后第5小时。
(C)家长和小孩做游戏时,小孩更高兴。
因此,家长应该多做游戏。
(D)如果某汽车早晨能起动,则晚上也可能起动。
我们的车早晨通常能启动,同样,它晚上通常也能启动。
(E)油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
这位改革家明显犯了一个逻辑错误。
下列选项哪个与该错误相类似(A)天下雨,地上湿。
现在天不下雨,所以地也不湿。
(B)这是一本好书,因为它的作者曾获诺贝尔奖。
(C)你是一个犯过罪的人,有什么资格说我不懂哲学(D)因为他躺在床上,所以他病了。
(E)你说谎,所以我不相信你的话;因为我不相信你的话,所以你说谎。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案。
4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:"或者是我射中的,或者是李将军射中的。
" 王说:"不是钱将军射中的。
"李说:"如果不是赵将军射中的,那么一定是王将军射中的。
"赵说:"既不是我射中的,也不是王将军射中的。
"钱说:"既不是李将军射中的,也不是张将军射中的。
"国王让人把射中鹿的箭拿来,看了看,说:"你们五位将军的猜测,只有两个人的话是真的。
"请根据国王的话,判定以下哪项是真的(A)张将军射中此鹿。
(B)王将军射中此鹿。
(C)李将军射中此鹿。
(D)赵将军射中此鹿。
(E)钱将军射中此鹿。
5."赵科长又戒烟了。
"由这句话我们不可能得出的结论是(A)赵科长过去戒过烟,次数可能不止一次。
(B)赵科长过去戒烟未成功,这次仍可能如此。
(C)赵科长烟瘾很大,讲这话的人深信赵科长的烟瘾永远戒不掉。
(D)讲这话的人是在讽刺嘲笑赵科长的戒烟行为。
(E)讲这话的人确信赵科长这次戒烟一定会成功。
6.古希腊柏拉图学园的门口竖着一块牌子"不懂几何者禁入"。
这天,来了一群人,他们都是懂几何的人。
那么,他们(A)可能会被允许进入。
(B)一定不会被允许进入。
(C)一定会被允许进入。
(D)不可能被允许进入。
(E)不可能不被允许进入。
7.所有通过英语六级考试的学生都参加了学校的英语俱乐部,王进参加了英语俱乐部,所以他一定通过了英语六级考试。
以下哪项最好地指出了上述论证的逻辑错误(A)部分通过英语六级考试的学生没有参加英语俱乐部。
(B)王进能够参加英语俱乐部是因为它符合加入俱乐部的基本条件。
(C)王进曾经获得过年级英语演讲比赛第一名。
(D)凡愿意每学期缴纳50元会费,并且愿意积极参加俱乐部活动的学生都可以成为俱乐部的成员。
(E)有些参加俱乐部的学生还没有通过英语六级考试。
8.认真学习逻辑知识,加强逻辑训练,可以有效的提高人们的逻辑思维水平和增强逻辑思维能力。
小林平时注重逻辑知识的学习和逻辑思维的训练,可想而知,他的思维是有条理和逻辑性的。
上面的论述犯了以下哪项错误(A)转移论题。
(B)自相矛盾。
(C)以偏概全。
(D)论据和论题不相干。
(E)推不出。
9.如果电动剃刀中的电池用完了,剃刀就不能工作。
我的剃刀不能工作,因此,电池一定是用完了。
以下哪句与以上论证相似(A)如果马拉多纳上场,阿根廷队就一定会赢。
阿根廷队输了,所以马拉多纳一定没上场。
(B)一个证据没有被破坏除非它不能被接受。
这个证据不能被接受,因此,它被破坏了。
(C)如果某甲犯罪了,他的指印可以在现场找到。
某甲没有犯罪,所以,某甲的指印没有在现场找到。
(D)老葛是我的叔叔,小菲是老葛的侄女。
因此,小菲是我的姐姐。
(E)阿森将戴太阳镜,如果海岸可被清楚地看见。
海岸可被清楚地看见,因此,阿森将戴太阳镜。
10.一家钟表店被盗,经查可以肯定是甲、乙、丙、丁中的某一个人所为。
审讯中,甲说:"我不是罪犯。
"乙说:"丁是罪犯。
"丙说:"乙是罪犯。
"丁说:"我不是罪犯。
"经调查证实四人中只有一个说的是真话。
根据已知条件,下列哪个判断为真。
(A)甲说的是假话,因此,甲是罪犯。
(B)乙说的是真话,丁是罪犯。
(C)丙说的是真话,乙是罪犯。
(D)丁说的是假话,丁的确是罪犯。
(E)四人中说的全是假话,丙才是罪犯。
11.先天的遗传因素和后天的环境影响对人的发展所起的作用到底哪个重要双胞胎的研究对于回答这一问题有重要的作用。
惟环境影响决定论者预言,如果把一对双胞胎儿完全分开抚养,同时把一对不相关的婴儿放在一起抚养,那么,待他们长大成人后,在性格等内在特征上,前两者之间决不会比后两者之间有更多的类似。
实际的统计数据并不支持这种极端的观点,但也不支持另一种极端观点,即惟遗传因素决定论。
从以上论述最能推出以下哪个结论(A)为了确定上述两种极端观点哪一个正确,还需要进一步的研究工作。
