电气化铁道供电系统与设计

合集下载

电气化铁道供电系统

电气化铁道供电系统

(2)接触网
• 架在电气化铁道上空,向电力机车供电的输 电线路。
架空式接触网组成
2、电力机车
• 电力机车由车体、车底架、走行部、车钩缓 冲装置、制动装置和一整套电气设备等组成。 机车的走行部为两台三轴转向架。 • 电力机车是靠顶部升起的受电弓从接触网上 取得电能后并转换成机械能牵引列车运行的。
• 我国目前使用的干线电力机车主要是国产韶设备及其电路
– (1)主电路:
• • • • • 受电弓 主断路器 主变压器 调压装置 电抗器
– (2)辅助电路 – (3)控制电路
电力机车的电气设备及其电路
思考与练习
• 1. 电力机车主要由 、 、 车钩缓冲装 置、制动装置和一整套电气设备组成。 • 2.电力机车的电气设备主要由三条电路: 、 和 。 • 3. 电力机车上的主电路的电气设备依次是: 受电弓、主断电路、 调压装置、 、 、 制动电阻。
电气化铁道供电系统
三、电力机车
• 采用电力机车牵引的铁道称为电气化铁道。电气化 铁道由牵引供电系统和电力机车两部分组成。
1、牵引供电系统
• 将电能从电力系统传送到电力机车的电力设 备总称为电气化铁道的牵引供电系统,牵引 供电系统主要包括牵引变电所和接触网两部 分。
(1)牵引变电所
• 将电力系统高压输电线传来的110kV的三相交 流电,转换为单向交流电,并传送到邻近区 间的接触网上。

电气化铁路供电系统教材

电气化铁路供电系统教材

谐波问题 整改措施:在牵引变电所增加滤波器 (单调谐滤波器、高通滤波器),存在 增加投资的问题。 限制:谐波电流问题一直是铁路部门 和电力部门之间争论的焦点问题。
负序电流问题 牵引供电系统的负荷为单相负荷,导致 从电力系统三相去用的电能不平衡,从而向 电力系统注入负序电流。 负序电流的危害:降低用户电能的利用 率,引起用户旋转电机转子表面温升过高。 整改措施:牵引供电系统采用换相方式 接入电力系统,采用新型供电方式。 限制:电力部门一直在对牵引供电系统 注入电力系统的负序电流进行限制。
2 牵引网 通常,将接触网、钢轨、回流线构成的线路称为牵引网。接触网 和钢轨是牵引网的主体。 接触网(图3-54)是架设在电气
化铁路上空,向电力机车供电的一种
特殊形式的输电线路,其质量和工作 状态直接影响电气化铁路的运输能力。 接触网根据其接触悬挂类型,可 以分为简单接触悬挂和链形接触悬挂 两类。
• 供电能力:满足在不同牵引工况下电能的输 送。关键点:牵引供电臂末端电压水平。 • 运行方式的灵活性:在确保供电的前提下, 为设备的检修、运行方式的调整等提供灵活 的操作方式。改变运行方式的动作迅速。 • 完备的确保一次系统运行可靠性的措施。
目前牵引供电系统面临的主要问题: • 谐波问题 • 负序电流问题 • 功率因数问题 • 机车过分相问题 • 接地问题 • 继电保护问题 • 弓网关系问题 • 绝缘配合问题 • 电磁兼容问题
功率因数问题 列车从牵引供电系统取用的电能会随着 列车牵引定数、路况(限坡、弯道)、运行 图、司机操作技术等因素的影响,因此改变 列车取用的有功功率和无功功率,导致功率 因素发生变化。 电力部门要求大工业用户的功率因数达 到0.9以上,高出部分奖励、低于该数值将罚 款。 整改措施:加功率因数补偿装置,困难 在于负荷波动导致功率因数大范围波动,难 以达到理想的补偿效果。

电气化铁道牵引供电系统

电气化铁道牵引供电系统
1881年世界第一条商业运营的电气化铁路
第一部分:交流牵引供电系统概述
1.2 我国电气化铁路的发展
第一条干线电气化铁路---宝成线(1975年) 第一条全线一次电气化完成铁路---阳安线(1978年)
第一条双线电气化铁路---石太线(1982年) 第一条采用AT供电方式的电气化铁路---京秦线 (1985年)
第一部分:牵引供电系统概述
1.5 BT(吸流变压器)供电方式
BT供电方式示意图 ● 防干扰效果好; ● 牵引网阻抗偏大(以链形悬挂牵引网为例,牵引网单位等效阻抗会增大约50%): ● 电力机车过BT时,易产生电弧; ● 增加了接触网的维修工作量和事故率,可靠性较低。
第一部分:牵引供电系统概述
1.6 带回流线的直接供电方式(TRNF)
电气化铁道牵引供电系统
主要内容
第一部分:交流牵引供电系统概述 第二部分:牵引变压器接线 第三部分:电气化铁路负荷特性 第四部分:变电所主接线及平面布置 第五部分:保护配置及综合自动化系统 第六部分:朔黄铁路扩容工程设计技术标准
第一部分:交流牵引供电系统概述
1.1 电气化铁路的诞生与早期发展
1825年英国修建了世界上第一条铁路 1879年世界上第一次采用电力牵引列车
第二部分:牵引变压器接线
2.3 V结线牵引变压器
A
BC
A
C
A
B
BC
A1
X1 A2
X2
a
b
c
单相V/v结线
a1
x1 a2
x2
三相V/v结线
特点: ● 接线简单、可靠性高、工程 投资低; ● 安装容量小、电能损耗小、运营费用低; ● 变压器容量利用率为100%; ● 能为变电所提供三相电源; ● 对电力系统的负序影响较小,负序功率等于牵引负荷功率的50%;

电气化铁路scott接线变压器牵引供电方式设计1.

电气化铁路scott接线变压器牵引供电方式设计1.

