八年级上学期期末考试

合集下载

八年级上册数学期末考试试卷

八年级上册数学期末考试试卷

八年级上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x = 7 + 3D. 2x = 7 - 32. 一个数的平方根是它本身的数是:A. 1B. -1C. 0D. 1和-13. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 梯形4. 计算下列表达式的结果:(3x^2 - 2x + 1) + (x^2 - 4x + 7) 的结果是:A. 4x^2 - 6x + 8B. 4x^2 - 2x + 8C. 4x^2 - 6x + 6D. 4x^2 - 6x + 75. 一个等腰三角形的两边长分别为3cm和5cm,那么它的周长可能是:B. 13cmC. 16cmD. 19cm6. 一个数的立方根是它本身的数是:A. 1B. -1C. 0D. 1,-1和07. 以下哪个选项是正确的?A. 2x + 3y = 6B. 2x - 3y = 6C. 3x + 2y = 6D. 3x - 2y = 68. 一个数的倒数是它本身的数是:A. 1B. -1C. 0D. 1和-19. 计算下列表达式的结果:(2x^2 + 3x - 4) - (x^2 - 5x + 2) 的结果是:A. x^2 + 8x - 6B. x^2 + 2x - 6C. x^2 + 8x + 2D. x^2 + 2x + 210. 一个直角三角形的两个直角边长分别为3cm和4cm,那么它的斜边A. 5cmB. 6cmC. 7cmD. 8cm二、填空题(每题2分,共20分)11. 一个数的平方是25,那么这个数是________。

12. 一个数的绝对值是5,那么这个数可能是________或________。

13. 一个三角形的内角和是________度。

14. 一个等腰三角形的底角是45度,那么它的顶角是________度。

15. 一个数的立方是-8,那么这个数是________。

北京市西城区2023-2024学年八年级上学期期末语文试题(含答案)

北京市西城区2023-2024学年八年级上学期期末语文试题(含答案)

北京市西城区2023—2024学年度第一学期期末试卷八年级语文 2024.1注意事项:1.本试卷共11页,共五道大题,25道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将考试材料一并交回。

一、基础·运用(共16分)班级组织同学们开展主题为“中轴话鸟,和谐共生”的跨学科实践活动。

各学习小组准备在本班的微信公众号上推送学习成果,你参与了文稿的编审工作,请完成以下任务。

栏目一:文物探“鸟”历史小组走进中轴线上的博物馆。

找到不少中国古代带有鸟类造型的文物,搜集了一些资料。

其中有两段配图的文字,还需审核完善。

春秋莲鹤方壶(收藏于故宫博物院)西汉彩绘雁鱼青铜釭灯(收藏于中国国家博物馆)莲鹤方壶形体巨大,有1米多高。

双层镂雕莲瓣盏上立有一只展翅欲飞的仙鹤,铸造得①。

据记载,复杂青铜器的铸造、通常会使用失蜡法、分铸法等工艺。

本器的仙鹤、双龙耳与器身主体采用分铸法,显示了高超的铸造技术。

雁鱼青铜釭灯整体造型为鸿雁双足站立并回首叼着一条鱼。

位于雁背部的灯盘带有手柄,其上的灯罩可转动开合,以便调节灯光照射方向和防yù()来风。

雁腹内可盛清水,灯烟经雁颈“suì()道”溶入水中,可减少污染。

这样的设计达到了器物形式与功能的完美统一,堪称②。

1.对文段中加点字的读音和填入括号中的汉字进行判断,下列说法正确的一项是()(2分)A.“镂雕”的“镂”应读作“lóu”“防yù”应写为“防御”B.“镂雕”的“镂”应读作“lòu”“防yù”应写为“防卸”C.“记载”的“载”应读作“zǎi”“suì道”应写为“隧道”D.“记载”的“载”应读作“zài”“suì道”应写为“邃道”2.在文段横线处填入成语,最恰当的一项是()(2分)A.①入木三分②妙手偶得 B.①入木三分②巧妙绝伦C.①惟妙惟肖②妙手偶得 D.①惟妙惟肖②巧妙绝伦栏目二:胡同寻“鸟”地理小组走进中轴线附近的胡同,寻找各种各样“鸟”的踪迹。

2023—2024学年度上学期八年级期末考试语文试卷参考答案

2023—2024学年度上学期八年级期末考试语文试卷参考答案

语文试卷一、积累与运用(23分)1.(8分)(1)出则无敌国外患者(2)望峰息心经纶世务者(3)牧人驱犊返猎马带禽归(4)乱花渐欲迷人眼(5)我报路长嗟日暮学诗谩有惊人句2.(9分)(1)(3分)①盏②靡③契(2)(3分)C(3)(3分)随着社交平台的进一步破圈,越来越多的人开始尝试用更接地气的方式来品味茶文化。

3.(6分)示例:内容上,《昆虫记》向我们展示了丰富有趣的昆虫世界,对昆虫的进食、交配、养育后代等方面进行了具体描绘。

他把大自然当成了真正的研究场,对生命充满了尊重和敬意,让人读来受益匪浅。

(3分)语言上,在法布尔的眼中,蛆虫是“胖娃娃”,苍蝇“身腰秀美”,他用拟人、比喻等手法表现昆虫世界,富有趣味。

(3分)评分说明:意思对即可。

二、阅读(67分)(一)(7分)4.(3分)敌军攻城的气势如黑云翻涌而来,城墙仿佛将要坍塌;守城将士的铠甲迎着太阳光,如金色鳞片般闪闪发光。

评分说明:“攻城气势”与“黑云”对举,1分;“铠甲”与“金鳞”对举,1分;句意对1分。

5.(4分)颔联写战场伤亡惨烈,(1分)颈联写战斗的艰难,(1分)尾联借用黄金台的典故,(1分)表现将士们英勇无畏、舍身报国的精神。

(1分)评分说明:意思对即可。

(二)(16分)附:参考译文吏部尚书唐俭与唐太宗李世民下围棋,因抢先占据有利位置而发生争执。

唐太宗大怒,把他贬到潭州去当官。

但仍然怒气未消,对尉迟敬德说:“唐俭轻视我,我想杀他,你为我去找一些别人对他的埋怨或指责的话(作为借口)。

”敬德恭敬地(含糊)应答了。

第二天对话的时候,敬德叩头说:“臣实在没有听到(您的要求)。

”唐太宗再三问他,他仍旧不改口。

唐太宗生气了,把上朝用的玉板砸碎在地上,一挥衣袖走了。

过了许久唐太宗请大臣吃饭,三品以上的官员都来了,唐太宗说:“敬德今天这样做的利处和益处各有三项:唐俭免于受冤而死,我免于错杀大臣,敬德免于委屈顺从,这是三大利处;我有怒气消除的美德,唐俭有再生的幸运,敬德有忠直的声誉,这是三大益处。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

四川成都2023-2024学年八年级上学期期末数学试题(原卷版)

四川成都2023-2024学年八年级上学期期末数学试题(原卷版)

2023—2024学年度(上)期末考试八年级数学试题注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、班级写在答题卡上,并检查条形码信息.考试结束,监考人员将答题卡收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 9的算术平方根是( )A. 3±B.C. 3D. 3−2. 在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( )A. ()3,2B. ()3,2−C. ()3,2−D. ()3,2−− 3. 下列计算正确的是( )A.B. −C. D. 2÷=4. 下列各组数为勾股数的是( ) A. 61213,, B. 51213,, C. 81516,,D. 347,, 5. 为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为( )A. 8,8,8B. 7,8,7.8C. 8,8,8.7D. 8,8,8.46. 《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发x 日,乙出发y 日后甲、乙相逢,则所列方程组正确的是( ) A. 211175x y x y −= += B. 211175x y x y += += C. 211157x y x y −= += D. 211157x y x y += += 7. 已知点()11,y −,()23,y 在一次函数31y x =−的图象上,则1y ,2y 的大小关系是( ) A. 12y y <B. 12y y =C. 12y y >D. 不能确定 8. 关于一次函数122y x =+,下列结论正确的是( ) A 图象不经过第二象限B. 图象与x 轴的交点是()0,2C. 将一次函数122y x =+图象向上平移1个单位长度后,所得图象的函数表达式为132y x =+ D. 点()11,x y 和()22,x y 在一次函数122y x =+的图象上,若12x x <,则12y y > 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.比较大小: ______4−.10. 若3x >=________. 11. 在某次赛制为“12进4”且当场公布分数的舞蹈比赛中,小华所在的队伍当第10支队伍分数公布后仍排名第二而欢呼,请问她们判定自己已进入下一轮比赛的依据与________(从平均数、众数、中位数、方差中选择)有关..的12. 已知一次函数4(0)y kx k =+≠和3y x b =−+的图象交于点()3,2A −,则关于x ,y 的二元一次方程组43y kx y x b =+ =−+ 的解是________. 13. 如图,在ABC 中,按以下步骤作图:①以点C 为圆心,任意长为半径作弧,分别交AC ,BC 于点D 和E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线CF 交AB 于点H ;④过点H 作GH BC ∥交AC 于点G ,若40BCH ∠=°,则CGH ∠的度数是________.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14. (10|2|(2024)π−−+;(2)计算:22)1)−+−−;15. 解方程组(1)解方程组32725x y x y −= +=; (2)解方程组222312y x x y −= +=. 16. 如图,DE AC ⊥,AGF ABC ∠=∠,35BFG ∠=°,145EDB ∠=°.(1)试判断BF 与AC 的位置关系,并说明理由;(2)若GF GB =,求A ∠的度数.17. 漏刻是中国古代的一种计时工具.中国最早的漏刻出现在夏朝时期,在宋朝时期,中国漏刻的发展达到了巅峰,其精确度和稳定性得到了极大的提高.漏刻的工作原理是利用均匀水流导致的水位变化来显示时间.水从上面漏壶源源不断地补充给下面的漏壶,再均匀地流入最下方的箭壶,使得壶中有刻度的小棍匀速升高,从而取得比较精确的时刻.某学习小组复制了一个漏刻模型,研究中发现小棍露出的部分y (厘米)是时间x (分钟)的一次函数,且当时间0x =分钟时,2y =厘米.表中是小明记录的部分数据,其中有一个y 的值记录错误. x (分钟) …… 10 20 30 40y (厘米) …… 2.6 3.2 3.6 4.4(1)你认为y 的值记录错误的数据是________;(2)利用正确的数据确定函数表达式;(3)当小棍露出部分为8厘米时,对应时间为多少?18. 如图,在平面直角坐标系中,直线36y x =+与x 轴,y 轴分别交于点A ,C ,经过点C 的直线与x 轴交于点B ,45CBO ∠=°.(1)求直线BC 的解析式;(2)点G 是线段BC 上一动点,若直线AG 把ABC 的面积分成1:2的两部分,请求点G 的坐标; (3)已知D 为AC 的中点,点P 是x 轴上一点,当BDP △是等腰三角形时,求出点P 的坐标.的B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 若一次函数37y x =−的图象过点m n (,),则32n m +=-_________. 20. 有一块直角三角形纸片,两直角边分别为:6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,CD =______cm .21. 剪纸是各种民俗活动重要组成部分,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,其中点E 坐标是()2,3−,现将图形进行变换,第一次关于y 轴对称,第二次关于x 轴对称,第三次关于y 轴对称,第四次关于x 轴对称,以此类推……,则经过第2023次变换后点E 的对应点的坐标为________22. 若关于x ,y 的方程组452x y ax by −= +=和398x y bx ay += += 的解相同,则a b +=________. 23. 如图,在ABC 中,90BAC ∠=°,AB AC =,D 为ABC 外一点,连接AD ,BD ,CD ,发现4=AD ,2CD =且=45ADC ∠°,则BD =______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24. 随着新能源电动车的逐渐普及,人们在购车时经常会面临一个问题:应该选择传统燃油车还是新能源电动车呢?某校的项目式学习小组开展了《选电动车还是燃油车呢?》的研究,发现用车费用包含购车费用和耗能费用,其中A 型电动车每百公里耗电15度电,每度电0.6元,B 型燃油车每百公里耗油8L,每升的油8块钱.(1)根据提供信息,填写下列表格:购车费用(万元) 每公里耗能费用(元)A 型电动车13.5 ________B 型燃油车8 ________(2)分别求出A 型电动车1y (万元),B 型燃油车用车费用2y (万元)与行驶公里数x (万公里)之间的函数关系式;在同一坐标系中画出1y ,2y 的草图并给出你的选择结论;(3)小明爸爸计划购买一辆A 型电动车进行网约车工作,相关法律规定网约车限制经营年限为8年或行驶公里数不超过60万公里.于是项目组同学继续调查:网约车每年平均行程10万公里,A 型电动车每年还需要保险费5000元,每1万公里保养费120元.请你帮小明爸爸计算购买A 型电动车进行网约车工作共需投入多少费用.25. 【基础模型】如图,等腰直角三角形ABC 中90ACB ∠=°,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA △△≌,我们将这个模型称为“K 形图”.【模型应用】(1)如图1所示,已知()0,3B ,()2,0C ,连接BC ,以BC 为直角边,点C 为直角顶点作等腰直角三角形ABC ,点A 在第一象限,则点A 的坐标为________;的【模型构建】(2)如图2,在平面直角坐标系中,直线24y x =+与x 轴,y 轴分别交于点A ,B ,BC AB ⊥交x 轴于点C .①请求出直线BC ②P 为x 轴上一点,连接BP ,若45ABP ∠=°,求P 坐标. 26. 在Rt ABC △中,90ACB ∠=°,点D 为边AB 上的动点,连接CD ,将ACD 沿直线CD 翻折,得到对应的A CD ′△,CA ′与AB 所在的直线交于点E .(1)如图1,当A D AD ′⊥时,求证:CE CB =; (2)若30A ∠=°,2BC =. ①如图2,当E 与B 重合时,求AD 的长; ②连接A B ′,当A BD ′ 是以BD 为直角边的直角三角形时,求AD 的长.。

上海市金山区2023-2024学年八年级上学期期末联考数学试题(原卷版)

上海市金山区2023-2024学年八年级上学期期末联考数学试题(原卷版)

