11勾股定理的逆定理(基础)知识讲解
上数学勾股定理知识点
上数学勾股定理知识点(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:①有一个角为90°的三角形是直角三角形。
②有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:①确定最大边(不妨设为c);②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:①直角三角形斜边上的中线等于斜边的一半②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:①已知直角三角形的两边求第三边;②已知直角三角形的一边,求另两边的关系;③用于证明线段平方关系的问题;④利用勾股定理,作出长为n的线段。
二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
勾股定理的逆定理知识点
要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
勾股定理及其逆定理的内容
勾股定理及其逆定理的内容勾股定理和逆定理都是数学中非常经典的内容,不过听起来可能会有点儿陌生。
其实,它们非常实用,而且还很有趣。
让我们一起来聊聊吧。
1. 勾股定理的基本概念1.1 什么是勾股定理首先,咱们得知道勾股定理到底是什么。
它是关于直角三角形的一个定理。
简单来说,直角三角形的两条直角边(我们叫它们“勾”和“股”)的平方和等于斜边(我们叫它“弦”)的平方。
这就是勾股定理的核心内容。
听起来有点复杂,但举个例子就明白了。
假设你有一个直角三角形,直角边长分别是3和4,那么这两个边的平方和就是3²+4²=9+16=25。
斜边的平方也得等于25,所以斜边的长度就是5。
1.2 生活中的应用这个定理在我们的生活中非常有用。
比如说,如果你要测量房间的对角线长,只需要知道长和宽就能算出来。
又或者你在设计一些东西时,勾股定理能帮你确保每个角都是直角。
它就像是生活中的一个小工具,随时随地帮你解决问题。
2. 勾股定理的证明2.1 几何证明说到证明,勾股定理有几种不同的方法,其中几何证明是最直观的。
简单来说,就是我们可以用几何图形来证明这个定理。
想象一下,你在一个直角三角形的每一边上画出一个正方形,这些正方形的面积就像是拼图一样,可以用来证明勾股定理。
看起来可能会有点复杂,但其实就是一种图形化的方法,让定理更容易理解。
2.2 代数证明除了几何证明,还有一种代数证明的方法。
我们可以用代数公式来证明勾股定理的正确性。
这种方法比较适合那些喜欢公式和计算的人。
它用的是代数的语言,通过一些方程式来展示定理的正确性。
3. 勾股定理的逆定理3.1 什么是逆定理勾股定理的逆定理其实也很有趣。
它告诉我们,如果一个三角形的三边满足勾股定理的条件,那么这个三角形就是直角三角形。
也就是说,如果你知道一个三角形的三条边分别是a、b和c,并且它们满足a²+b²=c²的关系,那么这个三角形肯定是直角三角形。
勾股定理(知识点)
A B C ac 弦勾勾股定理(知识点)【知识要点】1.勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角8,15,17等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4;(1⇒∠A+(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:⇒BC=2∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。
∠ACB=90°1AB=BD=AD可表示如下: CD=2D为AB的中点6.数轴上表示无理数1.2.、∠B、A.a2+b2=c2B.a2=2b2C.c2=2a2D.b2=2a23.矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为60cm2.4.如图,在△ABC中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D,则△ABC斜边上的高AD=12.5.已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高....为(C)A.12cmB.60cm C.12013cm D.1013cm136.一个直角三角形的三边为三个连续偶数,则它的三边长分别为6,8,10.7.(易错题)已知直角三角形的两边x,y的长满足│x-4│+3 y=0,则第三边的长为5或.8.10.11.别用.12.,分别以13.形A,49cm第4题第11题第12题第13题14.在Rt△ABC,∠C=90°(1)已知c=17,b=8,求a。
北师大初中数学中考总复习:勾股定理及其逆定理--知识讲解(基础)-精品
中考总复习:勾股定理及其逆定理(基础)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系. 【知识网络】【考点梳理】 考点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法. 用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变; ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: ①已知直角三角形的任意两边长,求第三边,在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-;②知道直角三角形一边,可得另外两边之间的数量关系; ③可运用勾股定理解决一些实际问题. 考点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等; ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数).考点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及其逆定理的综合应用1.(2014春•河西区期末)在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且,试判断△AEF 是否是直角三角形?试说明理由.【思路点拨】首先设正方形的边长为4a ,则CF=a ,DF=3a ,CE=BE=2a .根据勾股定理可求出AF ,AE 和EF 的长度.如果它们三个的长度满足勾股定理,△AEF 为直角三角形,否则不是直角三角形. 【答案与解析】解:设正方形的边长为4a , ∵E 是BC 的中点,,∴CF=a,DF=3a ,CE=BE=2a .由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2=5a2,AE2=AB2+BE2=16a2+4a2=20a2,∴AF2=EF2+AE2,∴△AEF为直角三角形.【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便.举一反三:【变式】如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A.14B.16C.20D.28【答案】D.