黑龙江交通职业技术学院毕业设计(论文)题目电气化铁路scott接线变压器牵引供电方式设计专业班级姓名学号2017年月日摘要随着我国铁路跨越式发展战略的逐步实施,我国铁路已逐步向高速客运专线的方向发展,电气化铁道接触网作为整个电力供电系统的重要组成部分,其牵引负荷的供电要求相以前的常规铁路已发生较大变化,对接触网系统的供电质量要求也越来越高。

牵引供电系统的供电质量好与坏?弓网是否有良好的受流质量?这与高速铁路供电系统方式有着密不可分关系,因为供电方式的不同将直接影响接触网的电压、电流等参数,最终影响受流质量。

目前,铁道部加快了重载高速电气化铁路的建设。

重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。

如此大的负荷对供电系统的功率传输能力提出了新的要求。

因此,对高速铁路接触网供电方式研究是十分关键的。

关键词:变压器,斯科特,供电目录第1章绪论 (1)1.1 选题目的和意义 (1)1.2 国内外研究现状 (1)1.3 牵引变压器 (2)1.4 本文主要内容 (2)第2章斯科特变压器 (4)2.1 AT供电方式 (4)2.2 斯科特变压器特点 (4)2.3 斯科特变压器供电方式 (6)2.4 高压侧主接线 (7)2.5 馈线侧主接线设计 (8)第3章斯科特计算 (10)3.1 变压器计算容量 (10)3.2 变压器校核容量 (10)3.3 短路计算 (11)3.3.1 短路点的选取 (11)3.3 备用方式选择 (11)3.4 绘制电气主接线图 (12)第4章我国采用斯科特变压器的线路 (14)4.1 哈大铁路客运专线 (14)4.2 京沪高速铁路 (14)4.3 京沈客运专线 (15)第5章结论 (16)参考文献 (17)第1章绪论1.1 选题目的和意义我国自1961年8月15日建成开通宝鸡至凤州91km第一段山区电气化铁路、实现电气化铁路零的突破以来,到2005年末,电气化开通营业里程已突破2万km。

电气化铁道牵引供电系统

电气化铁道牵引供电系统

三相电力系统
电力系统向电气化铁路供电示意图
牵引变电所 馈线 20~40km
回流线
牵引网
分区所 牵引变电所
列车
接触网 钢轨
电分相
牵引供电系统原理示意图
第一部分:牵引供电系统概述
1.4 直接供电方式(TR)
我国早期电气化铁路(如宝成线、阳安线)建设时,采用直接供电方式。
直接供电方式示意图 ● 结构简单,投资最少,维护费用低; ● 在负荷电流较大的情况下,钢轨电位高; ● 对弱电系统的电磁干扰较大;
应用于AT供电方式的变压器接线形式有:纯单相接线、V/x接线、三相/两 相平衡(Scott、Wood-Bridge接线等)、十字交叉接线等。
第二部分:牵引变压器接线
2.2 纯单相牵引变压器
A a
A T N
b
B 纯单相结线
F B
二次侧中点抽出式单相结线
特点: ● 接线简单、可靠性高、设备数量少、工程投资低; ● 安装容量小、电能损耗小、运营费用低; ● 变压器容量利用率为100%; ● 理论上可取消变电所出口的电分相; ● 二次侧不能直接提供三相电源; ● 对电力系统的负序影响大,负序功率等于牵引负荷功率,仅适用于电网容量较大场合;
V/x结线
第二部分:牵引变压器接线
2.4 Y/△接线牵引变压器
A
IA
Δ
B
C
IB
IC
O
*1·来自Ia(y) Iby
* b(z)
U
Δ
2
Icz
Iax ·
c(x)
I U
特点: ● 一次侧中性点可接地运行; ● 二次侧能直接提供三相电源; ● 负序方面优于纯单相结线,与V/v结线相当; ● 滞后相电压水平往往偏低; ● 变压器容量利用率仅为75.6%;

铁道供电专业毕业设计

铁道供电专业毕业设计

铁道供电专业毕业设计
铁道供电专业的毕业设计可以涉及以下方面:
1. 铁路供电系统设计:设计铁路电气化系统,包括供电变电站、接触网、牵引变电所等各个组成部分的设计。

可以考虑应用新能源技术,如太阳能、风能等,提高电气化系统的可持续性和节能性。

2. 供电设备选型与优化:研究铁路供电设备的选型与优化,包括选择适合的变压器、断路器、隔离开关等设备,以提高供电系统的可靠性和稳定性。

3. 输电线路设计与优化:研究供电系统的输电线路设计与优化,包括线路的选取、导线材料的选择、线路的布置等,以降低输电损耗和提高电能传输效率。

4. 轨道交通供电系统的调度和控制:研究铁路供电系统的调度与控制方法,包括控制策略的设计、调度算法的开发等,以提高供电系统的灵活性和运行效率。

5. 铁路供电系统的故障诊断与保护:研究铁路供电系统的故障诊断与保护技术,包括故障检测、故障定位、保护装置设计等,以提高供电系统的安全性和可靠性。

以上仅为一些毕业设计的方向,具体的毕业设计题目可根据个人兴趣和导师意见来确定。

在进行毕业设计之前,建议先了解
相关领域的最新研究进展和技术发展趋势,以找到一个具有挑战性和实用性的课题,并进行相关的实验、模拟或者仿真研究。

电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:年月日一、题目某牵引变电所位于大型编组站内, 向两条复线电气化铁路干线的两个方向供电区段供电, 已知列车正常情况的计算容量为27000 kV A(三相变压器), 并以10kV电压给车站电力照明机务段等地区负荷供电, 容量计算为2700 kV A, 各电压侧馈出数目及负荷情况如下: 25kV回路(1路备): 两方向年货运量与供电距离分别为, , 。

10kV共4回路(2路备)。

二、供电电源由系统区域变电所以双回路110kV输送线供电。

本变电所位于电气化铁路的首端, 送电线距离30km, 主变压器为SCOTT接线。

三、题目分析及解决方案框架确定2.1.选题背景、负荷分析和原始数据在保证电气化铁道供电安全可靠的同时, 也要求供电设备最经济的利用, 因此选择合适容量的变压器是很有现实意义的。

本文在这方面对已有的计算公式进行了分析, 并提出了一个较为准确的变电所有效电流公式, 说明在某些情况下机组的选择必须进一步考虑实际的运行情况。

牵引变电所是电气化铁路牵引供电系统的核心部分, 它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。

而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。

通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。

由上述资料可知, 本牵引变电所担负着重要的牵引负荷供电任务(一级负荷), 馈线数目多、影响范围广, 应保证安全可靠的供电。

10KV地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等, 应有足够的可靠性。

2.2.牵引变压器台数和容量的选择牵引变压器是牵引供电系统的重要设备, 其容量大小关系到能否完成国家交给的运输任务的问题。

从安全运行和经济方面来看, 容量过小会使牵引变压器长期过载, 将造成其寿命缩短, 甚至烧毁;反之, 容量过大将使牵引变压器长期不能满载运行, 从而造成其容量浪费, 损耗增加, 使运营成本增大。