2023学年第一学期八年级期末诊断评估数学试卷考生注意:1.本场考试时间90分钟.试卷共4页,满分100分,答题纸共两页.2.作答前,在答题纸指定位置填写班级,姓名,准考证号.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位,在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(本大题共6题,每题3分,共18分,每题只有一个正确选项)1.下列二次根式中,是最简二次根式的是()A.; B.; C.; D..2.若关于x 的一元二次方程220x x c ++=无实数根,则c 的取值范围是()A.1c > B.1c ≥ C.1c < D.1c ≤3.下列函数一定是反比例函数的是()A.k y x = B.2x y = C.2y x = D.2y x =4.下列命题的逆命题是假命题的是()A.如果0ab =,那么0a b ==;B.如果0a ≥a =;C.对顶角相等;D.同位角相等,两直线平行.5.如图,在ABC 中,90BAC ∠= ,30C ∠= ,AD BC ⊥,BE 平分ABC ∠交AD 于点E ,EF AC ∥交BC 于点F ,下列结论不成立...的是()A.ABD DAC∠=∠ B.C BAD ∠=∠ C.2AC AD = D.2AD DF =6.如图,函数()0k y k x=≠和2y x =的部分图像与直线()0y a a =>分别交于A 、B 两点,如果ABO 的面积是2.5,则k 的值为()A.3B.3-C.32 D.32-二、填空题(本大题共12题,每题2分,共24分)7.=______.8.函数12024y x =-的定义域是____.9.已知函数()f x =(9)f =____.10.如果关于x 的一元二次方程2230x x k -+=有一个根是1,则k =____.11.在实数范围内因式分解:222x x --=____.12.已知正比例函数()3y k x =-的函数值y 随x 的增大而增大,则k 的取值范围为__.13.已知直角坐标平面内两点()6,4A 和()2,1B ,则线段AB 的长为____.14.平面内,到点A 的距离等于2的点的轨迹是____.15.某工厂七月份产值是100万元,计划九月份的产值要达到144万元,如果每月的产值的增长率相同,则增长率为___________.16.如图,在ABC 中,点F 是高AD 、BE 的交点,且BF AC =,则ABC ∠=____度.17.如图,在ABC ∆中,90ACB ︒∠=,点D 是边AB 的中点,B ACE ∠=∠,4DE =,CE =,则AB 的长为____.18.如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,点E 为AC 的中点,连接DE 、BE 交AD 于点F ,若45BFD ∠=︒,则EF AB=____.三、简答题(本大题共4题,共32分)19.(1)计算:(220.(1)用配方法解方程:22470x x +-=(2)解方程:()()323x x x -=-21.如图,在ABC 中,AB =,6BC =,AC =DE 垂直平分AC ,分别交边BC 、AC 于点D 、E ,连结AD .(1)求C ∠的度数;(2)求AD 的长.22.小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.从山脚出发后小明所走路程s (米)和所用时间t (分钟)之间的函数关系如图所示,请根据图中信息填空.(1)小明中途休息用了分钟;(2)小明休息后爬山的平均速度是米/分钟;(3)小明休息前所走的路程s 与时间t 之间的函数关系式是(无需写出定义域).四、解答题:(本大题共3题,共26分)23.如图,ABC ∠和ACD ∠的平分线交于点E ,过E 作EG BA ⊥交BA 的延长线于点G ,EF AC ⊥交AC 于点F .(1)求证:EG EF =;(2)连接AE ,求证:AEG AEF ∠=∠.24.如图,直线()0y mx m =>的图像与双曲线()0n y n x=>交于A 、B 两点,且点A 的坐标为()2,4,过A 作AC y ⊥轴,垂足为点C .(1)求m 和n 的值;(2)连接BC ,直接写出点B 的坐标,并求出ABC 的面积;(3)如果在双曲线()0n y n x =>上有一点D ,点D 在第一象限且满足14ADC ABC S S ∆∆=,求点D 的坐标.25.如图,在ABC ∆中,90BAC︒∠=,AB AC ==,AH BC ⊥,垂足为H .点D 为边BC 上一点(不与B 、C 重合),连接AD 作=2ADE BAD ∠∠,射线DE 交射线AC 于E .设=BD x ,CDE S y ∆=.(1)求证:AD DE=;(2)当点E在线段AC上时,求y关于x的函数解析式并写出定义域;(3)当12DAH BAH∠=∠时,请直接写出y的值.。

山东省济南市市中区2023-2024学年八年级上学期期末语文试题(含答案)

山东省济南市市中区2023-2024学年八年级上学期期末语文试题(含答案)

济南市八年级期末学业质量检测语文试题202401注意事项:本试题共7页,满分为150分,考试时间为120分钟。

答题前,请考生务必将自己的姓名、座号和准考证号填写在答题卡规定位置,并同时将考点、姓名、准考证号和座号填写在试题规定的位置。

答选择题时,必须使用2B铅笔填涂答题卡上相应题目的答题标号,修改时,要用橡皮擦干净,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答。

直接在试题上作答无效。

考试结束后,将答题卡交回。

一、(16分)阅读下面的文字,完成1~2题。

打开课本,我们看到了英勇的人民解放军横渡长江,锐不可当;目睹了北宋汴京街上行人摩肩接(zhǒng)的繁华景象;体会到我国科研人员面对封锁(dān)精竭虑搞科研的不易;感受到朱德对慈爱且一生劳(lù)的母亲的殷殷情怀;结识汉文帝口中(kè)尽职守的“真将军”——周亚夫:欣赏苏州园林中的“隔而未隔,界而未界”的镂空的花墙廊子;还瞻仰了巍峨、雄伟、庄严的人民英雄纪念碑……可以说,优秀的作品,不仅是知识的结晶,更是人类情感与思想的结晶。

这些优秀作品,激励着我们一代代青年人不断前行。

1.文段中加点字的读音不正确的一项是()(3分)A.当dāngB.睹dǔC.镂lóuD.瞻zhān2.文段拼音处依次应填写的汉字书写不正确的一项是()(3分)A.踵B.殚C.禄D.恪3.下列各句中加点成语使用恰当的一项是()(3分)A.期末临近,为了让学生能取得更好的成绩,老师们处心积虑地为他们辅导。