根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴A B=6,图中五个小矩形的周长之和为:6+8+6+8=28.2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().A.14B.15C. 223 D. 3【思路点拨】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【答案与解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.可证∠FDB=90°,∠F=∠CBF,∴DF=CB=1,BF=2+2=4,∴BD=2215-=.故选B.BF DF【总结升华】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形从而求解.举一反三:【变式】(2015•黄冈模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(4+)cm B.5cm C.2cm D.7cm【答案】B.【解析】解:侧面展开图如图所示:∵圆柱的底面周长为6cm,∴AC′=3cm.∵PC′=BC′,∴PC′=×6=4cm.在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选:B.类型二、勾股定理及其逆定理与其他知识的结合应用3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到R t△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是________________.【思路点拨】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD【答案与解析】∵∠ACB=90°,AC=BC=1,∴AB=2,∴S 扇形ABD =6360)2(302ππ=⋅, 又∴Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE, ∴Rt△ADE≌Rt△ACB,∴S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD =6π. 【总结升华】本题考查了扇形的面积公式:3602R n S π=.也考查了勾股定理以及旋转的性质.考点涉及到扇形面积的计算;勾股定理;旋转的性质.4. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处, 折痕为AE ,且EF=3,则AB 的长为( ). A. 3 B. 4 C. 5 D. 6【思路点拨】先根据矩形的特点求出BC 的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC 中利用勾股定理即可求出AB 的长. 【答案与解析】∵四边形ABCD 是矩形,AD=8, ∴BC=8,∵△AEF 是△AEB 翻折而成,∴BE=EF=3,AB=AF ,△CEF 是直角三角形, ∴CE=8-3=5,在Rt△CEF 中,CF=2222534CE EF -=-= , 设AB=x ,在Rt△ABC 中,AC 2=AB 2+BC 2,即(x+4)2=x 2+82,解得x=6, 故选D .【总结升华】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键. 举一反三:【变式】(2011台湾)如图为梯形纸片ABCD ,E 点在BC 上,且∠AEC=∠C=∠D=90°,AD =3,BC =9,CD =8.若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何( ).A .4.5B .5C .5.5D .6【答案】B .5.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【思路点拨】根据已知得出假设AE =x ,可得EC =12-x ,利用勾股定理得出DC 2=DE 2+EC 2=4+(12-x )2,AE 2+BC 2=x 2+36,即可求出x 的值. 【答案与解析】假设AE =x ,可得EC =12-x ,∵坡角∠A=30°,∠B=90°,BC =6米, ∴AC=12米,∵正方形DEFH 的边长为2米,即DE =2米, ∴DC 2=DE 2+EC 2=4+(12-x )2, AE 2+BC 2=x 2+36, ∵DC 2=AE 2+BC 2,∴4+(12-x )2=x 2+36, 解得:x =314. 故答案为:314.【总结升华】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE ,AE 的长度是解决问题的关键.6 . 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长. 【思路点拨】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可. 【答案与解析】分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC,其中BC =6m ,AC =8m ,∠ACB=90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ). (2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45.(3)如图3,设△ABD 中DA =DB ,再设CD =xm ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ). 图1668DC BA图2486BC AD图3x +6x 68BC DA【总结升华】对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路.举一反三:【变式】“希望中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40m ,BC=25m ,请求出这块花圃的面积. 【答案】作CD ⊥AB . ∵∠A=30°, ∴CD=12AC=12×40=20(m ), AD=22203AC CD -=(m ), BD=22BC CD -=15(m ).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =12AB •CD=12(203+15)×20=(2003+150)(m 2). (2)当∠ACB 为锐角时,AB=AD-BD=203-15.∴S △ABC =12AB •CD=12AB •CD=12(203-15)×20=(2003-150)(m 2).。
《勾股定理的逆定理》PPT课件(第1课时)
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
勾股定理基础知识点
知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理知识点整理
勾股定理知识点整理1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。
其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的知识点总结
勾股定理的知识点总结勾股定理的应用是非常广泛的,它可以帮助我们解决很多与直角三角形相关的问题。
在实际生活中,勾股定理被广泛应用于建筑、工程、地理测量、导航系统等领域。
在数学教育中,勾股定理也是基础知识之一,学生可以通过学习勾股定理来提高对几何学和三角学的理解和应用能力。
除了勾股定理本身,还有一些与之相关的知识点,比如勾股定理的逆定理、特殊直角三角形的性质、勾股数的概念等。