电气化铁道供电系统与设计课程设计指导手册自动化学院模板

电气化铁道供电系统与设计课程设计指导手册自动化学院模板

电气化铁道供电系统与设计课程设计指导手册自动化学院《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。

经过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。

经过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。

经过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。

2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。

3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。

4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。

5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。

二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。

本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。

电气化铁道主要供电方式

电气化铁道主要供电方式

电气化铁道主要供电方式
电气化铁道的主要供电方式通常有以下几种:
1.架空线供电(Overhead Line Electrification):这是最常见的
供电方式,也称为接触网供电。

在架空线供电系统中,铁道上方架设一条称为接触网的电线,电动列车通过集电装置与接触网接触,从而获取所需的电能。

接触网将高压直流(DC)或交流(AC)电源通过变电站供应到铁道上,以满足列车运行的电力需求。

2.第三轨供电(Third Rail Electrification):在第三轨供电系统
中,铁道旁边或中间安装一条额外的供电轨道,称为第三轨。

电动列车通过集电装置与第三轨接触,从而获得所需的电能。

第三轨通常使用直流供电,但也有一些使用交流供电的系统。

3.混合供电方式:某些铁路系统采用混合供电方式,同时使
用架空线和第三轨供电。

这种方式通常用于铁路线路的不同区段或分支线路,以适应不同的运行要求和设备技术。

不同地区和铁路系统可能采用不同的主要供电方式,其中选用的供电方式取决于多个因素,包括成本、技术要求、环境影响以及安全性等考虑。

另外,电气化铁道的供电方式也在不断发展和创新,例如可再生能源和蓄电池技术的引入,以提高能源效率和减少环境影响。

电气化铁路牵引供电系统简介精选

电气化铁路牵引供电系统简介精选
• 轨道
牵引电流的回流导线; 支撑与导向; 信号专业轨道电路
• 回流线
指连接轨道和牵引变电所的导线
• 其他设施
负馈线(回流线),吸上线 ,BT ,AT ,正馈线 ,保护线,地线 , 供电线
牵引供电系统的其他设施
• 分区所(Section Post, SP)
设于两变电所之间 , 把电气化铁道牵引网分成不同供电区段, 设有开关设备 ,根据运行需要可以连接同一供电臂的上 、下行接触 网 , 或连接不同的供电臂以实现越区供电。
第一章 绪论——牵引供电系统简介
1.1 电气化铁道与牵引供电系统 1.2 电力系统向电气化铁道的供电 1.3 牵引变电所向牵引网的供电 1.4 牵引网向电力机车的供电 1.5 牵引供电系统的特点及主要问题
1. 1 电气化铁道与牵引供电系统
• 电气化铁道(Electric Railways)
使用外部输入的电力能源(electric power )来驱动列 车行驶的铁道运输方式。
拓扑结构三相不对称; 变压器接线特殊。
牵引供电系统主要技术问题
• 电压水平 • 无功功率 • 负序电流 • 谐波 • 通信干扰
电气化铁道的供电要求 • 安全可靠供电 • 保证供电质量 • 降低投资和运营费用 • 提高电磁兼容水平
(3)对AT牵引网 ,往往同ATP合建 ,增强对供电臂供电的灵活性
• AT所(AT Post, ATP)
AT供电系统 , 除变电所 、分区所和开闭所外 ,在牵引网上放置 自耦变压器的场所。
1.2 电力系统向电气化铁道的供电
• 电气化铁道属一级负荷 ,对供电可靠性要求高 • 牵引变电所一般设置两台变压器 ,要求有两回独立电源
• 由馈电线、接触网、轨道、回流线等设施构成的输电网络

电气化铁路牵引供电系统简介

电气化铁路牵引供电系统简介
车行驶的铁道运输方式。
(1)注意与电传动内燃机车的区别; (2)电能具有不能大量储存的特点。
电气化铁道包括:电力机车(含电动车组) 沿线的供电设施
• 牵引供电系统(Traction Power Supply Systems) 向电力机车提供电能的沿线供电设施从电能的传输、
分配角度构成牵引供电系统。 牵引供电系统主要包括:牵引变电所 牵引网 专用高压供电线路
• 其他设施
负馈线(回流线),吸上线,BT,AT,正馈线,保护线,地线, 供电线
牵引供电系统的其他设施
• 分区所(Section Post, SP)
设于两变电所之间,把电气化铁道牵引网分成不同供电区段, 设有开关设备,根据运行需要可以连接同一供电臂的上、下行接触 网,或连接不同的供电臂以实现越区供电。
T R
结构简单,投资少,维护费用低; 一部分电流从大地回流,对邻近通信线干扰大。
(2)吸流变压器供电方式(BT方式)
吸流变压器 Booster Transformer
F T
Us
I
R
• 防干扰效果好; • 牵引网阻抗偏大; • 电力机车过BT时,易产生电弧; • 由于是串联系统,可靠性较低。
(3)带负馈线的直接供电方式
F T
Us
I
R
• 防干扰效果不如BT供电方式; • 牵引网阻抗界于直接供电方式和BT供电方式之间; • 目前应用比较广泛。
(4)自耦变压器供电方式(AT方式)
自耦变压器 Auto-transformer
T
Us
R
F
• 防干扰效果与BT方式相当 • 牵引网阻抗小,输送容量大,供电臂长(可达40~50km) • 结构复杂,投资大,维护费用高