B.“民族要复兴,乡村必振兴”,济南市与时俱进,因地制宜打造齐鲁样板村。

C.博物馆里陈列的各种精美木雕作品,展现了工匠们入木三分的雕刻技艺。

D.作为新时代青少年,传承和弘扬中华优秀传统文化,是我们责无旁贷的责任。

4.下列句子没有语病的一项是()(3分)A.如今初中生近视日益严重的原因,是由于用眼过度和不注意写字姿式造成的。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、选择题(共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣32.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>13.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠24.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2 5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+16.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.07.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°8.下列计算中,正确的是()A.B.C.D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.510.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是12.计算:=.13.已知a m=2,a n=12,则a n﹣m=.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有个.15.化简=.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.19.先化简,再求值:,其中.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣3【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.据此可得a的值.解:∵点M(3,a)和N(b,4)关于x轴对称,∴a=﹣4.故选:B.2.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>1【分析】根据二次根式中的被开方数是非负数,进而得出答案.解:有意义,则x﹣1≥0,解得:x≥1.故选:C.3.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠2【分析】直接利用分式的值为零的条件分析得出答案.解:∵分式的值为0,∴x+3=0,解得:x=﹣3.故选:A.4.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+1【分析】根据因式分解的意义求解即可.解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、是整式的乘法,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.6.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.0【分析】先算乘法,再合并同类项,根据已知条件得出1+m=0,再求出答案即可.解:(x+m)(x+1)=x2+x+mx+m=x2+(1+m)x+m,∵(x+m)与(x+1)的乘积中不含x的一次项,∴1+m=0,解得:m=﹣1,故选:B.7.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°【分析】由三角形的内角和可求得∠ABC=50°,再由角平分线的定义可得∠CBE=25°,结合AD是高,即可求∠DFB的度数.解:∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣∠BAC﹣∠C=50°,∵角平分线BE交AD于点F,∴∠CBE=25°,∵AD是高,∴∠BDA=90°,∴∠DFB=180°﹣∠BDA﹣∠CBE=65°.故选:B.8.下列计算中,正确的是()A.B.C.D.【分析】根据二次根式的乘法运算法则即可求出答案.解:A、原式=5﹣2+3=8﹣2,故A不符合题意.B、原式=×+×=+,故B不符合题意.C、原式=a﹣+﹣,故C不符合题意.D、原式=3﹣2=1,故D符合题意.故选:D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.5【分析】根据BE,CE分别平分∠ABC,∠ACD及EF∥BC,可得∠ABE=∠FEB,∠FEC =∠DCE,进而得到FB=FE,GC=GE,则FG=EF﹣GE=FB﹣CG,即可解决问题.解:∵BE,CE分别平分∠ABC,∠ACD,∴∠ABE=∠DBE,∠ACE=∠DCE,∵EF∥BC,∴∠ABE=∠FEB,∠FEC=∠DCE,∴FB=FE,GC=GE,∴FG=EF﹣GE=FB﹣CG=7﹣5=2.故选:A.10.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9【分析】在AC上截取CE=CB,连接DE,利用已知条件求证△CBD≌△CED,然后可得BD=ED,∠B=∠CED,再利用三角形外角的性质求证CE=DE,然后问题可解.解:如图,在AC上截取CE=CB,连接DE,∵∠ACB的平分线CD交AB于点D,∴∠BCD=∠ECD.在△CBD与△CED中,.∴△CBD≌△CED(SAS),∴BD=ED,∠B=∠CED,∵∠B=2∠C,∠CED=∠A+∠ADE,∴∠CED=2∠A,∴∠A=∠EDA,∴AE=ED,∴AE=BD,∴BD=AC﹣CE=AC﹣BC=16﹣9=7.故选:B.二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是3<x<7【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有5﹣2<x<2+5,解得:3<x<7,故答案为:3<x<712.计算:=3.【分析】直接利用二次根式的性质化简求出答案.解:=3.故答案为:3.13.已知a m=2,a n=12,则a n﹣m=6.【分析】根据同底数幂的除法的逆运算可得答案.解:∵a m=2,a n=12,∴a n﹣m=a n÷a m=12÷2=6.故答案为:6.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有8个.【分析】分OA是底边和腰两种情况进行讨论即可判断.解:当OA是底边时,B在线段OA的中垂线上,与坐标轴有2个交点,则满足条件的有2个;当OA是腰,O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,共有4个点;当OA是腰,A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,除去原点O以外有2个点.则满足条件的点有:2+4+2=8个.故答案为:8.15.化简=3.【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解:原式=﹣===3.故答案为:3.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为1.【分析】作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,则此时,MP+PN的值最小,根据直角三角形的性质得到BG=2BN=6,求得BN=3,于是得到结论.解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,如图,作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,此时,MP+PN 的值最小,∵点M是BC的中点,∴BM=CM=2,∵点M,点G关于CD对称,∴CM=CG=2,∵∠B=60°,∠BNG=90°,∴∠G=30°,∴BG=2BN=BC+CG=4+2=6,∴BN=3,∴AN=1,故答案为:1.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、二次根式的性质分别化简,进而利用有理数的加减运算法则计算得出答案;(2)直接化简二次根式,进而合并得出答案.解:(1)=1﹣+5=5;(2)=3﹣2+﹣=4﹣3.18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.【分析】(1)先提取公因式,再利用平方差公式分解因式即可;(2)先计算单项式乘多项式,再利用完全平方公式计算即可;(3)直接利用十字相乘法分解因式即可.解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=x2﹣4x+4=(x﹣2)2;(3)原式=(x﹣5)(x+3).19.先化简,再求值:,其中.【分析】先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,再根据分式的减法法则进行计算,最后代入求出答案即可.解:原式=﹣•=﹣=﹣====,当a=时,原式====.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.【分析】由BE=CF,得到BC=EF,根据平行线的性质得到∠B=∠DEC,证得△ABC ≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵AB∥DE,∴∠B=∠DEC,在△ABC与△DEF中,,∴△ABC≌△DEF,∴AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.【分析】(1)先根据完全平方公式求出(a+b)2=a2+b2+2ab=1,再开平方即可;(2)先两边平方得出(a﹣)2=4,再根据完全平方公式展开即可.解:(1)∵a2+b2=5,ab=﹣2,∴(a+b)2=a2+b2+2ab=5+2×(﹣2)=5﹣4=1,∴a+b==±1;(2)∵,∴两边平方得:(a﹣)2=22即a2﹣2a•+=4,∴a2﹣2+=4,∴=4+2=6.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?【分析】设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,由题意:小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,列出分式方程,解方程即可.解:设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,依题意,得:=,解得:x=20.经检验,x=20是原方程的解.答:小佳平均每分钟清点图书20本.23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.【分析】(2)①类比材料中的化简过程可解答;②根据①找规律可得结论;(3)①类比材料中的化简过程可解答;②根据(1)中的化简找规律可解答.解:(2)①===﹣=﹣;②=﹣=﹣;(3)①化简:===﹣;②=1﹣+﹣+﹣+•••+﹣=1﹣=1﹣=.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为30°;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.【分析】(1)根据等边三角形的性质得到∠BAC=60°,AB=AC,根据等腰直角三角形的性质、等腰三角形的性质以及三角形内角和定理计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算,得出结论;(3)在线段EA上截取EF=EB,连接BF,证明△ABF≌△CBE,根据全等三角形的性质解答即可.解:(1)∵△ABC为正三角形,∴∠BAC=60°,AB=AC,∵∠CAD=30°,AC=AD,∴∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=×(180°﹣30°)=75°,∴∠BDC=75°﹣45°=30°,故答案为:30°;(2)∠BDC的度数不变,理由如下:∵AC=AD,∴∠ACD=∠ADC=×(180°﹣∠CAD)=90°﹣∠CAD,∵AB=AD,∴∠ABD=∠ADB=×(180°﹣60°﹣∠CAD)=60°﹣∠CAD,∴∠BDC=∠ADC﹣∠ADB=(90°﹣∠CAD)﹣(60°﹣∠CAD)=30°;(3)在线段EA上截取EF=EB,连接BF,∵EB=ED,∴∠EBD=∠EDB=30°,∴∠BED=120°,∵AB=AD,EB=ED,∴AE垂直平分BD,∴∠BEF=60°,∴△BEF为等边三角形,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴AF=EC,∴EA=AF+EF=BE+EC.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.【分析】(1)由非负性可求解;(2)由“AAS”可证△ACF≌△BCN,可得CF=CN,可得结论;(3)分三种情况讨论,由全等三角形的性质可得DG=CH,由线段和差关系可求解.【解答】(1)解:∵a2﹣6a+9+=0.∴(a﹣3)2+=0,∴a=3,b=1;(2)如图2,过点C作CF⊥AO于F,CN⊥x轴于N,∴四边形CNOF是矩形,∵△ACB是等腰直角三角形,∴AC=BC,∠ACB=90°=∠AOB,∴∠OAC+∠OBC=180°,∵∠OBC+∠CBN=180°,∴∠CBN=∠OAC,又∵∠AFC=∠CNB=90°,AC=BC,∴△ACF≌△BCN(AAS),∴CF=CN,又∵CF⊥AO,CN⊥ON,∴射线OC是∠AOB的平分线;(3)m+n的值不会发生改变,理由如下:如图2,∵△ACF≌△BCN,∴CF=CN,AF=BN,∵OC是∠AOB的平分线,∴∠COF=45°,∴∠CON=∠OCN=45°,∴CN=NO,∴四边形CFON是正方形,∴OF=ON,∵A(0,3),B(1,0),∴AO=3,OB=1,∴AO﹣OF=AF,BN=ON﹣OB,∴3﹣OF=OF﹣1,∴OF=2,∴点C(2,2),当点E在y轴正半轴,点D在x轴负半轴时,如图3,过点C作CG⊥x轴于G,过点E 作EH⊥CG于H,∴四边形OGHE是矩形,∴OG=EH,EO=HG,∵OC是∠AOB的平分线,∴∠COG=45°,∵CG⊥x轴,∴∠COG=∠OCG=45°,∴OG=CG=EH,∵∠DCE=90°,∴∠ECH+∠DCG=90°=∠DCG+∠CDG,∴∠CDG=∠ECH,又∵∠EHC=∠CGD=90°,∴△DGC≌△CHE(AAS),∴DG=CH=2﹣m,∵OE=HC+CG,∴m+n=4,当点E在y轴负半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;当点E在y轴正半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;综上所述:m+n=4.21。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.计算23x x ⋅的结果为()A .6x B .5x C .4x D .3x 2的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.如图,A D ∠=∠,ACB DBC ∠=∠,那么ABC DCB △≌△的依据是()A .SASB .ASAC .AASD .SSS 4.如图,△ABC ≌△ADE ,下列说法错误的...是()A .BC=DEB .AB ⊥DEC .∠CAE=∠BAD D .∠B=∠D5.用直尺和圆规作一个角等于已知角,如图,能得出∠A O B '''=∠AOB 的依据是()A .(SAS )B .(SSS )C .(ASA )D .(AAS )6.在综合实践活动课上,小明用三根木棒首尾顺次相接摆三角形.下列每组数分别是三根木棒的长度(单位:cm ),其中能摆出直角三角形的一组是()A .4,4,7B .32,42,52C .9,12,15D .6,7,87.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:58.如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于()A B .CD9.若实数m ,n 满足30m -=,且m ,n 恰好是Rt ABC 的两条边长,则第三条边长为()A .3或4B .5C .5D10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF AC ∥交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF ,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有()A .4个B .3个C .2个D .1个二、填空题11.已知一个等腰三角形的两边分别为4和10,则它的周长为_____.12.计算:23(66)32ab ab a b --+=______.13.分解因式26m m +=_________.14.如图, ABE ≌ DCE ,AE =2cm ,BE =1.2cm ,∠A =25°,∠B =48°,那么DE =_____cm ,∠C =_________°.15.如图,在Rt △ABC 中,∠ACB=90°,∠B=15°,AB 的垂直平分线与BC 交于点D ,交AB 于点E ,连接AD .则∠CAD 的度数为_________.16.在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 和直线AC 于D 、E 两点,且∠EBC =30°,则∠A 的度数为___________.17.等腰ABC 一腰上的高与另一腰的夹角为50°,则ABC 顶角的度数为________.18.如图,Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,利用尺规在AC ,AB 上分别截取AD ,AE .使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为________.19.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.20.如图所示,在ABC ∆中,90,C DE AB ∠=︒⊥于点,E AC AE =,且55CDA ∠=︒,则B ∠=___度.三、解答题21.化简:(1)223x y x y -++;(2)22224(3)3(4)x y xy xy x y ---+.22.如果a 的算术平方根是4,b ﹣1是8的立方根,求a ﹣b ﹣4的平方根.23.分解因式:(1)22363x xy y -+(2)328x x-24.如图,AB =AD ,BC =DC ,求证:∠ABC =∠ADC .25.已知MAN ∠.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作MAN ∠的平分线AE ;②在AE 上任取一点F ,作AF 的垂直平分线分别与AM 、AN 交于P 、Q ;(2)在(1)的条件下线段AP 与AQ 有什么数量关系,请直接写出结论.26.如图,在△ABC 中,点D 是AB 的中点,点F 是BC 延长线上一点,连接DF ,交AC 于点E ,连接BE ,∠A =∠ABE .(1)求证:ED 平分∠AEB ;(2)若AB =AC ,∠A =40°,求∠F 的度数.27.如图,长方形纸片ABCD ,AD ∥BC ,将长方形纸片折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF .(1)求证:BE =BF .(2)若AB =4,AD =8,求AE 的长.28.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.参考答案1.B2.C3.C4.B5.B6.C7.C8.C9.B10.A11.2412.222244a b a b ab -+-【分析】根据单项式乘以多项式计算即可;【详解】原式222244a b a b ab =-+-;故答案是:222244a b a b ab -+-.13.(6)m m +【分析】直接提取公因式m ,进而分解因式得出答案.【详解】解:26m m+=m (m+6).故答案为:m (m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.248【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE ≌ DCE∴DE=AE=2cm ,∠C=∠B=48°故答案为:2,48【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是关键.15.60°##60度【分析】由垂直平分线的性质可求得BD=DA,且可求得∠ADC=2∠B=30°,在Rt△ACD中可求得∠CAD的度数.【详解】解:∵DE为线段AB的垂直平分线,∴BD=DA,∴∠DAB=∠B=15°,∴∠ADC=2∠B=30°,∵∠ACD=90°,∴∠CAD=90°-∠ADC=90°-30°=60°,故答案为:60°.【点睛】本题主要考查线段垂直平分线的性质及等腰三角形的性质,利用线段垂直平分线上的点到线段两端点的距离相等得到BD=DA是解题的关键.16.40°或160°或80°【分析】结合题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;根据等腰三角形的性质得到∠ABC=∠ACB,根据线段垂直平分线的性质得到EA=EB,得到∠ABE=∠EAB,结合三角形的内角和的性质,列一元一次方程并求解,即可得到答案.【详解】解:根据题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;当E在线段AC上,如图:∵AB=AC,∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A,∴∠ABC=∠ACB=∠ABE+∠EBC=∠A+30°,∴∠A+2(∠A+30°)=180°,解得∠A =40°;当E 在CA 延长线上,如图∵AB =AC ,∴∠ABC =∠ACB ,∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠BAE ,∴∠ABC =∠ACB =∠EBC ﹣∠ABE =∠EBC ﹣∠BAE =30°﹣∠BAE ,∵∠ABC+∠ACB =∠BAE ,∴2(30°﹣∠BAE )=∠BAE ,解得∠BAE =20°,∴∠A =180°﹣20°=160°.当E 在AC 延长线上,如下图:∵AB =AC ,∴∠ABC =∠ACB ,∠ABC+∠ACB+∠A =180°,∴∠ABC =1802A︒-∠∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠A ,∴∠ABE=∠ABC+∠EBC=1802A︒-∠+30°,∴∠A=1802A︒-∠+30°,解得∠A=80°;故答案为:40°或160°或80°.17.40°或140°【分析】由于等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不符合题意,分两种情况讨论:①若∠A<90°;②若∠A>90°;求出顶角∠BAC的度数.【详解】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,AB=AC,∴∠A+∠ABD=90°,∵∠ABD=50°,∴∠A=90°−50°=40°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−50°=40°,∴∠BAC=180°−40°=140°;综上所述,ABC顶角的度数为40°或140°,故答案为:40°或140°.18.83【分析】利用角平分线的性质设出GC=GP=x ,根据等积法得到方程168452x x ⨯⨯=+,得出结果.【详解】解:如图,当GP ⊥AB 时,GP 最小,根据作图知AG 平分∠BAC ,∠C=90°,∴GC=GP ,设GC=GP=x ,在直角△ABC 中,∠C=90°,10==,又∵ABCACG ABG S S S =+△△△,即11168=45222AC x AB x x x ⨯⨯⋅+⋅=+,解得x=83,故答案为83.【点睛】本题考查角平分线的性质,注意掌握利用等积法求三角形的高或点的线的距离的方法.19.k<6且k≠3【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【详解】解:233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解,∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.【点睛】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.20.20【分析】利用HL 得到△ACD ≌△AED ,由此可得到∠CDA=∠ADE ,再通过三角形内角和及角的和与差求出∠CAE ,可得到最终结果.【详解】解:∵DE ⊥AB ,∠C=90°,AC=AE ,AD=AD ,∴△ACD ≌△AED (HL ),∴∠CDA=∠ADE=55°,∠CAD=∠DAE ,∵∠CAD=180°-90°-55°=35°,∴∠CAE=70°,∴∠B=180°-90°-70°=20°.故答案为:20.【点睛】本题考查了全等三角形的判定与性质,属于基础题,熟练掌握全等三角形的判定与性质是解决本题的关键.21.(1)4x(2)2xy -【分析】(1)合并同类项即可.(2)去括号后,合并同类项,即可.(1)解:223x y x y -++=2(31)(11)x y ++-=4x .(2)解:22224(3)3(4)x y xy xy x y ---+=2222124312x y xy xy x y-+-=22(1212)(43)x y xy -+-+=2xy -.【点睛】本题考查了整式的加减、去括号、合并同类项,熟练掌握去括号法则,准确进行合并同类项是解题的关键.22.3±【分析】首先根据算术平方根的性质求出a 的值,然后根据立方根的性质求出b 的值,最后代入a ﹣b ﹣4即可求出平方根.【详解】解:由题意2416a ==,12b -==,3b ∴=,49a b ∴--=4a b ∴--的平方根为3±.【点睛】此题考查了平方根,算术平方根和立方根的性质,解题的关键是熟练掌握平方根,算术平方根和立方根的性质.23.(1)23()x y -;(2)2(2)(2)x x x +-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1)22363x xy y -+()2232x xy y =-+23()x y =-;(2)328x x-()224x x =-2(2)(2)x x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.见解析.【分析】连接AC ,根据SSS 证明△ACD ≌△ACB 即可得到结论.【详解】证明:连接AC在△ACD 与△ACB 中,AD AB AC AC CD CB =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB ,∴ABC ADC ∠=∠.25.(1)①作图见解析;②作图见解析;(2)AP=AQ ,理由见解析【分析】(1)①根据角平分线的作图方法求解即可;②根据线段垂直平分线的作图方法求解即可;(2)只需要证明△ATP ≌△ATQ 即可得到AP=AQ .【详解】解:(1)①如图所示,以A 为圆心,以任意长为半径画弧,分别与AM ,AN 交于点H 、G ,再分别以H 、G 为圆心,以大于HG 长的一半为半径画弧,二者交于点O ,过点O 作射线AE即为所求;②如图所示,分别以A 、F 为圆心,以大于AF 长的一半为半画弧,二者分别交于J 、K ,连接JK 分别交AM 于P ,AN 于Q ,AE 于T ;(2)AP=AQ,理由如下:∵JK是线段AF的垂线平分线,∴∠PTA=∠QTA=90°,∵AE是∠MAN的角平分线,∴∠MAE=∠NAE,又∵AT=AT,∴△ATP≌△ATQ(ASA),∴AP=AQ.【点睛】本题主要考查了角平分线和线段垂直平分线的尺规作图,角平分线的定义,线段垂直平分线的性质,全等三角形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)证明见解析;(2)∠F=20°.【分析】(1)先证EA=EB,再利用等腰三角形的三线合一性质即可得出结论.(2)根据等腰三角形的性质求出∠ABE,再由等腰三角形的性质证明∠BDF=90°,然后由直角三角形的性质即可得出答案.【详解】(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA =EB ,AD =DB ,∴ED ⊥AB ,∴∠FDB =90°,∴∠F =90°﹣∠ABC =20°.【点睛】本题考查的是线段垂直平分线的判定与性质、等腰三角形的判定与性质以及三角形内角和定理等知识,熟练掌握等腰三角形的判定与性质是解题的关键.27.(1)证明见解析;(2)3.【分析】(1)先根据折叠的性质可得BEF DEF ∠=∠,再根据平行线的性质可得BFE DEF ∠=∠,从而可得BEF BFE ∠=∠,然后根据等腰三角形的判定即可得证;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,设BE DE x ==,从而可得8AE x =-,然后在Rt ABE △中,利用勾股定理可求出x 的值,由此即可得出答案.【详解】证明:(1)由折叠的性质得:BEF DEF ∠=∠,AD BC ,BFE DEF ∴∠=∠,BEF BFE ∴∠=∠,BE BF ∴=;(2) 四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,4AB =,90A ∠=︒,222AB AE BE ∴+=,即2224(8)x x +-=,解得5x =,8853AE x ∴=-=-=.【点睛】本题考查了折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握折叠的性质是解题关键.28.(1)证明见解析;(2)16【分析】(1)证明:根据等边三角形的性质得到60ABC ACB ∠=∠=︒,推出∠E=∠BCD ,得到DE=DC ,由此得到结论;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,求出15x =o ,得到690EDC x ∠==︒,推出△DEC 是等腰直角三角形,过点D 作DF EC ⊥于点F ,证得△DFE 、△DFC 都是等腰直角三角形,求出DF=4,即可根据三角形的面积公式求出答案.【详解】(1)证明:ABC ∆ 是等边三角形60ABC ACB ∴∠=∠= ,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠ ,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴- ,60E x ∠=∴- ,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+ ,解得15x =o ,690EDC x ∴∠== ,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥ ,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC∴=8EC = ,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=。

河南省洛阳市嵩县2023-2024学年八年级上学期期末语文试题(含答案)

河南省洛阳市嵩县2023-2024学年八年级上学期期末语文试题(含答案)

2023—2024学年第一学期期末考试八年级语文试卷注意事项:1.本试卷共6页,四大题,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、积累与运用(共28分)1.阅读下面语段,回答问题。