(B)虽然不能说环境影响对于人的发展起唯一决定作用,但实际上起重要作用。
(C)环境影响和遗传因素对人的发展都起着重要的作用。
(D)试图通过改变一个人的环境来改变一个人是徒劳无益的。
(E)双胞胎研究是不能令人满意的,因为它得出了自相矛盾的结论。
12.一种对许多传染病非常有效的药物,目前只能从一种叫ibora的树的皮中提取,而这种树在自然界很稀少,5000棵树的皮才能提取1公斤药物。
因此,不断生产这种药物将不可避免地导致该种植物的灭绝。
以下哪项如果为真,则最能削弱上述论断(A)把从ibora树皮上提取的药物通过一个权威机构发放给医生。
(B)从ibora树皮提取药物生产成本很高。
(C)ibora的叶子在多种医学之品种都使用。
(D)ibora可以通过插枝繁衍和在人工培育下生长。
(E)ibora主要生长在人迹罕至的地区。
13."作为本公司的法人代表,我郑重声明:王也飞签署的任何合同都无效。
王也飞不是法人代表。
如他是法人代表,那我就不是,因为一个公司只能有一个法人代表。
"以下哪句话最能代表讲话人所表明的立场观点(A)公司只有一个法人代表。
(B)王也飞不是法人代表。
(C)王也飞没有资格签署合同。
(D)王也飞不代表本公司。
(E)我不承认王也飞签署的合同。
14.有甲、乙、丙三个学生,一个出生在北京,一个出生在上海,一个出生在武汉。
他们中一个是学国际金融专业的,一个是学工商管理专业的,一个是学外语专业的。
其中:①甲不是学国际金融的,乙不是学外语的。
②学国际金融的不出生在上海。
③学外语的出生在北京。
④乙不出生在武汉。
请根据已知的条件,判断甲的专业:(A)国际金融。
(B)工商管理。
(C)外语。
(D)三种专业都可能。
(E)三种专业都不可能。
15.如果佣人出现,他将被发现;如果他被发现,他就会受到询问;他如果受到询问,他将回答问题,他的声音可以被听到。
如果未看到佣人也未听到他的声音,他一定在工作;如果他在工作,他一定会出现,但没有人听到佣人的声音。
结合上文,以下哪一项能够成立(A)佣人被问。
(B)佣人不被问。
(C)未看见佣人。
(D)看到佣人。
(E)以上全不是。
16.只有小陈参加,小王和小张才会一起吃饭;而小陈只到她家附近的酒店吃饭,那里距市中心几里路远;只有小王去,小宋才会去酒店吃饭。
如果上面的资料是对的,下面哪一条也一定对(A)小宋不与小陈在酒店一起吃饭。
(B)小张不与小宋、小陈一起在酒店吃饭。
(C)小王、小宋和小张不在酒店一起吃饭。
(D)小宋不在市中心的酒店吃饭。
(E)小王与小张不会一起在市中心吃饭。
17.有人认为当前的大学教育在传授基本技能上是失败的。
他们对若干大公司人事部门负责人进行了一次调查,发现很大一部分新上岗的工作人员中都没有很好掌握基本的写作、数量和逻辑技能。
如果上述论点为真,那么以下哪项也为真(A)现在的大学里没有基本技能方面的课程了。
(B)新上岗人员中极少有大学生。
(C)写作、数量、逻辑方面的基本技能对胜任工作很重要。
(D)大公司的新上岗人员基本上代表了当前的大学毕业生的水平。
(E)过去的大学生比现在的大学生接受了更多的基本技能教育。
18.在世界范围内禁止生产各种破坏臭氧层的化学物质可能仅仅是一种幻想。
大量这样的化学物质已经生产出来,并且以成千上万台冰箱的冷却剂的形式而存在。
当这些化学物质到达大气层中的臭氧层时,起作用不可能停止。
因此,没有任何方式可以阻止这类化学物质进一步破坏臭氧层。
下列哪项如果为真,则能最严重的削弱以上论证。
(A)不可能精确地测量冰箱里冷却剂这种破坏臭氧层的化学物质的量是多少。
(B)在现代社会中,为了避免不卫生的和潜在的威胁生命的情况发生,食物的冷藏是必要的。
(C)不会破坏臭氧层的替代品还未开发出来,并且替代品可能会的冰箱目前使用的冷却剂昂贵。
(D)即是人们放弃使用冷藏设备,已经存在的冰箱里的冷却剂也是对大气层的一个威胁。
(E)当冰箱的使用寿命结束时,冰箱里的冷却剂可完全回收并且重新利用。
19.龙口开发区消防站向市政府申请购置一辆新的云梯消防车,这种云梯消防车是扑灭高层建筑火灾的重要设施。
市政府否决了这项申请,理由是:龙口开发区现只有五幢高层建筑,消防站现有的云梯消防车足够了。
以下哪项是市政府的决定所必须假设的(A)龙口开发区至少近期内不会有新的高层建筑封顶投入使用。
(B)市政府的财政面临困难无力购置云梯消防车。
(C)消防站的云梯消防车中,至少有一辆近期内不会退役。
(D)龙口开发区的高层建筑内的防火设施都符合标准。
(E)这种云梯消防车对于扑灭高层建筑的火灾并不是不可缺少的。
20.世界卫生组织1995年调查报告显示,70%的肺癌患者都有吸烟史。