电气化铁道主要供电方式

电气化铁道主要供电方式

接触网的供电方式我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用;复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压;当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行;1、直接供电方式如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰;我国早期电气化铁路如宝成线、阳安线建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式简称TR供电方式;随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式;目前有所谓的BT、AT和DN供电方式;从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线;电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲或理想中大小相等、方向相反,从而两者产生的电磁干扰相互抵消;但实际上是做不到的,所以不同的供电方式有不同的防护效果;2、吸流变压器BT供电方式这种供电方式,在接触网上每隔一段距离装一台吸流变压器变比为1:1,其原边串入接触网,次边串入回流线简称NF线,架在接触网支柱田野侧,与接触悬挂等高,每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果;由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用;BT供电方式原理结线图H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸流变压器;牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系;随着取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压器一次绕组,其二次绕组没有电流流通,因此牵引网按直接供电方式运行,到达BT处后,吸流变压器一次绕组有牵引电流流过,牵引回流被迫由钢轨逆行至远离电源侧的吸上线进入回流线,再经吸流变压器二次绕组返回牵引变电所,使牵引网阻抗大增;图的曲线是机车由牵引变电所出发在不同位置时的牵引网总阻抗;图中曲线是供电方式长回路牵引网阻抗,即牵引负荷全程流经接触网和回流线时的阻抗,相当于机车位于吸上线处的牵引网阻抗;牵引网阻抗通常较直接供电方式大;BT供电方式牵引网阻抗图1—直接供电方式牵引网阻抗;2—BT供电方式长回路牵引网阻抗;3—列车由牵引母线侧运行至末端牵引网阻抗变化;3、自耦变压器AT供电方式采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT自耦变压器,变比2:1向接触网供电,一端接接触网,另一端接正馈线简称AF线,亦架在田野侧,与接触悬挂等高,其中点抽头则与钢轨相连;AF线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好;此外,在AF线下方还架有一条保护PW线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果;显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位约几百伏,增加故障几率;当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大;但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性;4、直供+回流DN供电方式这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性;由于没有吸流变压器,改善了网压,接触网结构简单可靠;近年来得到广泛应用;综上所述,早期电气化铁路均采用直接供电方式,为避免和减少对外部环境的电磁干扰,研发了BT、AT和DN供电方式,就防护效果来看,AT方式优于BT和DN方式,就接触网的结构性能来讲,DN方式最为简单可靠;随着通信技术的快速发展,光缆的普遍应用,通信设施及无线电装置自身的防干扰性能大为增强,考虑到接触网的运行可靠性对电气化铁路的安全运行至关重要,所以通常认为,一般情况下DN供电方式为首选,在电力系统比较薄弱的地区,经过经济技术比较,可采用AT供电方式,BT供电方式则尽量少采用或不采用;本人认为,这是近三十年来我国电气化铁路供电方式发展和应用的实践过程中总结出来的普遍看法,同样也要接受今后的实践检验,不断总结提高;AT供电方式的优缺点优点:它无需提高牵引网的绝缘强度即可将供电电压提高一倍;在相同的牵引负荷条件下,接触悬挂和正馈线中的电流大致可减少一半;AT供电方式牵引网单位阻抗约为BT供电方式牵引网单位阻抗的1/4左右;从而提高了牵引网的供电能力,大大减小了牵引网的电压损失和电能损失;牵引变电所的间距可增大到90-100KM,不但变电所需要数量可以减少,而且相应的外部高压输电线数量也可以减少,还有利于选择既便利运营管理又缩短外部高压输电线长度的变电所位置;由于AT供电方式无需在AT处将接触悬挂进行电分段,故当牵引重载列车运行的高速度、大电流电力机车通过AT处时,受电弓上不会发生强烈拉弧,能满足高速、重载列车运输的需要;同时,AT供电方式对附近通信线路的综合防护效果要优于BT供电方式;缺点:构造比较复杂;在开闭所、分区所、AT所以及主变压器副边中性点不接地的牵引变电所都设置自藕变压器等;牵引网中除了接触悬挂和正馈线之外,还有保护线PW、横向联接线、辅助联接、放电器等,所以,AT供电方式的工程投资要大于BT;相应的施工、维修和运行也比其他供电方式的工程投资要大;电气化铁道供电原理电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能;目前我国一般由110kV以上的高压电力系统向牵引变电所供电;目前牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用的直供加回流线方式;一、直接供电方式直接供电方式T—R供电是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所的供电方式;这种供电方式的电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低;但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,所以一般不采用;我国现在多采用加回流线的直接供电方式;二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器约3~4km安装一台和回流线的供电方式;这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰;BT供电的电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成;由图可知,牵引变电所作为电源向接触网供电;电力机车EL运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中;吸流变压器是变比为1:1的特殊变压器;它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等;因此可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所;这样,回流线上的电流与接触网上的电流大小基本相等,方向却相反,故能抵消接触网产生的电磁场,从而起到防干扰作用;以上是从理论上分析的理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路的电磁感应影响;另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上的电流会小于接触网上的电流,这种情况称为“半段效应”;此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率;当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线;且BT供电方式的牵引网阻抗较大,造成较大的电压和电能损失,故已很小采用;三、AT供电方式随着铁路电气化技术的发展,高速、大功率电力机车的投入运行,吸—回装置供电方式已不能适应需要;各国开始采用AT供电方式;所谓AT供电方式就是在牵引供电系统中并联自耦变压器的供电方式;实践证明,这种供电方式是一种既能有效地减弱接触网对邻近通信线的感应影响,又能适应高速、大功率电力机车运行的一种比较先进的供电方式;AT供电方式的电路包括牵引变电所S、接触悬挂T、轨道R、自耦变压器AT、正馈线AF、电力机车EL等;牵引变电所作为电源向牵引网输送的电压为25kV;而接触悬挂与轨道之间的电压仍为25kV,正馈线与轨道之间的电压也是25kV;自耦变压器是并联在接触悬挂和正馈线之间的,其中性点与钢轨保护线相连接;彼此相隔一定距离一般间距为10~16km的自耦变压器将整个供电区段分成若干个小的区段,叫做AT区段;从而形成了一个多网孔的复杂供电网络;接触悬挂是去路,正馈线是回路;接触悬挂上的电流与正馈线上的电流大小相等,方向相反,因此其电磁感应影响可互相抵消,故对邻近的通信线有很好的防护作用;AT供电方式与BT供电方式相比具有以下优点:1、AT供电方式供电电压高;AT供电方式无需提高牵引网的绝缘水平即可将牵引网的电压提高一倍;BT供电方式牵引变电所的输出电压为,而AT供电方式牵引变电所的输出电压为55kV,线路电流为负载电流的一半,所以线路上的电压损失和电能损失大大减小;2、AT供电方式防护效果好;AT供电方式,接触悬挂上的电流与正馈线上的电流大小相等,方向相反,其电磁感应相互抵消,所以防护效果好;并且,由于AT 供电的自耦变压器是并联在接触悬挂和正馈线间的,不象BT供电的吸流变压器,串联在接触悬挂和回流线之间,因此没有因励磁电流的存在而使原副边绕组电流不等,以及在短路时吸流变压器铁芯饱和导致防护效果很差等问题;另外也不存在“半段效应”问题;3、AT供电方式能适应高速大功率电力机车运行;因AT供电方式的供电电压高、线路电流小、阻抗小仅为BT供电方式的1/4左右、输出功率大,使接触网有较好的电压水平,能适应高速大功率电力机车运行的要求;另外,AT供电也不象BT供电那样,在吸流变压器处对接触网进行电分段,当高速大功率电力机车通过时产生电弧,烧坏机车受电弓滑板和接触线,对机车的高速运行和接触网和接触网的运营维修极为不利;4、AT供电牵引变电所间距大、数量少;由于AT供电方式的输送电压高、线路电流小、电压损失和电能损失都小,输送功率大,所以牵引变电所的距离加大为80~120km,而BT供电方式牵引变电所的间距为30~60km,因此牵引变电所的距离大大减少,同时运营管理人员也相应减少,那么,建设投资和运营管理费用都会减少;四、同轴电缆供电方式同轴电力电缆供电方式简称CC供电方式,是一种新型的供电方式,它的同轴电力电缆沿铁路线路埋设,内部芯线作为供电线与接触网连接,外部导体作为回流线与钢轨连接;每隔5~10km作一个分段;由于供电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大;由于同轴电力电缆的阻抗比接触网和钢轨的阻抗小得多,因此牵引电流和回流几乎全部经由同轴电力电缆中流过;同时由于电缆芯线与外层导体电流大小相等,方向相反,二者形成的磁场相互抵消,对邻近的通信线路几乎无干扰;由于电路阻抗小,因而供电距离长;但由于同轴电力电缆造价高、投资大,很少采用;五、直供加回流线供电方式直供加回流线供电方式结构比较简单;这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰;与直供方式比较,能对沿线通信防干扰;比BT供电减少了BT装置,既减少了建设投资,又便于维修;与AT供电方式比较,减少了AT所和沿线架设的正馈线,不仅减少了投资,还便于接触网维修;所以自大秦线以后的电气化铁道,基本都采用这种方式;我段所管辖的京沪、沪昆都采用这种供电方式;直供加回流线供电方式的原理如下图所示;六、牵引变电所向接触网供电有单边供电和双边供电两种方式;接触网在牵引变电所处及相邻的两个变电所中央是断开的,将两个牵引变电所之间的接触网分成两独立的供电分区,又叫供电臂;每个供电臂只从一端的牵引变电所获得电能的供电方式称为单边供电;每个供电臂同时从两侧变电所获得电能的供电方式称为双边供电;双边供电可提高供电质量,减少线路损耗,但继电保护等技术存在问题;所以我国及多数国家均采用单边供电;但在事故情况下,位于两变电所之间的分区亭可将两个供电臂连接进来,实行越区供电,越区供电是在非常状态下采用的,因供电距离过长,难以保证末端的电压质量,所以只是一种临时应急措施,并且在实行越区供电时,应校核供电末端的电压水平是否符合要求;在复线区段同一供电臂上、下行接触网接的是同相电,但在牵引变电所及分区亭内设有开关装置,可将上、下行接触网连通,实行并联供电,以减小线路阻抗,降低电压损失和电能损失,提高接触网的电压水平;在事故情况下,又可将上、下行接触网分开,互不影响,使供电更加灵活可靠;牵引变电所馈电线馈出的两供电臂上的电压是不同相位的;为了减少对电力系统的不平衡影响,各牵引变电所要采用换连接,不同相位的接触网间要设置电分相装置;为了灵活供电和缩小事故范围,便于检修,接触网还设置了许多电分段装置;。