(共4分)豫剧亦称“河南梆子”,是我国影响很大的地方剧种之一。

豫剧唱腔铿锵大气、行腔酣畅、韵味醇美,善于表达人物内心情感,深受各界人士欢迎。

豫剧艺术古今兼纳、刚柔相______、豁达宽厚、有“中和”之美。

它以河南话为语言基础,具有浓重的地方特色。

豫剧唱腔好听、好学、好唱,剧情通俗易懂,亦俗亦雅,与国剧京剧相比也毫不逊色。

有“京剧是城市小姐,豫剧是农村姑娘”之说,非常形象贴切。

豫剧泰斗常香玉以一曲《花木兰》风______艺坛,成为家喻户晓、无人不知的名角。

抗美援朝时,她亲自率领“香玉剧社”义演______款,为志愿军捐献一架战斗机的义举,更是令人敬仰。

(1)依次给语段中加点的字注音,全都正确的一项是()A.qiāng cháo B.jiàng cháo C.qiāng zhāo D.jiāng zhāo(2)在语段横线处依次填入汉字,全部正确的一项是()A.济糜畴B.继糜筹C.济靡筹D.继靡畴2.古诗文默写。

(8分)请根据提示,在下表的空缺处填写恰当的诗句。

修辞之美孟子的《富贵不能淫)中“富贵不能淫,(1)________,(2)________”运用排比句式,阐明了大丈夫应具有的精神品质;李贺的《雁门太守行》中“(3)________,(4)________”运用比喻、夸张的手法,渲染敌军兵临城下形势危急的紧张气氛。

自然之美李白青年壮游,心怀梦想,《渡荆门送别》中“(5)________,(6)________”为我们描绘出一幅气势磅礴的万里长江图;李清照(渔家傲)中的“(7)________,(8)________”则为我们展现了一幅似真似幻、辽阔壮美的海天一色图。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是轴对称图形的是()A .B .C .D .2.已知△ABC 中,∠A =20°,∠B =70°,那么△ABC 是()A .直角三角形B .锐角三角形C .钝角三角形D .正三角形3.已知△ABC ≌△DEF ,∠A =80°,∠E =50°,则∠F 的度数为()A .30°B .50°C .80°D .100°4.已知三角形两边长分别为7、11,那么第三边的长可以是()A .2B .3C .4D .55.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.若分式12x -有意义,则x 的取值范围是()A .x =2B .x >2C .x <2D .x≠27.若24a a k ++表示一个完全平方式,则k 的值为()A .4±B .4C .8±D .88.如图,等腰三角形ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为()A .13B .14C .15D .169.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为()A .6B .7C .8D .910.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 在同一直线上,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN ;④PC 平分∠APB ;⑤∠APD =60°,其中正确结论有()A .①②③④⑤B .①②④⑤C .①②③⑤D .①②⑤二、填空题11.分解因式:2x 2x -=___.12.计算:()23262x y x y -= ______.13.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是__________.14.如图,∠DAE =∠ADE =15°,AD 平分∠BAC ,DF ⊥AB ,若AE =8,则DF =_____.15.数据0.000000102m ,用科学记数法表示这个数为______.16.若一个多边形的每一个内角都是150︒,则它是______边形.17.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是_____.三、解答题18|﹣4|+(﹣1)0﹣(12)﹣1.19.先化简再求值:21111x x x ⎛⎫÷- ⎪-+⎝⎭其中3x =.20.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为点D ,E ,且AB =AC ,BE 交CD 于点O .(1)求证:DB =EC .(2)求证:AO 平分∠BAC .21.如图,在边长为1的正方形网格中有一个 ABC,完成下列各图(用无刻度的直尺画图,保留作图痕迹).(1)作 ABC关于直线MN对称的 A1B1C1;(2)求 ABC的面积;(3)在直线MN上找一点P,使得PA+PB最小.22.如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,请你添加一个条件,使△ABC≌△DEF,并加以证明.23.某文化用品商店用1000元购进了一批圆规,很快销售一空;商店又用1000元购进了第二批该种圆规,但进价比原来上涨了25%,结果第二次所购进圆规的数量比第一次少40件.(1)求两批圆规购进的进价分别是多少;(2)若商店将第一批圆规以每件7元,第二批圆规以每件8元的价格全部售出,则共可盈利多少元?24.如图,ABC 中,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,AD BC ⊥,垂足为D ,且BD DE =,连接AE .(1)求证:AB CE =;(2)若ABC 的周长为14cm ,6cm AC =,则DC 的长为________cm .25.配方法是数学中非常重要的一种思想方法,它是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.定义:若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22512=+,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成22a b +(a ,b 是整数)的形式:;(2)若245x x -+可配成()2x m n -+(m ,n 为常数),则mn 的值为;探究问题:(3)已知222450x y x y +-++=,求x y +的值.26.在△ABC 中,AB =AC ,∠BAC =100°,点D 在BC 边上,△ABD 和△AFD 关于直线AD 对称,∠FAC 的平分线交BC 于点G ,连接FG .(1)求∠DFG 的度数;(2)设∠BAD =θ,①当θ为何值时,△DFG 为等腰三角形;②△DFG 有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.参考答案1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.A 9.D 10.B 11.()x x 2-12.4412x y -13.75︒14.415.71.0210-⨯16.十二17.48518.619.11x -,12【详解】解:原式21111x x x x +-÷=-+()()111xx x x x+=⋅+-11x =-,当3x =时,原式12=.20.(1)见解析;(2)见解析【分析】(1)根据垂直的定义得到∠ADC =∠AEB =90°,根据AAS 判定△ADC ≌△AEB (AAS ),得出AD =AE 可得到结论;(2)根据垂直的定义得到∠BDO =∠CEO =90°,根据AAS 判定△BDO ≌△CEO (AAS ),得出OD =OE ,根据角平分线的判定即可得到结论.【详解】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠ADC =∠AEB =90°,在△ADC 和△AEB 中,DAC EAB ADC AEB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△AEB (AAS ),∴AD =AE ,∴AB ﹣AD =AC ﹣AE ,即DB =EC ;(2)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠BDO =∠CEO =90°,在△BDO 和△CEO 中,BDO CEO DOB EOC BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDO ≌△CEO (AAS ),∴OD =OE ,∵CD ⊥AB ,BE ⊥AC ,∴AO 平分∠BAC .21.(1)作图见解析;(2)52;(3)作图见解析【分析】(1)分别作出三个顶点关于直线MN 的对称点,再首尾顺次连接即可;(2)用长为2、宽为3的矩形面积减去四周三个直角三角形的面积即可得出答案;(3)连接AB 1,与直线MN 的交点即为所求.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =2×3﹣2×12×1×2﹣12×1×3=52;(3)如图所示,点P 即为所求.22.CE =BF (答案不唯一),证明见解析.【分析】根据全等三角形的判定定理进行分析,即可.【详解】添加:CE =BF ,证明:∵AC ∥DF ,∴∠C =∠F ,∵CE =BF ,CE BE BF BE +=+,∴BC =EF ,ACB DFE 在和中AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DFE (SAS ).23.(1)第一批购进圆规的单价为5元/件,第二批进价为6.25元/件;(2)680元【分析】(1)设第一批购进圆规的单价为x 元/件,则第二批购进圆规的单价为(1+25%)x 元/件,根据数量=总价÷单价结合第二次所购进圆规的数量比第一次少40件,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价及第二次所购进圆规的数量比第一次少40件,可分别求出第一批及第二批购进圆规的数量,再利用利润=销售单价×销售数量−进货总价,即可求出结论.【详解】解:(1)设第一批购进圆规的单价为x 元/件,则第二批购进圆规的单价为(1+25%)x 元/件,依题意得:10001000401.25x x-=,解得:x =5,经检验,x =5是原方程的解,且符合题意.则第二批进价为:1.25 6.25x =元/件答:第一批购进圆规的单价为5元/件,第二批进价为6.25元/件;(2)第一批购进圆规的数量为1000÷5=200(件),第二批购进圆规的数量为200−40=160(件),共盈利(200×7−1000)+(160×8−1000)=400+280=680(元).答:一共盈利680元.24.(1)见解析;(2)4【分析】(1)根据线段垂直平分线性质可得AB=AE ,AE=CE ,再利用等式性质即可得解;(2)根据三角形周长求出AB+BC=14-AC=8cm ,然后再证AB+BD=DE+EC=DC ,把AB+BC 转化为AB+BC=AB+BD+DC=2DC=8cm 即可.【详解】(1)证明:∵AD ⊥BC ,BD=DE ,即AD 是BE 的垂直平分线,∴AB=AE ,又∵EF 垂直平分AC ,∴AE=CE ,∴AB=CE ;(2)解:∵6cm AC =,ABC 的周长为14cm ,∴AB+BC+AC=14cm ,∴AB+BC=14-AC=14-6=8cm,∵BD DE,AB=CE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=8cm,∴DC=4cm.故答案为:4.25.(1)29=52+22;(2)2;(3)-1【分析】(1)根据“完美数”的定义判断即可;(2)利用配方法进行转化,然后求得对应系数的值;(3)配方后根据非负数的性质可得x和y的值,进行计算即可;【详解】解:(1)∵29=52+22,∴29是“完美数”,故答案为:29=52+22;(2)∵x2-4x+5=(x2-4x+4)+1=(x-2)2+1,又x2-4x+5=(x-m)2+n,∴m=2,n=1,∴mn=2×1=2,故答案为:2;(3)x2+y2-2x+4y+5=0,x2-2x+1+(y2+4y+4)=0,(x-1)2+(y+2)2=0,∴x-1=0,y+2=0,∴x=1,y=-2,∴x+y=1-2=-1.26.(1)80°;(2)①10°,25°或40°;②5°或45°.【详解】试题分析:(1)由轴对称可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在证明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;(2)①当GD=GF时,就可以得出∠GDF═80°,根据∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出结论;当DF=GF时,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,当DF=DG时,∠GDF=20°,就有40°+20°+40°+2θ=180°,从而求出结论;②由已知条件可以得出∠DFG=80°,当∠GDF=90°时,就有40°+90°+40°+2θ=180°就可以求出结论,当∠DGF=90°时,就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出结论.试题解析:(1)∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.∵△ABD和△AFD关于直线AD对称,∴△ADB≌△ADF,∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,∴AF=AC.∵AG平分∠FAC,∴∠FAG=∠CAG.在△AGF和△AGC中,AF=AC,∠FAG=∠CAG,AG=AG,∴△AGF≌△AGC(SAS),∴∠AFG=∠C.∵∠DFG=∠AFD+∠AFG,∴∠DFG=∠B+∠C=40°+40°=80°.答:∠DFG的度数为80°;(2)①当GD=GF时,∴∠GDF=∠GFD=80°.∵∠ADG=40°+θ,∴40°+80°+40°+θ+θ=180°,∴θ=10°.当DF=GF时,∴∠FDG=∠FGD.∵∠DFG=80°,∴∠FDG=∠FGD=50°.∴40°+50°+40°+2θ=180°,∴θ=25°.当DF=DG时,∴∠DFG=∠DGF=80°,∴∠GDF=20°,∴40°+20°+40°+2θ=180°,∴θ=40°.∴当θ=10°,25°或40°时,△DFG为等腰三角形;②当∠GDF=90°时,∵∠DFG=80°,∴40°+90°+40°+2θ=180°,∴θ=5°.当∠DGF=90°时,∵∠DFG=80°,∴∠GDF=10°,∴40°+10°+40°+2θ=180°,∴θ=45°∴当θ=5°或45°时,△DFG为直角三角形.。

精品解析:山东省青岛市城阳区2023-2024学年八年级上学期期末数学试题(原卷版)

精品解析:山东省青岛市城阳区2023-2024学年八年级上学期期末数学试题(原卷版)