接下来,我们将系统地介绍勾股定理及相关知识点的内容,以便读者能够更全面地了解这一重要定理。
一、勾股定理勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的。
据说,毕达哥拉斯是在观察三角形时发现了这一定理。
他发现,对于一个直角三角形来说,直角边的长度的平方和等于斜边的长度的平方。
这一发现被称为勾股定理,成为了数学中的一项重要定理。
勾股定理的数学表述如下:如果一个三角形的两条直角边的长度分别为a和b,斜边的长度为c,那么a的平方加上b的平方等于c的平方,即a^2 + b^2 = c^2。
这一定理适用于所有直角三角形,无论其大小或者比例如何,只要是直角三角形,勾股定理都成立。
勾股定理的应用非常广泛。
在几何学中,我们可以通过勾股定理来解决直角三角形的各种问题,比如求边长、求角度、求面积等。
在三角学中,勾股定理可以帮助我们计算三角函数的值,从而解决各种三角函数的计算问题。
在实际生活中,勾股定理被广泛应用于建筑、工程、地理测量、导航系统等领域。
二、勾股定理的逆定理除了勾股定理本身,勾股定理的逆定理也是很重要的一个概念。
勾股定理的逆定理是指,如果一个三角形的三条边满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
也就是说,如果三角形的三条边满足勾股定理的条件,那么这个三角形一定是直角三角形。
勾股定理的逆定理可以帮助我们判断一个三角形是否为直角三角形。
只要我们知道了三角形的三条边的长度,就可以根据勾股定理的逆定理来判断这个三角形是否为直角三角形。
干货勾股定理的逆定理,常用的11公式是什么
干货勾股定理的逆定理,常用的11公式是什么勾股定理大家都非常熟悉,在高中学习数学的时候经常用到,那么勾股定理的逆定理是什么,来看一下!1勾股定理的逆定理如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角。
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形。
如果a²+b²<c²,则△ABC是钝角三角形。
勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
2勾股定理常用的11个公式1.直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²;2.(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
3.(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2 n+1(n是正整数)。
4.(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。
5.m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。
6.平行公理经过直线外一点,有且只有一条直线与这条直线平行。
勾股定理知识点及例题讲解
第九讲勾股定理知识概要1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.(注:应用勾股定理的关键在于构造直角三角形)2、勾股定理逆定理:如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形,其a b c中c为斜边。
3、勾股定理的作用|(1)已知直角三角形的两边求第三边.(2)已知在特殊直角三角形中,直角三角形的一边,求另两边的关系.(3)用于证明平方关系的问题.4、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与2a+2b是否具有相等关系.若2c=2a+2b,则△ABC是以∠C=90°的直角三角形;:若2c≠2a+2b,则△ABC不是直角三角形.【注意】当2c≠2a+2b时有两种情况.(1)当2a+2b<2c时,此三角形为钝角三角形;(2)当2a+2b>2c时,此三角形为锐角三角形,其中c为三角形的最大边.5、常用勾股数组:(3, 4 ,5); (5, 12 ,13); (6, 8, 10); (7, 24, 25); (8, 15, 17) ; (9, 40 ,41);(20,21,29)……6、一组勾股数中各数的相同的正整数倍得到的一组新数还是勾股数。
7、一组勾股数中各数的相同的正数倍得到的一组新数为边,仍构成直角三角形。
8、(9、直角三角形的性质:(1)直角三角形中斜边最大;(2)直角三角形中有勾股定理;(3)直角三角形中,30度角所对应直角边等于斜边的一半;(4)直角三角形中,斜边上的中线等于斜边的一半;(5)等积原理(ab=ch )10、双垂图中的射影定理例题精讲~【例1】如图,证明勾股定理.【例2】填空题:》在△ABC 中,∠C 为直角.(1)若BC =2, AC=3则AB = ; 若BC =5, AB=13.则AC = ;若AB=61, AC=11.则BC = .(2)若BC ∶AB =3∶5且AB =20则AC= .(3)若∠A=60°且AC=2cm 则AB= cm ,BC= cm.【巩固练习】1、2、Rt △ABC 中,C ∠是直角,3、(1)已知6BC =,8AC =,求AB 之长;4、(2)已知25AB =,14BC =,求AC 之长;(3)板块一 勾股定理aaa ab b] b@(3)已知13AC =,19AB =,求BC 之长.2、已知等边三角形的边长为a ,求等边三角形一边上的高和这等边三角形的面积.¥【例 3】已知60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 和AD 的长.>【巩固练习】已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.《【例 4】如图,已知AB =13,BC =14,AC =15,BC AD ⊥于D ,求AD 的长.'ABCD【 BA DCB AD【例 5】如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP += ."【例 6】如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .$【巩固练习】 1、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.`P M B C A ; A B S 12、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.94^3、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则1S+2S+3S+4S=____$"1S2S3S4231【例7】在△ABC 中,如果a ∶b ∶c =1∶3∶2, 那么∠A= °,∠B= °∠C= °如果a ∶b ∶c =1∶1∶2, 那么∠A= °,∠B= °∠C= °`【例 8】判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)15a =,8b =,17c =;(2)13a =,14b =,15c =;(3)7a =,24b =,25c =.【例 9】已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c , 《试判断△ABC 的形状《【例 10】如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .,板块二 勾股定理逆定理A【例 11】已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点即3CE =EB求证:AF ⊥FE .(》【例 12】如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.|【巩固练习】1.若一个三角形的周长为123cm,一边长为33cm,其他两边之差为3cm,则这个三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°>3.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.~ 4.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数。