电气化铁道牵引供电系统

电气化铁道牵引供电系统

电力牵引供电系统张丽西南交通大学电气工程学院牵引网供电方式目前单相工频25kV牵引网供电方式主要有:直接供电方式(TR)BT(吸流变压器)供电方式带回流线的直接供电方式(TRNF)AT(自耦变压器)供电方式直接供电方式(TR)牵引电流通过电力机车后直接从钢轨或大地返回牵引变电所。

结构简单,投资最少,维护费用低。

在负荷电流较大的情况下,钢轨电位高;对弱电系统的电磁干扰较大BT(吸流变压器)供电方式在接触网和回流线中串接吸流变压器,让牵引电流通过电力机车后从回流线返回牵引变电所。

电磁兼容性能好,对周围环境影响小接触网中串接吸流变压器,牵引网阻抗增大,供电臂压降增大,牵引变电所的供电距离缩短带回流线的直接供电方式(TRNF)牵引电流通过电力机车后部分从回流线返回牵引变电所,部分从钢轨地返回。

兼有直接供电方式结构简单,投资和维修量小、供电可靠性高等优点相对直接供电方式,钢轨电位和对通信线路的干扰有所改善。

钢轨电位降低;牵引网阻抗降低,供电距离增长;对弱电系统的电磁干扰减小相对BT方式,结构简单,投资少,维护费用低;牵引网阻抗减小,供电距离增长AT(自耦变压器)供电方式牵引电流通过电力机车后部分从正馈线返回。

供电电压提高,更能适应大功率负荷的供电,功率输送能力强,供电距离远,可减少牵引变电所数量,减少电分相数目,机车通过分相中性段短时失电产生的速度和功率损失得到降低;有效降低对通讯线路的干扰; 。

AT供电方式接触网结构复杂,供变电设施较多,运营维护难度较大9高速铁路特点:具有行车速度高,机车功率大、取流大9BT方式牵引网单位阻抗高,功率输送能力较弱9直接供电方式在负荷电流较大的情况下,对通讯线路干扰大,钢轨电位高的缺点更为突出9技术上AT和带回流线直供方式均能满足300km/b及以上高速牵引。