山东省青岛市城阳区2023-2024学年八年级上学期期末数学试题(考试时间:120分钟;满分:120分)友情提示:亲爱的同学们,欢迎你参加本次考试,祝你答题成功!说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共26题.第Ⅰ卷为选择题,共10小题,30分;第Ⅱ卷为填空题、解答题,共16小题,90分.2.所有题目均在答题卡上作答,在试题上作答无效.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各数是无理数的是( )A.B.C.D.2. 下列语句是命题的是( )A. 你喜欢数学吗?B. 小明是男生C. 城阳世纪公园D. 加强体育锻炼3. 下列计算正确的是( )A.B.C. D. 4. 等腰三角形的腰长为,底边上的中线长为,它的面积是( )A. B. C. D. 5. 已知轴,,则点的坐标是( )A. B. C. D. 或6. 如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形是三角板),其依据是( )A. 同旁内角互补,两直线平行B. 两直线平行,同旁内角互补C. 同位角相等,两直线平行D. 两直线平行,同位角相等7. 一个正方体的体积是100,估计它的棱长的大小在( )A. 3与4之间B. 4与5之间C. 5与6之间D. 6与7之间37π2=4=5=3-=5cm 4cm 224cm 220cm 215cm 212cm AB x ∥(2,4),5A AB --=B (3,4)-(2,1)-(7,4)--(3,4)-(7,4)--ABC8. 为提高学生的运算能力水平,某校开展以计算为主题的活动:“计”高一筹,“算”出风采.某班10名学生参赛成绩如图所示,则下列结论错误的是A. 众数是90分B. 中位数是90分C. 平均数是91分D. 方差是159. 如图,四边形是长方形地面,长,宽,中间竖有一堵砖墙高,一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走( )A. B.C. D. 10. 已知点在第二象限,一次函数与正比例函数在同一平面直角坐标系中的图象可能是( )A. B.C. D.第II 卷(共90分)二.填空题(本大题共6小题,每小题3分,共18分)11. 若三角形三个内角度数的比为2:3:4,则其最大的内角是_____度.12. “最是书香能致远,腹有诗书气自华”,2023年4月23日是第28个世界读书日,某校举行了“读书遇见美好”演讲大赛,小玉的演讲内容、语言、表达、效果四项得分分别是86分、88分、90分、94分,若将四项得分依次按4:4:1:1的比例确定最终成绩,则小玉的最终比赛成绩为______分.ABCD 10m AB =5m AD =1m MN =A C13m12m()m n ,y mx n =+y mnx =13. 蜂房的顶部由三个全等的四边形围成,每个四边形的形状如图所示,,其中,则______.14. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是_________(填“甲”或“乙”).15. 请写出一个二元一次方程组,使该方程组无解______.16. 如图是一台雷达探测器测得的结果,若记图中目标的位置为,目标的位置为,现有一个目标的位置为,且与目标的距离为5,则的值为______.AB CD ∥10928A '∠=︒B ∠=21mol m s μ⋅⋅﹣﹣A ()290︒,B ()330︒,C ()4m︒,B m三.解答题(本大题共10小题,共72分)17 计算:(1)(2;(3)如果规定“⊙”为一种新的运算:,例如:,仿照例子计算,当时,的值.18. 解方程(1)(2)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:,从左到右列出的算筹数分别表示方程中未知数的系数与相应的常数项,即可表示方程,以此方式,表示的方程是______;请将这两个方程联立成方程组,并求出这个方程组的解.19. 某校开展课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七、八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为,记为,记为,记为;……以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息.七年级抽取的学生课外阅读时长:.22b a b a a b =⨯-+ 22343434=⨯-+ 12616=-+19=11a b =+=-,a b 524x y x y +=⎧⎨-=⎩①②,x y 423x y +=67x x ≤<,678x ≤<;789x ≤<;8七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数/小时8.38.3众数/小时9中位数/小时88小时及以上所占百分比75%八年级抽取学生课外阅读时长条形统计图根据以上信息,解答下列问题:(1)填空:______,______,______.(2)该校七年级有400名学生,八年级有600名学生,估计这两个年级在主题周活动期间课外阅读时长在10小时及以上的学生总人数.20. 在平面直角坐标系中描出下列各点,并将这些点依次用线段连接.的67777888888899999101011,,,,,,,,,,,,,,,,,,,,a b c=a b =c =(1)点关于轴对称的点的坐标为______;(2)在轴上有点,则的最小值为______;(3)试说明是直角三角形.21. 一套衣服的上衣和裤子共100元.因市场需求变化,商家决定分开销售.裤子降价,上衣提价,调价后,这套衣服的售价比原来提高了8元.问调价后上衣和裤子的售价各是多少元?22. 如图,直线过点,过点作直线,交轴于点,垂足为.(1)求直线的表达式;(2)求的值;(3)请你直接写出直线的表达式和四边形的面积.(不需要写解答过程)23. 某商店购进一批红茶和绿茶,红茶的进价为70元/盒,绿茶的进价为90元/盒;一盒红茶的售价比一盒绿茶的售价低20元,小青购买了一盒红茶与4盒绿茶共花费580元.(1)求红茶和绿茶每盒售价分别多少元?(2)春节活动期间红茶8折销售,小恩用840元购买红茶,绿茶共8盒,求商店卖给小青还是卖给小恩是()()()0,2,2,0,5,3A B C C y 1C y D CD BD +ABC 10%20%l 1,,(0,1),(1,0)2A a B C ⎛⎫-⎪⎝⎭A AD AC ⊥x D A l a AD ADOB的获利较多?多多少元?(利润售价成本)24. 甲、乙两人分别从两地去同一城市,他们离地的路程(千米)随时间(时)变化的图象如图所示,根据图象解答下列问题:(1)两地的路程为______千米;(2)乙离地的路程(千米)关于时间(时)的函数表达式是______;(3)求甲、乙两人在途中相遇时离地多少千米?(4)求两人何时相距10千米?25. 定义:在数轴上的三点中,如果其中一个点与另外两个点的距离之比为(为正整数),那么这个点叫做其他两个点的“伴点”.例如:如图①,数轴上点分别表示,那么点是点,的“3伴点”,点是点,的“4伴点”(1)如图②,数轴上点分别表示,那么点是点,的“______伴点”;点______是点的“1伴点”;(只能填写图②中的字母)(2)如图②,若点是点的“2伴点”,则点在数轴上对应的数是______;(3)如图①,若点以每秒1个单位的速度向右运动,同时点以每秒2个单位的速度向左运动,设运动时间为秒.三点中,若其中一个点是其他两个点的“1伴点”,则的值为______.26. 【发现问题】如图①,小明同学在做光的折射实验时发现:平行于主光轴的光线和经过=-A B ,C A y x A B ,A y x A n n n ,,A B C 2,1,2--B A C A B C ,,,D E F G 3,2,0,3--D E G ,D G P ,D G P A C t ,,A B C t MN AB CD凹透镜的折射后,折射光线的反向延长线交于主光轴上一点.【提出问题】小明提出:和三个角之间存在着怎样的数量关系?分析问题】已知平行,可以利用平行线性质,把分成两部分进行研究.【解决问题】探究一:请你帮小明解决这个问题,并说明理由.探究二:如图②,的数量关系为______;如图③,已知,,则______°.(不需要写解答过程)【拓广提升】利用探究一得到的结论解决下列问题:如图④,射线分别平分和交直线于点与内部的一条射线交字点,若,求的度数.【的BE DF ,MN P BPD ABP ∠∠,CDP ∠BPD ∠P AMP CNP ∠∠∠,,2560ABC C AE CD ︒︒∠=∠= ,,BAE ∠=ME NF ,BMP ∠CNP ME ∠,CD E NF ,AMP ∠MF F 2P F ∠=∠FME ∠。

湖北省武汉市江汉区2023-2024学年八年级上学期期末数学试题(含解析)

湖北省武汉市江汉区2023-2024学年八年级上学期期末数学试题(含解析)