勾股定理的逆定理
勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 2 5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ABCDA B CD5312138. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.AA D C B拓广创新试一试,你一定能成功哟!9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b =2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下.123456 (2)3 4 5 6 …… … … … … ……勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 勾股 数n m A ME NB9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝◆ 仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?D B C AB12 59.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D 处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.拓广创新试一试,你一定能成功哟!10.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,P A=3,求∠BPC的度数.BACD.ACPB18.2 勾股定理的逆定理(1)参考答案1.B2.A3.B4.C5.C6.24m 27.符合 8.由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形 . 9.略18.2 勾股定理的逆定理(2)参考答案1.B2.D3.C4.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)5.3或416.120cm 27.由BD 2+DC 2=122+162=202=BC 2得CD ⊥AB 又AC =AB =BD +AD =12+AD ,在Rt△ADC 中,AC 2=AD 2+DC 2,即(12+AD )2=AD 2+162,解得AD =314,故 △ABC 的周长为2AB +BC =3153cm 8.由勾股定理的逆定理可判定△ABC 是直角三角形,由面积关系可求出公路的最短距离BD =1360km , ∴最低造价为120000元 9.设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米) 10.如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC ≌△BEC ,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2= BE 2,则∠BPE =90°,∴∠BPC =135°.第10题图。
勾股定理-讲义
勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2 2. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2 B.2n﹣1 C.2n D.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A. B. C. D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米 B.2×()9厘米C.2×()10厘米 D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米 D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm 练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.185.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m 3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C 地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个 B.2个 C.4个 D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、25 4.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A 点爬行到C点,那么,最近的路程长为()A.7 B. C. D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm 10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB 的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD 中,AB =6,BC =8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的逆定理(基础)
【学习目标】
1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.
2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.
3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.
【要点梳理】
要点一、勾股定理的逆定理
如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.
(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角
形是否为直角三角形.
要点二、如何判定一个三角形是否是直角三角形
(1) 首先确定最大边(如c ).
(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的
直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.
要点诠释:当222a b c +<时,此三角形为钝角三角形;当222
a b c +>时,此三角形
为锐角三角形,其中c 为三角形的最大边.