两者相比,AT供电方式更能适应大功率负荷的供电,同时由于电分相数目的减少。

但AT供电方式接触网结构复杂,供变电设施较多,运营维护难度较大。

011:电气化铁路供电系统_2022年学习资料

011:电气化铁路供电系统_2022年学习资料

谐波问题-整改措施:在牵引变电所增加滤波器-单调谐滤波器、高通滤波器,存在-增加投资的问题。-限制:谐波电 问题一直是铁路部门-和电力部门之间争论的焦点问题。
负序电流问题-牵引供电系统的负荷为单相负荷,导致-从电力系统三相去用的电能不平衡,从而向-电力系统注入负序 流。-负序电流的危害:降低用户电能的利用-率,引起用户旋转电机转子表面温升过高。-整改措施:牵引供电系统采 换相方式-接入电力系统,采用新型供电方式。-限制:电力部门一直在对牵引供电系统-注入电力系统的负序电流进行 制。
电气化铁路供电系统#011:电气化铁路供电系统
一,电气化铁道牵引供电系统设置-将电能从电力系统传送到电力机车的电力设备,总称为电气化铁-道的供电系统。牵 供电系统主要包括牵引变电所和接触网两部分。-发电厂厂-高压输电线-避雷器开变压器操以盘-馈电线-关-接触导 -7-供电系统示意图
发电厂(发出的电-流,经升压变压器2提-1、发电厂2、高压输电线3、区域变电站-110KW-高电压后,由高 输电-线3送到铁路沿线的牵-4、牵引变电所-5、馈电线-引变电所4。在牵引变-22KV-6、接触网-电所里 电流变换成所-7、回流线-要求的电流或电压后,-8、钢轨-经馈流线5转送到邻近-10、电力机车-9、接地网 区间和站场线路的接触-网6上供电力机车使用。-图3-53电力牵引系统的组成
供电能力:满足在不同牵引工况下电能的输-送。关键点:牵引供电臂末端电压水平。-·运行方式的灵活性:在确保供 的前提下,-为设备的检修、运行方式的调整等提供灵活-的操作方式。改变运行方式的动作迅速。-·完备的确保一次 统运行可靠性的措施。
目前牵引供电系统面临的主要问题:-谐波问题-负序电流问题-功率因数问题-机车过分相问题合问题-电磁兼容问题

1.2电气化铁道供电系统

1.2电气化铁道供电系统

第二节 电气化铁道供电系统我国电气化铁路(接触网)采用单相工频交流制,额定电压为25kV。

一、电气化铁道供电系统的构成电气化铁道供电系统由一次供电系统和牵引供电系统组成。

电气化铁道供电系统的简单构成如图1-2所示。

(一)、一次供电系统一次供电系统是指电力系统向电气化铁道的供电部分。

在我国,电力系统通常以110kV 的电压等级向电气化铁道供电。

图1-2中,1为区域变电站或发电厂,2为三相交流高压输电线,这两部分即为电气化铁道的一次供电系统。

(二)、牵引供电系统完成对电力机车供电的属于铁路部门管辖的装置称为电气化铁道的牵引供电系统。

如图1-2,它由牵引变电所3、馈电线4、接触网5、钢轨6和钢轨回流线7等组成。

电力部门管辖的电力系统与铁路部门管辖的牵引供电系统是在牵引变电所高压进线的门形架处分界。

现将牵引供电系统各部分的功用简述如下:1.牵引变电所牵引变电所的作用是将110kV(或220 kV)三相交流高压电变换为27.5(或55)kV,然后以27.5(或55)kV的电压等级向牵引网供电。

2.接触网接触网是一种悬挂在电气化铁道线路上方,并和铁路轨顶保持一定距离的链形或单导线的输电网。

电力机车的受电弓和接触网滑动接触取得电能。

接触网的额定电压为25kV,如图1-2中5所示。

3.馈电线馈电线是连接牵引变电所和接触网的导线,把牵引变电所变换后的电能送到接触网。

馈电线一般为大截面的钢芯铝绞线,如图1-2中4所示。

4.轨道在非电牵引情形下,轨道只作为列车的导轨。

在电气化铁道,轨道除仍具上述功用外,还需要完成导通回流的任务,是电路的组成部分。

因此,电气化铁道的轨道应具有畅通导电的性能。

5.回流线连接轨道和牵引变电所中主变压器接地相之间的导线称为回流线,它也是电路的组成部分,其作用是将把轨道、地中的回路电流导入牵引变电所,如图1-2中7所示。

从图1-2可以看出,牵引供电回路是:牵引变电所→馈电线→接触网→电力机车→钢轨和大地→回流线→牵引变电所。

电气化铁道供电系统与设计课程设计报告1

电气化铁道供电系统与设计课程设计报告1

电气化铁道供电系统与设计课程设计报告班级:电气08*班学号: 200*09***姓名: *******指导教师: *****2011 年月日一、题目某牵引变电所甲采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相平衡接线,两供电臂电流归算到27.5kV侧电流如下表所示二、题目分析及解决方案确定因为牵引变压器是牵引供电系统的主要设备,其容量大小关系到能否完成国家交给的运输任务及运营成本,所以进行牵引变压器的容量计算,以便合理选用牵引变压器的额定容量十分重要。

以下将对三相平衡接线方式的牵引变压器的计算容量、校核容量以及安装容量分别进行分析及计算。

2.1设计方案分析目前,我国使用的牵引变压器类型主要有以下几种形式:单相结线变压器、单相V,v结线变压器(三相)、三相YN,d11双绕组变压器、斯科特结线变压器、YN,结线阻抗匹配牵引变压器、YN,结线平衡变压器、非阻抗匹配YN,结线平衡变压器。

针对以上几种牵引变压器的优缺点的分析如下:(1)单相结线变压器优点:容量利用率可达100%;主接线简单,设备少,占地面积小,投资少。

缺点:不能供应地区和牵引变电所三相负荷用电,在电力系统中,单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。

(2)单相V,v结线变压器(三相)优点:主结线较简单,设备较少,投资较省。

对电力系统的负序影响比单相结线少。

对接触网的供电可实现双边供电。

缺点:当一台牵引变压器故障时,另一台必须跨相供电,即兼供左右两边供电臂的牵引网。

这就需要一个倒闸过程,即把故障变压器原来承担的供电任务转移到正常运行的变压器。

在这一倒闸过程完成前,故障变压器原来供电的供电臂牵引网中断供电,这种情况甚至会影响行车。

即使这一倒闸过程完成后,地区三相电力供应也要中断。

牵引变电所三相自用电必须改用劈相机或单相-三相自用变压器供电。

实质上变成了单相结线牵引变电所,对电力系统的负序影响也随之增大。

2010(终稿)电气化铁道供电系统与设计试卷参考答案

2010(终稿)电气化铁道供电系统与设计试卷参考答案

兰州交通大学试卷(主卷A )装订线 一、填空题(每空0.5分,共计27分)1、 我国电力网的电压等级主要有0.22 kV 、0.38 kV 、3 kV 、6 kV 、10 kV 、35 kV 、110 kV 、220 kV 、330 kV 、500kV 。

2、最简单的牵引网是由 馈电线、接触网、轨道和大地、回流线 构成的供电网的总称.牵引电流从 牵引变电所主变压器 流出,经由 馈电线、接触网 供给电力机车,然后沿 轨道和大地、回流线 流回牵引变电所主变压器。