.....若一个三角形,两边长分别是5和,则第三边长可能是(.4.567A .B .7.下列计算正确的是( )A D ∠=∠BE =A .B 10.绿化队原来用漫灌方式浇绿地,则现在比原来每天节约用水吨数是(三、解答题(共5小题,共52明、证明过程、计算步骤或作出图形.2CD DE =(1)求证:;(2)若,19.(1)化简:(2)解方程:20.如图,在下列正方形网格中,(1)在图(1)中画图:①画边上的中线(2)在图(2)中画图:①画边上的高21.“数形结合”是数学上一种重要的数学思想,在整式乘法中,我们常用图形而积来解释一些公式.如图(1),通过观察大长方形而积,可得:(1)如图(2),通过观察大正方形的面积,可以得到一个乘法公式,直接写出此公式;AE FC =25C ∠=︒110EAB ∠=︒522m m ⎛+- -⎝11422x x x-=---AB CD AB CE28.已知,实数m ,n ,t 满足.(1)求m ,n ,t 的值;(2)如图,在平面直角坐标系中,A ,B 都是y 轴正半轴上的点,221216100|2|0m n m n t +--++-=①如图(1),若点A 与B 重合,,求B 点的坐标;②如图(2),若点A 与B 不重合,,,直接写出的面积.参考答案与解析1.D 【分析】本题考查了轴对称图形的识别,根据轴对称图形的定义进行判断作答即可.【详解】解:由题意知,是轴对称图形,故选:D .2.D【分析】本题考查了三角形三边关系,设三角形的第三边长为,根据三角形三边关系可得,由此即可得出答案,熟练掌握三角形的任意两边之和大于第三边,两边之差小于第三边,即可得出答案.【详解】解:设三角形的第三边长为,由三角形三边关系可得:,即,第三边长可能是,故选:D .3.A【分析】本题考查了科学记数法,根据科学记数法的定义解答,科学记数法的表示形式为的形式,其中为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟悉科学记数法概念是解题的关键.【详解】解:,故选:A .4.CCD m =AD n =BC t =CBD △x 616x <<x 115115x -<<+616x <<∴710n a ⨯110,a n ≤<∣∣1>1<0.000085810-=⨯在中,, ABC AB AC =AD BC ∴⊥B C ∠=∠故答案为:﹣2.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.【分析】本题考查了点关于轴对称,根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,熟记关于轴对称的点的坐标是解题的关键.【详解】解:∵点关于轴对称,∴该对称点的坐标是,故答案为:.13.【分析】根据多边形的内角和公式以及外角和,列方程求解,即可得到答案.【详解】解:由题意得:,解得:,故答案为:.【点睛】本题考查了多边形的内角和公式以及外角和特征,掌握多边形外角和等于360°,正确列方程是解题关键.14.或6【分析】运用完全平方式的结构特征进行求解,完全平方公式.【详解】解:,,故答案为:或6.【点睛】此题考查了完全平方式概念的应用能力,关键是能准确理解并运用以上知识.15.5【分析】本题主要考查整式乘法运算,代入求值,掌握整式乘法运算的法则是解题的关键.运用整式乘法运算将展开,把代入即可.【详解】解:,∵,()23-,x x x ()23P ,x ()3-2,()3-2,10()21803604n -︒=︒⨯⋅10n =106-()2222a b a ab b ±=±+()22293x mx x mx ++=++± 6m ∴=±6-(3)(2)a a +-21a a +=()22(3)(2)66a a a a a a +-=--=-+21a a +=∴原式,故答案为:5.16.##110度【分析】本题考查线段垂直平分线的性质,连接,根据中垂线的性质,得到,进而得到,再根据,进行求解即可.掌握中垂线上的点到线段两端点的距离相等,是解题的关键.【详解】解:连接,∵边,的垂直平分线交于点D ,∴,∴,∵,,∴,即:,∴;故答案为:.17.(1);(2)【分析】(1)本题考查整式的运算,根据积的乘方,幂的乘方,单项式乘单项式,单项式除以单项式的法则,进行计算即可;(2)本题考查因式分解.先提公因式,再利用平方差公式法,进行因式分解即可.掌握因式分解的方法,是解题的关键.【详解】解:(1)原式;(2).18.(1)见解析615=-=110︒AD ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒AD AB AC ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒140BDC ∠=︒()2220BAD CAD ∠+∠=︒2220BAC ∠=︒=110BAC ∠︒110︒2xy ()()11a b b +-53421892x y x y xy =÷=()()()22111ab a a b a b b -=-=+-去括号得:,移项得:,合并同类项得:,系数化为1得:,当时,,原分式方程无解.20.(1)①见解析②见解析(2)①见解析②见解析【分析】本题主要考查复杂作图:(1)①找出格点T ,使四边形是矩形,连接,交于点D ,则为边上的中线;②找出格点K ,L ,连接,交于点P ,则点P 即为所求,使;(2)①取格点G ,H ,连接交于点E ,则为边上的高;②取格点D ,F ,连接,交于点Q ,则【详解】(1)解:①如图所求,线段为边上的中线;②点P 即为所求,使;(2)如图,为边上的高;②如图,1148x x =-+-+4811x x -=--36x =2x =2x =20x -=∴ATBC CT AB CD AB ,,,,AK DL CK DK BL APD BPC ∠=∠CG AB CE AB DF AB AQ CE=CD AB APD BPC ∠=∠CE AB AQ CE=关于m 的方程无解,故答案为:或1.【点睛】本题主要考查分式方程的解,理解分式方程无解产生的原因是解题的关键.24. 【分析】本题考查了幂的乘方,积的乘方等知识,①直接根据新定义即可求解设,②,,根据新运算定义用表示得方程即可求解,理解并运用新运算的定义是解题的关键.【详解】解:①依题意可得,∴,∴,设,,②依题意可知:,,∴,∴∴,故答案为:,.25.①②③④【分析】本题考查的是全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,多边形的内角和定理的应用,作出合适的辅助线是解本题的关键;如图,设,证明,可得①符合题意;连接,求解,证明,可得②符合题意;过作交于,截取,而,证明,可得③符合题意;作,连接,证明,可得,,再证明,可得④符合题意;从而可得答案.【详解】解:如图,设,2-4200510m =520n =,m n ()()5,105,20+216c =4c =()2,164=510m =520n =()5,10m =()5,20n =()()5,105,20m n +=+()5,x m n=+5m nx +=55m n=⨯1020=⨯200=4200ACE x ∠=CAE ABD ≌△△GB 30DGB ∠=︒22DCG x ACE ∠==∠G GI AE ∥CE I FH FA =60DFC ∠=︒CAH GIF ≌BJ GH =GJ BHG GJB ≌BH GJ =GHB BJG ∠=∠120260BGJ x D x D ∠=︒--∠=︒-=∠ACE x ∠=∴,∵,∴,∴,∴连接,∵,∴,,120CAE ABD ∠=︒=∠AE BD =CAE ABD ≌△△EAF BAD ACE x ∠=∠=∠=AEC ∠DFC AEF EAF D BAD ∠=∠+∠=∠+∠GB CA CG CB ==CAG CGA ∠=∠CGB CBG ∠=∠∵是角平分线.∴,又∵∴AD DM DN =12·ACD S AC DN = ABD S △1:(2ABD ACD S S AB DM =⋅△△::S S DB DC =∵在中,,∴,∴是角平分线,即:又∵,,∴,∴,ABC CA CB =ACB ∠36CAB CBA ∠=∠=︒AD BAC ∠AE AC =AD AD =(SAS)AED ACD ≌DE CD =108AED ACB ∠=∠=∵,∴,又∵,∴,∴,∴是定直线,∴当Q 在点时, ACB PCQ α∠=∠=ACP BCQ ∠=∠AC BC =CP CQ =(SAS)BQC APC ≌CBQ CAP ∠=∠BQ D Q Q C DQ Q C DQ '''''+=+≤Q 'CQ +∵,∴,∵180BCD DAO ∠+∠=︒∠BCO OAD ∠=∠9090OBC BCO ∠=︒-∠=︒。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图案中,属于轴对称图形的有()A .5个B .3个C .2个D .4个2.以下列各组线段为边,能组成三角形的是()A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm3.在1x ,n m π+,25ab ,30.7xy y +﹣,5b c a -+,23x π中,分式有()A .2个B .3个C .4个D .5个4.下列因式分解正确的是()A .a 2+1=a (a+1)B .2(1)(1)1x x x +-=-C .a 2+a ﹣5=(a ﹣2)(a+3)+1D .22()xy y y xy x x =++5.如果把分式2x yxy+中的x 和y 都扩大2倍,那么分式的值()A .不变B .扩大2倍C .扩大4倍D .缩小2倍6.如图,△ABC 中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,AE =3cm ,△ADC 的周长为9cm ,则△ABC 的周长是()A .10cmB .12cmC .15cmD .17cm7.如果249x mx -+是完全平方式,则m 的值为()A .6B .±6C .12D .±128.能使分式2121--+x x x 的值为零的所有x 的值是()A .x =1B .x =﹣1C .x =1或x =﹣1D .x =2或x =19.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林x 公顷,根据题意列方程正确的是A .24024054x x +=+B .24024054x x -=+C .24024054x x +=-D .24024054x x -=-10.如图,∠ABC 和∠ACB 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,下列结论正确的是()①BD =CE ②△BDF ,△CEF 都是等腰三角形③BD+CE =DE ④△ADE 的周长为AB+AC .A .①②B .③④C .①②③D .②③④二、填空题11.分解因式:228a -=______.12.已知等腰三角形有一个角是50°,则它的另外两个角是_____.13.若关于x 的分式方程322x mx x -=--无解,则m =__________.14.若31x -与4x互为相反数,则x 的值为________________.15.若(x+2y)(2x ﹣ky ﹣1)的结果中不含xy 项,则k 的值为_____.16.已知a+b=﹣3,ab=1,求a2+b2=_____.17.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________.18.如图,△ABC 中,AB =6,AC =7,BD 、CD 分别平分∠ABC 、∠ACB ,过点D 作直线平行于BC ,交AB 、AC 于E 、F ,则△AEF 的周长为_______.19.如图,∠AOB =60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为______.三、解答题20.计算:(1)(-1)2016+(π-3.14)0-(12)-2(2)(2a ﹣3b )(﹣3b ﹣2a )21.解分式方程:(1)11222x x x-=---(2)23124x x x -=--22.先化简(1﹣11x -)÷22441x x x -+-,然后从﹣1,0,1这三个数中选取一个合适的数作为x 的值代入求值.23.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,-1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标,并画出△A 1B 1C 1.24.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.25.列方程解应用题:某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?26.如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.27.将一副三角板按如图所示的方式摆放,AD是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.参考答案1.D 2.B 3.B 4.D 5.D 6.C 7.D 8.B 9.B 10.D11.()()222a a +-【分析】先提取公因式,然后再根据平方差公式进行因式分解即可.【详解】解:228a -=()224a -,=()()222a a +-.故答案为:()()222a a +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.12.65°,65°或80°,50°【分析】从当等腰三角形的顶角是50°时,当等腰三角形的底角是50°时两种情况进行分析,然后利用三角形内角和定理即可得出答案.【详解】解:当等腰三角形的顶角是50°时,其底角为:180°﹣50°×2=65°.当等腰三角形的底角是50°时,其顶角为:180°﹣50°×2=80°,故答案为:65°,65°或80°,50°.【点睛】本题考查等腰三角形的性质以及三角形的内角和定理应用,掌握三角形内角和定理以及等腰三角形的性质是解题关键.13.2【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m 的值.【详解】去分母,得x-3(x-2)=m,整理,得-2x+6=m,当x=2时,原方程有增根,分式方程无解,此时-2×2+6=m,解得m=2,故答案为2.【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.14.4【分析】根据31x-与4x互为相反数可以得到31x-+4x=0,再根据分式存在有意义的条件可以得到1-x≠0,x≠0,计算解答即可.【详解】∵31x-与4x互为相反数∴31x-+4x=0又∵1-x≠0,x≠0∴原式去分母得3x+4(1-x)=0解得x=4故答案为4【点睛】本题考查的是相反数的意义、分式存在有意义的条件和解分式方程,根据相反数的意义得到31x-+4x=0是解题的关键.15.4【分析】根据多项式乘以多项式法则展开,合并同类项,即可得出﹣k+4=0,求出即可.【详解】解:(x+2y)(2x﹣ky﹣1)=2x2﹣kxy﹣x+4xy﹣2ky2﹣2y=2x2+(﹣k+4)xy﹣2ky2﹣2y﹣x,∵(x+2y)(2x﹣ky﹣1)的结果中不含xy项,∴﹣k+4=0,解得:k=4,故答案为4.【点睛】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.16.7【详解】解:∵a+b=-3,ab=1,∴a 2+b 2=(a+b )2-2ab =(-3)2-2×1=7.故答案为:7.17.2m >且3m ≠【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为:m >2且m≠3.18.13【分析】根据平行线的性质得到EDB DBC ∠=∠,FDC DCB ∠=∠,根据角平分线的性质得到EBD DBC ∠=∠,FCD DCB ∠=∠,等量代换得到EDB EBD ∠=∠,FDC FCD ∠=∠,于是得到ED EB =,FD FC =,即可得到结果.【详解】解://EF BC ,EDB DBC ∴∠=∠,FDC DCB ∠=∠,ABC ∆ 中,ABC ∠和ACB ∠的平分线相交于点D ,EBD DBC ∴∠=∠,FCD DCB ∠=∠,EDB EBD ∴∠=∠,FDC FCD ∠=∠,ED EB ∴=,FD FC =,6AB = ,7AC =,AEF ∴∆的周长为:AE EF AF AE ED FD AF ++=+++AE EB FC AF=+++6713AB AC =+=+=.故答案为:13.【点睛】本题考查了等腰三角形的判定与性质,角平分线定义,平行线性质,注意证得BED∆与CDF 是等腰三角形是解此题的关键.19.75°或30°或120°【分析】分三种情况:当OC=OE 时,当OC=CE 时,当OE=CE 时,分别求解即可.【详解】解:∵OC 平分∠AOB ,∴∠AOC=12∠AOB=12×60°=30°,分三种情况:①当OC=OE 时,如图,∵OC=OE ,∴∠OEC=∠OCE ,∴∠OEC=12(180°-∠COE )=12(180°-30°)=75°;②当OC=CE 时,如图,∵OC=CE ,∴∠OEC=∠COE=30°;③当OE=CE 时,如图,∵OE=CE ,∴∠OCE=∠COE=30°,∴∠OEC=180°-∠OCE-∠OEC=180°-30°-30°=120°,综上,∠OEC 的度数为75°或30°或120°,故答案为:75°或30°或120°.20.(1)-2(2)﹣4a 2+9b 2【分析】(1)先计算乘方,零指数幂以及负整数指数幂,再进行有理数的加减计算即可;(2)利用平方差公式进行计算即可.(1)解:原式=1+1-4=-2(2)解:原式=﹣6ab ﹣4a 2+9b 2+6ab=﹣4a 2+9b 2【点睛】本题主要考查整式的计算,涉及的知识点有乘方的运算,零指数幂的求解,负整数指数幂,正确地计算能力是解决问题的关键.21.(1)无解(2)12x =-【分析】(1)先把分式方程化为整式方程求解,然后检验即可;(2)先把分式方程化为整式方程求解,然后检验即可.(1)解:11222x x x-=---方程两边同时乘以()2x -得:()1122x x -=---,去括号得:1124x x -=--+,移项得:2141x x -+=-+-,合并得:2x =,经检验2x =时分母为0,∴原方程无解(2)解:23124x x x -=--方程两边同时乘以()()22x x -+得:()()2243x x x +--=,去括号得:22243x x x +-+=,移项得:234x =-,合并得:21x =-,系数化为1得:12x =-,经检验12x =-是原方程的解,∴原方程的解为12x =-.【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键,注意分式方程要检验.22.12x x +-;当x=0时,原式=﹣12【分析】首先对括号内的式子通分相减,同时把除法转化为乘法,分子分母能因式分解的进行因式分解,约分后即可化简,再根据分式有意义的条件确定x 的值,最后代入计算即可.【详解】解:原式=()()()2221111121144122x x x x x x x x x x x x +-----+⋅=⋅=--+---;若分式有意义,则﹣1,0,1这三个数中x 只能取0,当x =0时,原式=011022+=--.【点睛】本题考查了分式的化简求值,正确对分式的分子和分母进行因式分解是关键.23.(1)画图见解析;(2)S △ABC=5;(3)A 1(0,-4),B 1(2,-4)C 1(3,1);画图见解析【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可.(2)以AB 为底,则点C 到AB 得距离即是底边AB 的高,结合坐标系可得出高为点C 的纵坐标的绝对值加上点B 的纵坐标的绝对值,从而根据三角形的面积公式计算即可.(3)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出A1、B1、C1的坐标;在坐标系中描出这三个点,依次连接这三个点即可得到所画的图形.【详解】(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|-1|+|4|=5,∴△ABC的面积=12AB×5=5.(3)∵A(0,4),B(2,4),C(3,-1),△A1B1C1与△ABC关于x轴对称,∴A1(0,-4)、B1(2,-4)、C1.(3,1).所画△A1B1C1如图所示:【点睛】本题考查了坐标与图形,画已知图形的轴对称图形,求图形的面积等知识,掌握坐标与图形的有关知识是关键.24.(1)证明见解析;(2)3.【分析】(1)利用ASA,可证△ABD≌△CFD;(2)由△ABD≌△CFD,得BD=DF,所以BD=BC﹣CD=2,所以AF=AD﹣DF=5﹣2.【详解】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD,在△ABD和CFD中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.【点睛】本题考查了全等三角形的判定与性质,解题的关键点证明两个三角形全等.25.(1)20元(2)第一批购进100只,第二批购进300只(3)3400元【分析】(1)设第一批书包的单价为x 元,然后可得到第二批书包的单价,最后依据第二所购书包的数量是第一批购进数量的3倍列方程求解即可;(2)依据书包的数量=总价÷单价求解即可;(3)先求得全部卖出后的总售价,然后用总售价-总进价可求得获得的利润.(1)解:设第一批书包的单价为x 元.根据题意得:6600200032x x=⨯+,解得:x=20.经检验:x=20是分式方程的解.答:第一批每只书包的进价是20元.(2)第一批进货的数量=2000÷20=100个;第二批的进货的数量=3×100=300个.(3)30×(100+300)-2000-6600=3400元.【点睛】本题主要考查的是分式方程的应用,根据第二所购书包的数量是第一批购进数量的3倍列出关于x 的方程是解题的关键.26.(1)∠DFE=90°;(2)见解析【分析】(1)先求得∠BAD=30°,∠BAE=∠EAD=15°,即可求得∠EAC=75°,由AC=CE,可求得∠EAC=∠AEC=75°,即可求得∠DFE=90°;(2)在Rt△AFC中,求得∠FCA=30°,AC=2AF=AB,过点E作EG⊥AB于点G,求得AG=AF,得到BG=AG,即可得到△ABF为等腰三角形,即可证明AE=BE.【详解】解:(1)∵△ACD是等边三角形,∴∠CAD=60°,∵∠BAC=90°,∴∠BAD=90°-60°=30°,∵∠BAE=15°,∴∠BAE=∠EAD=15°,∴∠EAC=90°-15°=75°,∵AC=CE,∴∠EAC=∠AEC=75°,∴∠DFE=∠EAD+∠AEC=15°+75°=90°;(2)由(1)得∠DFE=90°,即∠AFC=∠AFE=90°,∵△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,∴∠CAD=60°,AB=AC,∴∠FCA=30°,∴AC=2AF,即AB=2AF,过点E作EG⊥AB于点G,∵∠BAE=∠EAD=15°,且∠EFA=90°,EG⊥AB,∴EG=EF,又AE=AE,∴Rt△EAG≌Rt△EAF(HL),∴AG=AF,∴AB=2AG,∴BG=AG,又EG⊥AB,∴△ABF为等腰三角形,∴AE=BE.27.(1)△DEF 是等腰直角三角形,理由见解析;(2)2【分析】(1)可得∠CAD =∠B =45°,根据同角的余角相等求出∠CDF =∠ADE ,然后利用“角边角”证明△ADE 和△CDF 全等,则结论得证;(2)根据全等三角形的面积相等可得S △ADE =S △CDF ,从而求出S 四边形AEDF =S △ABD =218BC ,可求出答案.【详解】(1)解:△DEF 是等腰直角三角形.证明如下:∵AD ⊥BC ,∠BAD =45°,∴∠EAD =∠C ,∵∠MDN 是直角,∴∠ADF+∠ADE =90°,∵∠CDF+∠ADF =∠ADC =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,DAE CDF AD CD ADE CDF ∠∠⎧⎪=⎨⎪∠∠⎩==,∴△ADE ≌△CDF (ASA ),∴DE =DF ,又∵∠MDN =90°,∴∠EDF =90°,∴△DEF 是等腰直角三角形;(2)∵△ADE ≌△CDF ,∴S △ADE =S △CDF ,∵△ABC 是等腰直角三角形,AD ⊥BC∴AD=BD=12BC ,∴S 四边形AEDF =S △ABD =2221111()2228AD BC BC =⨯==2148⨯=2.。

