高中数学抛物线练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《抛物线》练习题
一、选择题:
1. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( )
(A)
18 (B)41 (C) 2
1
(D)1 2. (上海)过抛物线x y 42
=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )
A .有且仅有一条
B .有且仅有两条
C .有无穷多条
D .不存在
3. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )
(A) 2 (B) 3 (C) 4 (D) 5
4. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42
=的准线重合,则该双曲线与抛物线x y 42
=的交点到原点的距离是 ( )
A .23+6
B .21
C .21218+
D .21
5 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A )
1617 ( B ) 1615 ( C ) 8
7 ( D ) 0 6. (湖北卷)双曲线)0(12
2≠=-mn n
y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为
( )
A .
163
B .
8
3 C .
3
16 D .
3
8 二、填空题:
7.顶点在原点,焦点在x 轴上且通径长为6的抛物线方程是 . 8.若抛物线m x x y +-=
22
12
的焦点在x 轴上,则m 的值是 . 9.过(-1,2)作直线与抛物线x y 42
=只有一个公共点,则该直线的斜率为 . 10.抛物线2
2x y =为一组斜率为2的平行弦的中点的轨迹方程是 .
三、解答题:
11. (江西卷)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB.
(1)若M 为定点,证明:直线EF 的斜率为定值;
(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹
12. (上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.
已知抛物线y 2=2px(p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的
距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M. (1)求抛物线方程;
(2)过M 作MN ⊥FA, 垂足为N,求点N 的坐标;
(3)以M 为圆心,MB 为半径作圆M.当K(m,0)是x 轴上一动点时,丫讨论直线AK 与圆M 的位置关系.
当m<1时, AK 与圆M 相交.
13、(全国卷III)
设()11A x y ,,()22B x y ,两点在抛物线2
2y x =上,l 是AB 的垂直平分线。
(Ⅰ)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围。
14.(广东卷)在平面直角坐标系xOy 中,抛物线2
y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如图4所示).
(Ⅰ)求AOB ∆得重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
抛物线练习题答案
解答:一。BB D BB A
三.1. 解:(1)设M (y 2
0,y 0),直线ME 的斜率为k(l>0)
则直线MF 的斜率为-k ,方程为200().y y k x y -=-
∴由2
002
()y y k x y y x
⎧-=-⎪⎨=⎪⎩,消2
00(1)0x ky y y ky -+-=得 解得20021(1),F F ky ky y x k k --=∴= ∴00220000
222
112
14(1)(1)2E F EF
E F ky ky y y k k k k ky ky ky x x y k k k -+-
--===
=---+--
(定值) 所以直线EF 的斜率为定值 (2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为2
00()y y k x y -=-
由2
002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y -- 同理可得200((1),(1)).F y y +-+
设重心G (x , y ),则有2222
00000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x x ⎧+-+++++===⎪⎪⎨
+--+++⎪===-⎪⎩
消去参数0y 得2122().9273
y x x =
-> 4. [解](1) 抛物线y 2=2px 的准线为x=-
2p ,于是4+2
p
=5, ∴p=2. ∴抛物线方程为y 2=4x. (2)∵点A 是坐标是(4,4), 由题意得B(0,4),M(0,2), 又∵F(1,0), ∴k FA =
34;MN ⊥FA, ∴k MN =-4
3
,