3、一级负荷对供电要求为 二个独立电源供电 。

4、二级负荷对供电要求为 两回线路供电 。

在负荷较小或地区供电条件困难时,二级负荷可由 一回6kV 及以上专用线 供电。

5、根据国家标准《铁道干线电力牵引交流电压标准》(GB1402)的规定,铁道干线电力牵引变电所牵引侧母线上的额定电压为27.5kV ,自耦变压器供电方式母线上的额定电压为 55kV ;电力机车、电动车组受电弓和接触网的额定电压为 25kV ,最高允许电压为 29kV ;电力机车、电动车组受电弓上最低工作电压为 20kV ;电力机车、电动车组在供电系统非正常情况(检修或故障)下运6、分区所应设于 两相邻牵引变电所供电分区的分界处 。

7、在单线单边供电的电气化区段,相邻两供电分区之间一般设 分相绝缘器 ,并设 旁路隔离开关 以便实现临时越区供电。

8、高压熔断器经常与高压负荷开关配合使用。

9、如图所示 其中1QB 、7QB 为中心牵引变电所;2QB 、4QB 为通过式牵引变电所; 3QB 、5QB 为分接式牵引变电所。

10、 倒闸操作的原则是: 接通电路时,先合断路器两侧的隔离开关,然后合断路器; 断开电路时,先断断路器,然后拉开断路器两侧的隔离开关。

11、 在牵引变电所中,电容器串入馈电线的作用是:提高牵引网电压水平 12、 在牵引变电所中,电容器并在母线上的作用是:提高功率因数 13、 牵引变电所按牵引网电流性质(电流制)可分为:直流牵引变电所、交流牵引变电所。

电气化铁道供电系统与设计 正文

电气化铁道供电系统与设计 正文

一、题目某牵引变电所乙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相YN,d11接线,两供电臂电流归算到27.5kV侧电流如下表1所示。

表1 计算原始资料牵引变电所供电臂长度km端子平均电流A有效电流A短路电流A穿越电流A乙18.3 α217 295 818 14813.3 β144218637144二、题目分析及解决方案框架确定分析题目提供的资料可知,该牵引变电所要负担向区段安全可靠的供电任务,因此采用直接供电方式向复线区段供电的方式,可减轻对邻近通信线路的干扰影响,大大降低牵引网中的电压损失,扩大牵引变电所间隔,减少牵引变电所的数目。

该牵引变电所的设计过程如下:(1)设该变电所为通过式牵引变电所,则110kV牵引侧的接线设计为内桥接线形式。

(2)在牵引变电所的主变压器采用YN,d11接线形式,在两台牵引变压器并联运行的情况下,当一台停电时,供电不会中断,运行可靠方便。

能很好地适应山区单线电气化铁路牵引负荷不均衡的特点。

(3)牵引变电所馈线侧采用复线区段馈线断路器50%备用,且无馈线备用的接线方式,这种接线方便于工作,当工作断路器需要检修时,可有各自的备用断路器来代替其工作,断路器的转换操作比较方便,供电可靠性高。

三、设计过程三相YN,d11结线牵引变压器的高压侧通过引入线按规定次序接到110kV三相电力系统的高压输电线上;变压器低压侧的一角c与轨道、接地网连接,变压器另两个角a和b分别接到27.5kV的a相和b相母线上。

由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°结线。

由于左、右两供电臂对轨道的电压相位不同,因此,在这两个相邻的接触网区段间采用了分相绝缘器。

采用三相YN,d11接线牵引变压器的缺点:牵引变压器容量不能得到充分利用,只能达到额定容量的75.6%,引入温度系数也只能达到84%,与采用单相接线牵引变压器的牵引变电所相比,主接线要复杂一些,用的设备工程投资也较多,维护检修工作量及相应的费用也有所增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气化铁道供电系统与设计课程设计报告班级:电气081班学号: 200809043姓名:王建强指导教师:李彦哲评语:2011年11月13日1 题目某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为10000kV A (三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3750kV A 。

各电压侧馈出线数目及负荷情况如下:25kV 回路(1路备):两方向年货运量与供电距离分别为Q 1L 1=32×60Mt.km; Q 2L 2=30×25Mt.km ,K R =0.2,△q=100kWh/kt.km 。

10kV 回路(2 路备):供电电源由系统区域变电所以双回路110kV 输送线供电。

本变电所是通过式中间变电所,送电线距离15km 。

主变压器为三相接线,要求:画出变电所的电气主接线(包括变压器容量计算、各种方案主接线的比较、主设备的选择)。

2 选题背景由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。

10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。

本变电所为终端变电所,一次侧无通过功率。

3 方案论证容量的计算:对于牵引变电所B 已知x1I =320A ,x2I =290A ,amax I =410A ,bmax I 错误!未找到引用源。

=360A ,p1I =0.9x1I由公式 22t x1x2p1p242S K U I I I I =++计 =()220.927.5432029020.90.9320290A ⨯⨯⨯++⨯⨯⨯⨯ =19862kVA ()由公式 b m a x S t a m ax x (20.65)K U I I =+ 0.927.5(24100.65290)=⨯⨯⨯+⨯=24960 kVA ()由公式 S 校 =bmax SK错误!未找到引用源。

=24960 1.5=16640()kVA10kV地区负荷容量S地区错误!未找到引用源。

=3750kVA()本变电所考虑为固定备用方式,按故障检修的需要,应设两台牵引用主变电器,地区电力负荷因有一级负荷,为保证变电器检修时不致断电,也应设两台。

根据原始资料和各种负荷对供电可靠性要求,主变电器容量与台数的选择,可能有以下两种方案:方案一2×10000千伏安牵引变电器+2×6300千伏安地区变压器,一次侧同时接于110千伏母线(110千伏变压器最小容量为6300千伏安);方案二2×16000千伏安的三绕组变压器,因10千伏侧地区负荷于总容量比值超过15%,采用电压为110/27.5/10.5千伏,接线为Y0∕△∕△的两台三绕组变压器同时为牵引负荷与地区电力负荷供电。

各绕组容量比为100﹕100﹕50。

各方案主接线的拟定按110千伏进线和终端变电所的地位,考虑变压器的数量,以及各种电压级馈线数目、可靠供电的需要程度选择结线方式。

(1)对于上述方案一,因由四台变压器,考虑110千伏母线检修不致全部停电,采用单母线用短路器分段的结线方式,如图1(a)所示,每段母线连接一台牵引变压器和地区变压器。