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.下列运算中,结果正确的是()A .824a a a÷=B .()222a b a b +=+C .()2242a ba b =D .()()2122a a a -+=-2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .3.若分式12x +有意义,则x 的取值范围是()A .2x ≥-B .2x >-C .0x ≠D .2x ≠-4.将数字0.0000023用科学记数法表示为()A .52.310-⨯B .62.310-⨯C .50.2310-⨯D .62.310-⨯5.在平面直角坐标系中.点(1,2)P -关于x 轴对称的点的坐标是()A .(1,2)B .(1,2)-C .(1,2)-D .(1,2)--6.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是()A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF7.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A .13B .17C .22D .17或228.如图,在ABC 中,AD 、AE 分别是边BC 上的中线与高,4AE =,CD 的长为5,则ABC 的面积为()A .8B .10C .20D .409.如图,在ABC 中,40B ∠=︒,60C ∠=°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为()A .30°B .20°C .10°D .15°10.如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有()个A .1B .2C .3D .4二、填空题11.因式分解:2363x x -+=______.12.一个n 边形的内角和为1080°,则n=________.13.方程213x x=+的解为______________.14.已知25,23mn ==,则+2m n =__________.15.如图,点F ,A ,D ,C 在同一条直线上,ABC DEF △≌△,3AD =,CF 10=,则AC 等于_____.16.如图,Rt ABC ∆中,90C ∠=︒,30A ∠=︒,D ,E 分别为AC ,AB 边上的点,将ADE 沿DE 翻折,点A 恰好与点B 重合,若3CD =,则AD =______.17.如图,ABC 中,OD 、OE 分别是AB 、BC 边上的垂直平分线,OD 、OE 交于点O ,连接OA 、OC ,已知40B ∠=︒,则OAC ∠=______.三、解答题18.化简:()()()2212x x x +---19.ABC 在如图所示的平面直角坐标系中,A 点坐标为()3,4.(1)画出ABC 关于y 轴对称的111A B C △;(2)求ABC 的面积.20.如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.21.先化简:532224m m m m -⎛⎫++÷⎪--⎝⎭,然后,m 在1,2,3中选择一个合适的数代入求值.22.如图,在ABC 中,AD BC ⊥,E 是AD 上一点,且DE DC =,连接BE 并延长交AC 于点F ,BE AC =.(1)求证:BED ACD ≌;(2)猜想BF 与AC 的位置关系,并证明.23.某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?24.如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.25.如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.参考答案1.C 2.D 3.D 4.B 5.A 6.C 7.C 8.C 9.B10.C11.23(1)x -12.813.3x =14.1515.6.516.617.50°18.72x +19.【详解】(1)分别作A 、B 、C 三点关于y 轴的对称点A 1、B 1、C 1,△A 1B 1C 1即为所求;(2)S △ABC=3×3111312123222-⨯⨯-⨯⨯-⨯⨯=72.20.85°【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD 是BC 边上的高,∴∠ADB =∠ADC =90.在△ACD 中,∠ACB =180°﹣∠ADC ﹣∠CAD =180°﹣90°﹣20°=70°.∵CE 平分∠ACB ,∴∠ECB =12∠ACB =35°.∵∠AEC 是△BEC 的外角,50B ∠=︒,∴∠AEC =∠B+∠ECB =50°+35°=85°.答:∠AEC 的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB 的度数是解题的关键.21.26--m ,-8【分析】先按照分式的混合计算法则进行化简,然后根据分式有意义的条件求出m 的值,最后代值计算即可.【详解】解:532224m m m m ⎛⎫ ⎪⎝-÷⎭++--()24532222m mm m m ⎛⎫--=-÷ ⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵分式要有意义且除数不为0,∴3020m m -≠⎧⎨-≠⎩,∴32m m ≠⎧⎨≠⎩,∴当1m =时,原式2168=-⨯-=-.22.(1)见解析;(2)BF ⊥AC ,理由见解析【分析】(1)利用HL 证明Rt △BED ≌Rt △ACD 即可;(2)根据全等三角形的性质可得∠EBD=∠CAD ,再由∠BED+∠EBD=90°,∠AEF=∠BED ,得到∠EBD+∠AEF=90°,则∠CAD+∠AEF=90°,∠AFE=90°,由此即可证明BF ⊥AC .【详解】:(1)∵AD ⊥BC ,∴∠ADC=∠BDE=90°,在RtBED 和Rt △ACD 中,DE DCBE AC=⎧⎨=⎩,∴Rt △BED ≌Rt △ACD (HL );(2)BF ⊥AC ,理由如下:∵Rt △BED ≌Rt △ACD ,∴∠EBD=∠CAD ,∵∠BED+∠EBD=90°,∠AEF=∠BED ,∴∠EBD+∠AEF=90°,∴∠CAD+∠AEF=90°,∴∠AFE=90°,∴BF ⊥AC .23.(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元.【分析】(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米,然后根据用26天完成了全部加固任务,列方程求解即可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可.【详解】解:(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米.根据题意得:80024008002654a a -+=,解这个方程得:80a =经检验可知,80a=是原分式方程的根,并符合题意;答:原来每天加固河堤80米;(2)558010044a=⨯=(米)∴承包商支付给工人的工资为:8002400800800800(125%)24000 80100-⨯+⨯+=(元).答:整个工程完成后承包方需要支付工资24000元.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.24.(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.【详解】解:(1)如图所示,延长DE交AB延长线于F,∵∠B=∠C=90°,∴AB∥CD,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF 是等腰三角形,AD=AF ,E 是DF 的中点,∴AE ⊥DE ;(3)∵△CDE ≌△BFE ,∴CD=BF ,∴AD=AF=AB+BF=AB+CD .25.(1)20°;(2)CBF α∠=;(3)AF=CF+BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE=∠AFC ,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF=GF=CF+CG=CF+BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,∴()1180=802ABE AEB BAE ==︒-︒∠∠∠,∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC 是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,EAD CAD α∠=∠=,AC=AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒-,AB=AE ,11∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠,∴CBF ABE ABC α∠=∠-∠=;(3)AF=CF+BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF=AG ,∠FAG=60°,∠ACG=∠ABF ,BF=CG在△AEF 和△ACF 中,=AE ACEAF CAF AF AF=⎧⎪∠∠⎨⎪=⎩,∴△AEF ≌△ACF (SAS ),∴∠AFE=∠AFC ,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F 、C 、G 三点共线,∴△AFG 是等边三角形,∴AF=GF=CF+CG=CF+BF.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。

山东省烟台市海阳市2023-2024学年八年级上学期期末数学试题(含答案)

山东省烟台市海阳市2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末检测初三数学试题注意事项:1.本试卷共8页,共120分;考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,务必用0.5毫米黑色的签字笔将自己的姓名、准考证号、座位号填写在试卷和答题卡规定的位置上.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.写在试卷上或答题卡指定区域外的答案无效.6.考试过程中允许考生进行剪、拼、折叠等实验.一、选择题(本大题共10个小题,每小题3分,满分30分).下列每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的.1.下列数学符号是中心对称图形的是()A .B .C .D .2.分式的值为0,则的值为( )A .1B .C .0D .0或3.如图,在□中,平分,交于点,,交的延长线于点.若,则的度数为()A .80°B .70°C .60°D .50°4.某部门组织申报科研项目时,某7个区域提交的申报表数量的前5名的数据统计图如图所示,则这7个区域提交该项目的申报表数量的中位数是()21x x x ++x 1-1-ABCD DF ADC ∠AB F BE DF ∥AD E 40A ∠=︒ABE ∠A .8B .7C .6D .55.数学课上,小明画出,他想利用尺规作图找一点,使得四边形为平行四边形,他的作图过程如下:(1)如图①,作的垂直平分线交于点;(2)如图②,连接,在的延长线上截取;(3)如图③,连接,,则四边形为所求.则小明直接判定四边形为平行四边形的条件是()A .两组对边分别平行B .两组对边分别相等C .对角线互相平分D .一组对边平行且相等6.如图,将绕点逆时针旋转,得到,若点恰好在的延长线上,则等于()A .B.C .D .7.小亮绘制了一个如图所示的大长方形,上面绘有五个小长方形,若这五个小长方形的周长之和为50,则大长方形的周长为()ABD △C ABCD BD BD O AO AO OC OA =DC BC ABCD ABCD ABC △B αEBD △A ED CAD ∠α23α12α180α︒-A .25B .50C .75D .1008.甲、乙两地相距240千米,高铁开通运营后,在两地间行驶的平均车速提高了160%,时间比原来缩短了70分钟.设原来的平均车速为千米/小时,根据题意可列方程为( )A.B .C .D .9.如图,是的中位线,是的中点,的延长线交于点,若的面积为2,则的面积为()A .4B .6C .8D .910.已知直角坐标系内有四个点,,,,若以,,,为顶点的四边形是平行四边形,则符合条件的,的值可以是( )A .,B .,C .,D .,二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知多项式可分解为,则的值为______.12.正八边形的一个外角的度数为______.13.若,且,则的值为______.14.一组数据的唯一众数为3,平均数为2,则这组数据的方差为______.x ()24024071160%6x x -=+()24024071160%6x x -=+()240240701160%x x -=+()240240701160%x x -=+DE ABC △F DE CF AB G DGF △CEF △()0,0O ()3,1A ()1,1B -(),C m n O A B C m n 4m =1n =2m =-1n =-4m =1n =-2m =2n =2x x a -+()()21x x -+a 121a b +=a b ≠-33ab aa b-+1,3,2,2,,,a b c15.如图,点的坐标为,点在轴上,将沿轴向右平移至,若四边形的面积为9,则点的坐标为______.16.如图,在□中,,是的中点,是上一点,连接,,,且.给出下列结论:①平分;②;③为等边三角形;④.其中正确的结论为______.(填序号).三、解答题(本大题共8个小题,满分72分)17.(本题满分6分)小颖家买了新楼,她想在边长相同的①正三角形、②正方形、③正五边形、④正六边形四种瓷砖中,选择一些瓷砖进行地面的镶嵌(彼此之间不留空隙、不重叠).(1)她想选用两种瓷砖,若已选用正三角形瓷砖,则可以再选择的是______瓷砖(填写序号);(2)她发现仅用正五边形瓷砖不能镶嵌地面,若将三块相同的正五边形瓷砖按如图所示放置,求的度数.18.(本题满分7分)先化简,再求值:,其中能使关于的二次三项式是完全平方式.19.(本题满分8分)A ()1,3B x OAB △x ECD △ABDC C ABCD 2AD AB =F ADE AB CE CF EF CF EF =CF BCD ∠2EFC CFD ∠=∠CDF △CE AB ⊥1∠2222421121a a a a a a a ---÷+--+a x 2144x ax ++在直角坐标系中,已知的三个顶点坐标分别是,,.(1)将向下平移5个单位长度后得到,请在图中画出,;(2)将绕原点逆时针旋转90°后得到,请在图中画出;(3)请直接写出的形状.20.(本题满分9分)2023年9月5日17时34分,海阳市海域成功实施近岸海上发射,至此,海阳成功完成了六次海上火箭发射保障任务,肩负起了我国唯一一个海上发射技术服务港的使命.某校为了解学生对航天科技的关注程度,在本校随机抽取若干名学生组织了一次航天知识测试(满分100分,成绩均为整数),并规定:85分及以上为优秀,73分~84分为良好,60分~72分为合格,59分及以下为不ABC △()1,1A ()4,1B ()3,3C ABC △111A B C △ABC △111A B C △ABC △O 222A B C △222A B C △1OA B △合格.得分情况如图所示:根据以上信息,解答下列问题:(1)在扇形统计图中,“不合格”等级所在扇形的圆心角度数为______;(2)若不合格学生的总分恰好等于其他等级的某一个学生的分数,则这个学生的分数属于______等级(填“合格”、“良好”或“优秀”),本次共抽取______名学生;(3)请计算抽取学生的测试成绩的平均分.21.(本题满分9分)海阳大秧歌是山东省三大秧歌之一,于2006年被列入首批国家级非物质文化遗产名录.为传承优秀传统文化,海阳大秧歌走进了校园,为校园生活增添了一抹靓丽色彩.某校为组建校园秧歌队购进,两款秧歌服,每套款服装比每套款服装多10元,用1440元购进的款服装数量是用1000元购进的款服装数量的1.2倍.款服装和款服装每套各多少元?22.(本题满分10分)如图,四边形是平行四边形,的角平分线交于点,交的延长线于点.(1)求证:;(2)若恰好平分,连接,,求证:四边形是平行四边形.A B A B A B A B ABCD BAD ∠AE CD F BC E BE CD =BF ABE ∠AC DE ACED23.(本题满分11分)如图①为某街道的部分示意图,将其简化成如图②所示模型,其中,,,点,,在一条直线上,且为的中点.(1)求证:;(2)从村步行至村,小明选择的路线是,小亮选择的路线是.请比较两条路线的长度并说明理由;(3)请直接写出线段,,之间的数量关系.24.(本题满分12分)如图,在中,,,射线,垂足为点.为上一动点,连接,将绕点逆时针旋转90°交于点.(1)如图①,当点在点右侧时,请判断线段与的数量关系并说明理由;(2)如图②,当点在点左侧时,请判断线段与的数量关系并说明理由.2023-2024学年度第一学期期末检测初三数学试题参考答案及评分意见一、本题满分30分,每题3分EC BC ⊥AB DE ∥BD AE ∥A D F F EC EC AF ⊥B F B A E F ⇒⇒⇒B D C F ⇒⇒⇒AD DF BC ABC △CA CB =90C ∠=︒BD AB ⊥B P CB PA PA P BD E P B PA PE P B PA PE题号12345678910答案BCBCCDBABD二、本题满分18分,每小题3分11. 12.45° 13. 14. 15. 16.①②④三、本大题共8个小题,满分72分17.(本题满分6分)(1)②或④.(2)正五边形的每个内角度数为.所以,.18.(本题满分7分)解:原式.由是完全平方式,得.∵分式中分母不为0,∴.∴.当时,原式.19.(本题满分8分)解:(1)如图,,为所作.(2)如图,为所作.(3)等腰直角三角形.2-1387()4,3()180521085︒⨯︒-=1360108336∠=︒-︒⨯=︒()()()()222121112a a aa a a a --=-⋅++--()21211a a a a -=-++21a =+2144x ax ++2a =±2a -2a ≠2a =-2a =-2221==--+ABC △111A B C △222A B C △20.(本题满分9分)解:(1)18°.(2)良好;40.(3)由图知,不合格学生数占比为5%.抽取学生的测试成绩的平均分为,即72.1分.21.(本题满分9分)解:(1)设款服装每套为元,则款服装每套为元,根据题意,得.解这个方程,得.经检验,是所列方程的根,且符合题意..所以,款服装每套60元,款服装每套50元.22.(本题满分10分)证明:(1)∵四边形是平行四边形,∴,.∴.∵平方,∴.∴.∴.405%6550%8025%8820%⨯+⨯+⨯+⨯B x A ()10x +144010001.210x x=⨯+50x =50x =()501060+=元A B ABCD AD BC ∥AB CD =DAE BEA ∠=∠AE BAD ∠BAE DAE ∠=∠BAE BEA ∠=∠AB BE =∴.(2)由(1)知,,即为等腰三角形.∵半分,∴.由(1)知,,∴,.∴.∴.∴四边形是平行四边形.23.(本题满分11分)(1)证明:如图,连接与交于点.∵,,∴四边形为平行四边形.∴.∵为中点,∴为的中位线.∴,又点,,,共线,即.∵,即,∴,即.(2)解:两条路线长度相等.理由如下:由(1)知,,,∴为的垂直平分线.∴.由(1)知,四边形为平行四边形,∴,.由题意,得小明的路线长,小亮的路线长,∴,即两条路线长度相等.(3).24.(本题满分12分)BE CD =AB BE =ABE △BF ABE ∠AF EF =AD BC ∥DAF CEF ∠=∠ADF ECF ∠=∠ADF ECF △≌△DF CF =ACED BE AD G AB DE ∥BD AE ∥ABDE EG BG =F EC GF EBC △GF BC ∥A G D F AF BC ∥EC BC ⊥90BCE ∠=︒90AFE BCE ∠=∠=︒EC AF ⊥EC AF ⊥EF CF =AF EC DE DC =ABDE AB DE CD ==AE BD =AB AE EF =++BD CD CF =++AB AE EF BD CD CF ++=++()12DF BC AD =-解:(1).理由如下:如图①,过点作于点,交于点.∵,,∴.∵,∴.∴,.由题意得,,∴.由题意,得,即.而,∴.∴.∴.(2).理由如下:如图②,过点作于点,交于点.由(1)知,,又,∴,.∵,∴.∴,.由题意,得,即,而.∴.∴.∴.PA PE =P PF BC ⊥P AB F CA CB =90C ∠=︒45CAB CBA ∠=∠=︒PF BC ⊥45BFP ∠=︒135AFP ∠=︒PB PF =90ABE ∠=︒9045135EBP AFP ︒︒=︒∠=+=∠90APE ∠=︒90EPF APF ︒∠+∠=90EPF EPB ∠+∠=︒APF EPB ∠=∠AFP EBP △≌△PA PE =PA PE =P PF BC ⊥P BE F 45CBA ∠=︒90ABE ∠=︒135ABP ∠=︒45FBP ∠=︒PF BC ⊥45BFP ∠=︒135EFP ABP ∠=︒=∠PB PF =90APE ∠=︒90EPF APF ∠+∠=︒90APB APF ︒∠+∠=APB EPF ∠=∠ABP EFP △∽△PA PE =。