要点三、互逆命题
如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.
要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.
要点四、勾股数
满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.
熟悉下列勾股数,对解题会很有帮助:
① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……
如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22
1
21n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边
长;
(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三
条边长;
【典型例题】
类型一、原命题与逆命题
1、写出下列原命题的逆命题并判断是否正确
1.原命题:猫有四只脚.
2.原命题:对顶角相等.
3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.
4.原命题:角平分线上的点,到这个角的两边距离相等.
【答案与解析】
1. 逆命题:有四只脚的是猫(不正确)
2. 逆命题:相等的角是对顶角(不正确)
3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)
4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)
【总结升华】掌握原命题与逆命题的关系. 原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误.
举一反三:
【变式】下列命题中,其逆.
命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;
②如果两个角是直角,那么它们相等;
③如果两个实数相等,那么它们的平方相等;
④如果三角形的三边长a b c ,,满足222a b c +=,那么这个三角形是直角三角形.
【答案】①④
提示:①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c ,,满足222a b c +=”也是正确的.
类型二、勾股定理的逆定理
2、判断由线段a b c ,,组成的三角形是不是直角三角形.
(1)a =7,b =24,c =25;
(2)a =43,b =1,c =34
; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);
【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.
【答案与解析】
解:(1)∵ 2222724625a b +=+=,22
25625c ==,
∴ 222a b c +=.
∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2
241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.
∴ 由线段a b c ,,组成的三角形不是直角三角形.
(3)∵ 0m n >>,
∴ 222m n mn +>,2222
m n m n +>-.
∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,
∴ 222a c b +=.
∴ 由线段a b c ,,组成的三角形是直角三角形.
【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形.
举一反三:
【变式1】判断以线段a b c ,,为边的△ABC 是不是直角三角形,其中a =b =2c =.
【答案】
解:由于a c b >>,因此a 为最大边,只需看2a 是否等于22
b c +即可.
∵ 227a ==,223b ==,2224c ==,∴ 222a b c =+, ∴ 以线段a b c ,,为边能构成以a 为斜边的直角三角形.
【变式2】(2014春•永州校级期中)下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8.其中可以为直角三角形三边长的有 .(把所有你认为正确的序号都写上)
【答案】①②;
解:①∵52+122=132
,能构成直角三角形;
②72+242=252,能构成直角三角形;
③12+22≠42,不能构成直角三角形;
④52+62≠82,不能构成直角三角形.
所以①②.
故答案为:①②.
3、(2015春•大石桥市校级期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
【思路点拨】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.
【答案与解析】
解:连接AC.
∵∠ABC=90°,AB=1,BC=2,
∴AC==,
在△ACD中,AC2+CD2=5+4=9=AD2,
∴△ACD是直角三角形,
∴S四边形ABCD=AB•BC+AC•CD,
=×1×2+××2,
=1+.
故四边形ABCD的面积为1+.
【总结升华】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.
举一反三:
【变式】如图所示,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD 中点,试判断EC与EB的位置关系,并写出推理过程.
【答案】
解:EC ⊥EB .
过点C 作CF ⊥AB 于F ,则四边形AFCD 是矩形,
在Rt △BCF 中,可得CF =22.
则AD =CF =22,故DE =AE =
12
AD =2. 在Rt △ABE 和Rt △DCE 中, 2226EB AE AB =+=,2223EC DE CD =+=.
∴ 22
9EB EC +=.
∵ BC =3,∴ 222EB EC BC +=.
∴ ∠CEB =90°,∴ EB ⊥EC .
类型三、勾股定理逆定理的实际应用
4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了.
【答案与解析】
解:根据题意可画出上图,
PQ =16×1.5=24,PR =12×1.5=18,QR =30,
在△PQR 中,
22222418576324900PQ PR +=+=+=,
∴ 222
PQ PR QR +=.
∴ △PQR 是直角三角形且∠RPQ =90°.
又∵ “远航”号沿东北方向航行,可知∠QPN =45°,
∴ ∠RPN =45°.
由此可知“海天”号沿西北方向航行.也可沿东南方向航行.
【总结升华】根据勾股定理的逆定理,可判断一个角是不是90°,这里需注意与东北方向成90°角的有两个方向,即西北方向或东南方向.。