由于牵引馈线断路器数量多,且检修频繁,牵引负荷母线采用带旁路母线的单母线分段(隔离开关分段)接线方式,10千伏地区负荷母线同样采用短路器分段的单母线结线系统。

自用变压器分别接于10千伏两段母线上(两台)。

(2)对于方案二,共用两台三绕组主变压器、两回路110千伏进线,线路不太长,但应有线路继电保护设备,故以才用节省断路器数量的内桥较为经济合理,如图1 (b)所示。

牵引负荷母线结线和10千伏母线结线与方案一的结线相同。

110kV3B 1B 4B 2B 1B 2B6300 10000 6300 10000 2×16000kV A kV A kV A kV A kV A10kV 25kV 10kV 25kV图(a)方案一主接线图(b)方案二主接线图1各方案主结线图4 过程论述因地区负荷占比例较大,且有部分为一级负荷,应保证必要的电压质量,主要应检验电压不对称系数,然后进行两种方案的经济比较。

4.1 电压不对称系数的计算根据题意计算得出 对于方案一,其电流值为1a I ∙=52.7(17.8j e - ()A 1b I ∙==52.7(184)j e()A1c I ∙==19.9(83.1)j e()A对于方案二,其电流值为:'1a I ∙==71.3(11.9)j e- '1b I ∙==64.7(199.3)j e'1c I ∙==37.0(103.6)j e根据已知牵引负荷容量及已知参数三绕组16000 KV A 变压器 'M106P ∆=kW ,d1%10.5U = 双绕组10000 KV A 变压器 M 63P ∆=kW , d2%10.5U = 且按计算公式()23M e 12e 102P U R S ∆⋅⋅=Ω⋅ (e U 110 kV =)()2d e 1e%100U U X S =⋅Ω 分别求得高压绕组的电阻及电抗三绕组变压器 '12.51R =Ω,'179.4X =Ω双绕组变压器 1 3.81R =Ω,1127.1X =Ω 又由公式•111()U I R jX ∙∆=+ 11E U U ∙∙∙=-∆24011a 1b1c 1103j U U U U e∙∙∙∙====⋅正序分量 21a (1)1a 1b 1c 1()3E E a E a E ∙∙∙∙=++kV ()负序分量 21a (2)1a 1b 1c 1()3E E a E a E ∙∙∙∙=++kV ()电压(势)不对称系数1a (2)1u 1a(1)100%E K E =⨯ 将各方案计算结果列表(表1)所示:表1 各主接线方案技术参数计算结果方案 单位(kV )百分值1a E ∙1b E ∙1c E ∙()1a 1E ∙()1a 2E ∙1u K一 ()5.8961.6j e - 236.558.0j e 118.262.0j e ()3.7360.5j e - ()68.82.54j e -4.2%二()5.0662.4j e-236.460.2j e117.462.0j e()3.7561.7j e-()69.21.57j e-2.54%从上述比较可知,在保证电压质量方面,方案一和方案二的1u K 值在允许范围以内。

且方案二的不对称度相对方案一更小,故从技术方面比较,方案二优于方案一。

则按此条件应首选方案二。

4.2 经济方面比较得(1)方案一 2×10000+2×6300千伏安变压器共4台,多增加110千伏断路器4组,按SW 3-110少油断路器计算,共需(以万元计)2×80+2×50+4×(11+1.9+2×0.95)=274.8(万元)(每组断路器包括断路器及机构1台,电流互感器1台,及两侧隔离开关2台,分别为11万元,1.9万元和2×0.95万元)方案二 2×16000千伏安三绕组变压器2台,另增加变压器前面和跨条隔离开头(110千伏)4组,共需2×96+4×0.95=195.8(万元)方案一110千伏配电间隔数增加,其占地费用不予计算。

每年折旧维修费,按取一次投资的8%计,则 方案一 pa C 274.80.0821=⨯= (万元) 方案二 pb C 195.80.0815=⨯= (万元) (2)各方案的年电能损耗费(主变压器正常工作采用两台并联运行方式)为: 方案一 ea C =eQ C +ed C 14.77=(万元) 方案二 eb C 10985490.121=⨯=(万元) (3)各方案运行费用:为年折旧维修费与年电能损耗费之和方案一 a p a e a C C C =+21.9814.7736=+=(万元/年) 方案二 b p b e b C C C =+15.6613.1828=+=(万元/年) (4)经济比较表,以方案二为基数,则方案一净增数如下表(表2)所示:表2 各主接线方案经济比较表方 案 项 目方案一多出方案二 一次投资(万元) 年运行费(万元)274.8195.879-=36.7528.847.91-=0 0由上述结果可知方案二较于方案一更经济,经济性更好。

故从经济方面比较则应首选方案二。

5 结论方面综述,由4.1,4.2可知:经技术经济全面比较表明,在保证同样可靠性的前提下,方案一与方案二对地区负荷供电电压质量都满足要求,但方案二对地区负荷供电电压质量相对方案一更好,且投资和年运行费用较低,又节省占地面积,故推荐采用方案二。

6 设计体会及今后的改进意见通过这次实践,我了解了牵引供电系统的用途及工作原理,熟悉了电气化铁道供电系统牵引变电所的设计步骤,锻炼了工程设计实践能力,培养了自己独立设计能力。

此次课程设计是对我专业知识和专业基础知识一次实际检验和巩固,同时也是走向工作岗位前的一次热身。

从最初的选题,开题到计算、绘图直到完成设计。

其间,查找资料,老师指导,与同学交流,每一个过程都是对自己能力的一次检验和充实。

这次课程设计虽然发现了自己很多的不足,知道了自己专业知识很欠缺,作为一个面向铁道的专业人士,发现自己的缺少很多的专业素养,有很多自己要学习之处,同时也锻炼了自己把书本上学到的知识怎么灵活运用到实践中。

这次实践是对自己大学三年所学的一次大检阅,使我明白自己知识还很浅薄,虽然马上要大四了,但是自己的求学之路还很长,以后更应该在工作中学习,努力使自己 成为一个对社会有所贡献的人,为祖国铁路事业,为祖国建设事业添上自己的微薄之力。

参考文献[1] 李彦哲,胡彦奎,王果等.电气化铁道供电系统与设计.兰州:兰州大学出版社,2006.[2] 陈海军.电力牵引供变电技术.北京:中国铁道出版社,2008.[3] 贺威俊,高仕斌.电力牵引供变电技术.成都:西南交通大学出版社,2008.附图:牵引变电所电气主接线图。

相关文档
最新文档