云南省昆明市2023-2024学年八年级上学期期末数学试题(含答案)

云南省昆明市2023-2024学年八年级上学期期末数学试题(含答案)

2023—2024学年上学期期末检测初中八年级 数学试卷(满分100分,考试时间120分钟)注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.下列冰雪运动项目的图标中,是轴对称图形的是()A .B .C .D .2.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为0.000052m .将数据0.000052用科学记数法表示为( )A .B .C .D .3.李老师在课堂上组织学生用小棍摆三角形,小棍的长度有和四种规格,小华同学已经取了和两根木棍,那么第三根木棍不可能取( )A .B .C .D .4.若分式有意义,则满足的条件是( )A .B .C .D .5.多边形的内角和是它的外角和的4倍,这个多边形是( )A .八边形B .九边形C .十边形D .十一边形6.下列计算正确的是( )A .B .C .D .7.为了量量学校的景观池的长,在的延长线上取一点,便得米,在点正上方找一点(即),测得,则景观池的长为()55.210-⨯65.210-⨯60.5210-⨯65210-⨯10cm,15cm,20cm 25cm 10cm 15cm 10cm 15cm20cm25cm23x -x 3x ≠3x ≥0x ≠3x ≤3252a a a+=()23639aa =326a a a ⋅=284a a a÷=AB BA C 5AC =C D DC BC ⊥60,30CDB ADC ∠=︒∠=︒ABA .5米B .6米C .8米D .10米8.分式方程的解是( )A .B .C .D .无解9.如图,平分分别是射线射线射线上的点,与点都不重合,连接,那么添加下列一个条件后,仍无法判定的是()A .B .C .D .10.如图,四个等腰直角三角形拼成一个正方形,则阴影部分的面积为()A .B .C .D .11.八年级学生去距学校的博物馆参观,一部分学生骑自行车先走,过了后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为,则可列方程为( )A .B .C .D .12.在中,.用尺规在边上找一点,使的是()A .B .2110525x x =--5x =5x =±5x =-OB ,AOC D E F ∠、、OA 、OB 、OC D E F 、、O ED EF 、DOE FOE △≌△OD OF =DE FE =OED OEF ∠=∠ODE OFE∠=∠2ab 4ab 22a b+22a b-10km 20min km /h x 1010202x x-=1010202x x -=1010123x x -=1010123x x -=ABC △AB AC <BC D AD DC BC +=C .D .二、填空题(本大题共4小题,每小题2分,共8分)13.因式分解:______.14.计算:______.15.如图,平分,点在上,且,垂足为,若,则点到的距离为______.(15题图)16.如图,在中,,点是边的中点,连结,若点分别是和上的动点,则的最小值是______.三、解答题(本大题共8小题,第17、18题每题6分,第19、20、21、23题每题7分,第22,24题每题8分,共56分)17.(6分)计算:.18.(6分)如图,和相交于点.求证:.29x -=104(3)π--+-=OC AOB ∠P OC PD OB ⊥D 3cm PD =P OA d cm ABC △5,6AB AC BC ===D BC ,4AD AD =,P Q AD AC PC PQ +()()()233()2x y x y x y y ⎡⎤+---÷-⎣⎦AC BD ,,O OA OC DC AB =∥DC AB =19.(7分)如图,的三个頂点坐标分别为.(1)作于轴对称的图形,并写出点的坐标;(2)在边上找一点,使得将分成两个面积相等的三角形,直接写出点的坐标.20.(7分)先化简,然后从的范围内选取一个合适的整数作为的值代入求值.21.(7分)如图,在中,,点在上,且,求的度数.22.(8分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元,则大本作业本最多能购买多少本?23.(7分)阅读下面的解题过程:已知,求的值.ABC △()()()2,3,1,1,5,3A B C ABC △y A B C '''△,,A B C '''BC P AP ABC △P 2214411a a a a a -+⎛⎫-÷ ⎪--⎝⎭03a ≤≤a ABC △AB AC =D AC BD BC AD ==C ∠2113x x =+241x x +解:由知,所以,即.因此,所以的值为.该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的问题:已知,求的值.24.(8分)是等边三角形,点是边上动点,,把沿对折,得到.图1 图2① 图2②(1)如图1,若,则______.(2)如图2,点在延长线上,且.①试探究之间是否存在一定数量关系,猜想并说明理由.②若,求的长.2023—2024学年上学期期末检测初中八年级 数学试卷参考答案一、选择题(本题共36分,每小题3分)题号123456789101112答案BADACBDDBACC二、填空题(本题共8分,每小题2分)题号13141516答案13三、解答题(本大题共8小题,第17、18题每题6分,第19、20、21、22题每题7分,第23、2113x x =+0x ≠213x x+=13x x +=2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭241x x +172114x x x =-+24231x x x ++ABC △D AC ()030CBD αα∠=︒<<︒ABD △BD A BD '△15α=︒CBA ∠'=P BD DAP DBC α∠=∠=,,AP BP CP 10,2BP CP ==CA '()()33x x +-24524题每题8分,共56分)17.(6分)解:18.(6分)证明:,在与中,,,19.(7分)解:(1)画(2)20.(7分)解:()()()233()2x y x y x y y ⎡⎤+---÷-⎣⎦()()2222922x y x xy y y ⎡⎤=---+÷-⎣⎦()()2222922x y x xy y y =--+-÷-()()21022y xy y =-+÷-5x y=-+DC AB ∥D B∴∠=∠COD △AOB △D BDOC BOA OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS COD AOB ∴△≌△DC AB∴=A B C '''△()()()2,3,1,1,5,3A B C '''---()3,2P 2214411a a a a a -+⎛⎫-÷⎪--⎝⎭()211(2)111a a a a a a --⎛⎫=-÷ ⎪---⎝⎭()2121(2)a a a a a --=⋅--2a a =-,且为整数,要使分式有意义,只能取3当时,原式21.(7分)解:设,是的外角,,在中,,22.(8分)解:(1)设小本作业本每本元,则大本作业本每本元依题意,得:解得:,经检验,是原方程的解,且符合题意.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买本,则小本作业本购买本,侬题意,得:解得:为正整数,的最大值为8答:大本作业本最多能购买8本.23.(7分)解:由知03a ≤≤ a ∴a 3a =∴33232a a ===--A x∠=AD BD = ABD A x∴∠=∠=BDC ∠ ABD △2BDC ABD A x∴∠=∠+∠=BD BC = 2C BDC x ∴∠=∠=AAB AC = 2ABC C x∴∠=∠=ABC △180A ABDC C ∠+∠+∠=22180x x x ∴++=36x =2223672C x x ∴∠===⨯=︒x ()0.3x +850,3x x=+0.5x =0.5x =0.30.50.30.8x ∴+=+=m 2m 0.80.5215m m +⨯≤253m ≤m m ∴2114x x x =-+0x ≠,即,24.(10分)解:(1)30°理由:是等边三角形把沿对折,得到(2)①理由如下:连接,在上取一点,使,如图是等边三角形是等边三角形即②如图214x x x-+∴=114x x -+=15x x ∴+=24222223111315126x x x x x x x ++⎛⎫∴=++=++=+= ⎪⎝⎭24213126x x x ∴=++ABC △60ABC ∴∠=︒60ABD ABC CBD α∴∠=∠-∠=︒-∴ABD △BD A BD '△60ABD A BD α∴∠=∠=︒-'15α=︒6060230A BC A BD CBD ααα∴∠=∠-∠=︒--=︒'-='︒BP AP CP =+CP BP P 'BP AP '=ABC △60,ACB BC AC ∴∠=︒=DAP DBC α∠=∠= BP C APC'∴△≌△,CP CP BCP ACP∴=∠=∠''60PCP ACP ACP BCP ACP ACB ''''∴∠=∠+∠=∠+∠=∠=︒PP C ' △60,CPB P P PC ∴∠=︒='BP BP PP AP CP∴=+=+''BP AP CP =+由①可得,由(1)可趐把沿对折,得到,,三点共线把沿对折,得到,,由①可得,,60BPC ∠=︒180120BCP BPC PBC α∴∠=︒-∠-∠=︒-602CBA α∠=︒-' ABD △BD A BD '△BA BA ∴='BA BC ∴=BC BA ∴='()()111801806026022BCA CBA αα∴∠=︒-∠=︒-︒-='︒+'12060180BCP BCA αα∴∠+∠=︒-+︒+='︒,,A C P ∴' ABD △BD A BD'△,BA BA ADB A DB ∴=∠='∠'ADP A DP ∴∠='∠DP DP = ADP A DP ∴'△≌△AP AP ∴='BP AP CP =+10,2BP CP == 1028AP BP CP ∴=-=-=8A P AP ∴=='826CA A P CP ∴=-=-'='。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期期末考试
本文对八年级上学期期末考试进行了详细的分析,其中包括试卷构成、成功和失误、今后措施等。

一、试卷的构成、得失分情况。

《2014-2015学年度第一学期八年级语文期末考试试卷》全卷共120分,共分三个部分:第一部分,基础知识,20分;第二部分,阅读理解,50分;第三部分,作文50分。

第一部分看拼音写汉字4分,共11人被扣14分,其中失两人失2分。

默写课文6分,有13人扣20分,其中4人扣2分。

标点符号的使用3分,3人共失9分(选择题),语文实践活动(《钢铁是怎样炼成的》系列读书活动建议书)8分,共9人失分,最多一位同学失3分,两人失2分,6人失1分。

看拼音写汉字,默写课文,都是检测同学们课本上识记知识的掌握情况,语文实践活动既检测了同学们的名著阅读情况、又检查了同学们的语文实践活动能力。

这些都是在新课改的要求下学生应掌握的最基本的知识和能力。

这些题目虽然得分率不算低,但也不让人十分满意,反映了平时教学和期末复习中在在的一些问题——主要渖重点学生还抓得不够。

第二部分课内现代文阅读9分,12人未得满分,2人各失3分,3人各失2分。

课内文言文阅读7分,1人失3分,3人各失2分,13人各失1分。

课外现代文阅读27分,4人失各3分,11人各失2分,31人各失1分。

课外文言文7分,3人各失2分,14人各失1分。

课内阅读明显少于课外阅读,可见本次考试更注重考生运用课内学到的阅读知识去解决课外问题的能力,当然,也是检查同学们课外阅读的开展情况的。

除文言文外,多数题目是主观题,可见考察学生的课外知识和阅读能力已成为阅读考试的重点。

学生在得分上明显是课内阅读得分率课外阅读得分率低。

需要指出的是:说明文说明方法也有一些同学出错,这是课堂教学没有强调所造成的。

第三部分,作文40分,平均得分为34.74分,写字3分,2人被扣2分。

14人被扣1分。

作文为命题作文,虽然未明确规定文体,但要求“记叙中结合抒情和议论”,显然,是暗示学生写成记叙文。

这对学生是否能认真审题(阅读写作要求)是一种考验,沈卉、严嘉俊在审题上都有失误。

二、成功和失误。

写汉字、默写课文、课内文言文阅读等题目是同学们得分率最高的题目,很多同学得了全分,可见,平时的扎扎实实、一步一个脚印地背诵、默写、过关、检测起了很好的效果,这是成功的经验。

课外文言文阅读是失误率比较高的题目。

尽管平时我对学生文言文学习的要求十分要,过关十分的严格,然而,毕竟我们所学文言文只有课本上的四篇,一学期只学习了四篇文言文,而且有的文言文还非常的短小,即使同学们掌握得再好,其得到的知识和培养的能力也是十分有限的。

虽然我们也竭力向同学们推荐并鼓励他们多读多背课外文言文,然而,时间紧,材料缺乏,严重限制了课外文言文的学习,同学们的知识能力增长缓慢。

这个失败,当成为我们以后教学的教训。

语文综合实践题和作文也是我们的软肋,是同学们失分很多的题目。

语文实践题的失分,我有不可推卸的责任,这说明我平时没有研究新课改的考试题型,以致学生缺乏指导,在答题上不少人出现了失误,最多的同学8分就扣掉了6分,可谓惨痛的教训。

至于作文,我认为在教学上无愧于两个班的学生,但在得分上我显得很无奈,有的学生基础虽然不很好,这次作文却写得不错,得到35分以上,而个别平时作文水平比较高的同学,却没有发挥出好的水平,因此影响了总分,像3班的沈卉、、4班的严嘉俊都是这种情况。

三、改进的措施。

1.调整教学思路,变读背抄写型课堂教学模式为练习型课堂教学模式。

因为我知道,要提高学生的语文素养,让学生具有可持续发展的后劲,必须强化读背抄写,而要迅速提高学生的做题能力,培养学生的应试素质,最好的办法就是做题、做题、再做题。

现实情况非常严峻,我必须立即调整思路,把学生的应试能力放在第一位。

2.强加语文综合实践知识的教学,培养学生的语文综合实践能力。

3.加强课外文言文的阅读训练,把课外文言文的阅读训练渗透到日常教学之中,让学生的课外文言文的阅读能力能够一点点地提高。

4.继续强化课外辅导,特别是优等生的作文和书法的辅导,不能在以后的考试中再次留下严思雨和汤晓梅的遗憾。

5.课上注重对学生进行学习方法的指导,特别要培养学生创造性解决问题的能力和进行研究性学习的能力。

6.作文指导课立足于学生作文的实际,从学生的作文中发现问题,并研究解决问题的方案,不追求数量,力求在有限的课堂指导中使学生受到最大的收益。

7.自读课本、课外必读书目等的阅读作业及检查也长期坚持进行,以保证课内学习的效果在课外得到巩固、运用和提高。

8.不把复习作为独立的环节单独进行,把“学而时习之”的规律运用到语文教学中来,在平时的教学中做到及时复习、及时巩固。

平时的检测也力求做到对学生语文素养的全面考查与了解,在命题上力求具有前瞻性。

检测过后及时做好试卷分析工作,及时调整教学计划,保证教学目标的顺利实现。

相关文档
最新文档