浅谈臭氧,臭氧活性炭的技术应用

合集下载

臭氧分解方案

臭氧分解方案

臭氧分解方案一、背景介绍臭氧(O3)是一种具有强氧化性的气体,常用于消毒和除臭。

然而,对臭氧的长时间暴露会对人体健康造成危害,包括呼吸道刺激、头痛、胸闷、咳嗽等不适症状。

因此,寻找高效的臭氧分解方案对我们的生活和健康至关重要。

二、臭氧分解的方法1. 活性炭吸附法活性炭是一种具有很大比表面积的材料,能够有效吸附臭氧分子。

通过将空气经过活性炭过滤器,臭氧分子将被吸附并分解成无害的氧气。

这种方法对于小范围的臭氧处理非常有效,但对于大规模的应用来说,成本较高且需要频繁更换活性炭。

2. 光催化分解法光催化分解是利用光催化剂作用下的光能来分解臭氧。

常用的光催化剂包括二氧化钛(TiO2)和氧化铟(In2O3)。

光催化剂吸收紫外线或可见光后,产生激发态电子和空穴,进而促进了臭氧分解反应的进行。

这种方法具有高效降解臭氧的能力,但需要较高的催化剂负载量和光照条件。

3. 空气净化器空气净化器是一种常见的家居设备,可以净化空气中的各种污染物,包括臭氧。

常见的空气净化器采用多层过滤网,包括初效过滤网、HEPA过滤网和活性炭过滤网。

这些过滤网可以有效去除空气中的臭氧,并保持室内空气的清新和健康。

4. 高温分解法臭氧对高温非常敏感,因此可以采用高温分解法来降解臭氧。

将臭氧暴露在高温环境下,臭氧分子会分解成氧气和单质氧。

这种方法简便易行,但需要注意高温对环境和设备的影响。

三、选择合适的臭氧分解方法的考虑因素1. 处理规模:不同的分解方法适用于不同规模的臭氧处理。

活性炭吸附法适用于小范围的处理,而光催化分解和高温分解方法更适用于大规模的应用。

2. 成本考虑:不同的臭氧分解方法的成本差异较大。

活性炭吸附法需要频繁更换活性炭,而光催化分解法需要较高的催化剂负载量和光照条件。

因此,需要综合考虑成本效益。

3. 安全性:选择臭氧分解方法时,需要考虑方法对环境和人体的安全性。

光催化分解法和空气净化器对环境和人体无害,而高温分解法需要注意高温对设备和环境的影响。

臭氧化-生物活性炭技术的研究与应用

臭氧化-生物活性炭技术的研究与应用

臭氧化-生物活性炭技术的研究与应用摘要:概述国内外臭氧化-生物活性炭的发展历史,分析和介绍国内外该工艺技术应用的典型案例,并指出臭氧化-生物活性炭工艺当前的技术难点和发展趋势。

关键词:臭氧活性炭臭氧化-生物活性炭消毒副产物致病微生物1. 引言随着世界各国经济的高速发展,人们的生活水平不断提高,饮用水的卫生和安全也受到越来越广泛的关注。

由于水源污染日趋严重,水微量分析技术不断进步,在饮用水中越来越多的有机、有毒污染物被检测出来,并通过流行病学调查研究和对污染物毒理学的验证,发现某些污染物与居民发病率具有密切的相关性,从而更引起了人们对饮用水安全的高度重视。

在美国,六十年代初曾对 30 个大城市、11590 个城镇的饮用水进行调查,调查指出,饮用经氯化以后的地表水可能对人体健康造成潜在危险。

在 1974~1977 年间,美国环保局又组织了两次全国性的调查,一次是调查 80 个城市的饮用水中 4 种卤代烃浓度,并对10 个城市饮用水中所含的有机物质作了详细的分析;另一次是调查俄亥俄,印地安纳、伊利诺斯、威斯康星、明尼苏达、密执安等州的 83 个城市饮用水中三卤甲烷的存在情况。

调查结果发现,饮用水的有机污染已遍及整个美国 1。

德国、英国、加拿大等国也调查了城市地下水及地面水加氯消毒后挥发性卤代烃的存在情况,并根据调查结果修订了本国的水质标准。

随着这些研究和调查的不断深入,人们逐渐认识到,常规的混凝沉淀-砂滤-投氯消毒处理技术不能充分保障饮用水的卫生与安全,因此,以去除水中有机污染物为目标的饮用水深度净化技术得到日益广泛的研究和应用。

臭氧与活性炭联用的饮用水除污染新技术,即臭氧化-生物活性炭处理工艺,以其氧化性强、副产物少、吸附与降解效果显著等特点,日益受到重视,并迅速地从理论研究走向实际应用。

与此同时,饮用水中隐孢子虫、贾第虫等新的致病微生物因子不断出现,严重影响饮用水的生物学安全。

70 年代以来,欧美发达国家暴发了多起由贾第虫、隐孢子虫等致病原生动物,引起的较大规模水介流行病。

臭氧与活性炭在净水处理运用探究

臭氧与活性炭在净水处理运用探究

臭氧与活性炭在净水处理运用探究前言:净水处理是水资源循环利用的重要环节,在我国现阶段受到相关部门、企业的重视。

传统的净水处理手段方法较多,但是在实际操作过程中存在有净水不彻底的情况或造成二次污染,违背了净水处理的工作本意。

臭氧和活性炭是现阶段净水处理工作中应用较为广泛的净化物质,它们的使用打破了传统净水处理工作的局限性,使用安全、环保、无污染,因此对臭氧及活性炭在净水处理中的运用进行探讨具有现实意义。

1.净水处理中臭氧的应用1.1臭氧的基本结构及氧化性能臭氧的化学分子式为O3,因含有刺激性气味而得名。

它作为氧气的同素异形体通常以一种淡蓝色形态存在,是一种稳定性较差的气体。

尽管味道有异,但是它的氧化性能却很高,因此可以作为杀菌利器在净水处理工作中得到应用和推广。

采用臭氧进行净水处理具有很多有点,如反应速度快、作用明显、无二次污染等。

具体的分解反应式如下:不僅臭氧具有强氧化性,上述反应中生成的两个自由基同样拥有氧化能力,从而活化了臭氧在净水处理中的应用。

在具体使用中,它们可以同水中有机物质发生反应,达到降解目的,同时还能除色、除味。

1.2臭氧在净水处理中的应用臭氧凭借其自身特点在净水处理工作中主要用作对饮用水的深层处理工作中。

臭氧系统是臭氧在净水处理中应用的媒介,它主要应用臭氧活性炭组合技术,使臭氧在净水处理中的应用流程一体化,具体的组成及运行如下:1.2.1系统组成以××净水厂为例,该工厂使用臭氧进行净水处理时使用的臭氧系统主要由以下几个部分组成:①臭氧发生系统。

氧气在进入该系统之后生成臭氧;②输送系统。

负责输送氧气至预臭氧接触池;③尾气破坏系统。

通过负压的方式进行尾气收集并进行分解破坏;④监测系统。

负责对臭氧系统的运作进行监测和控制;1.2.2系统运行使用臭氧进行净水处理首先先制备臭氧,这一过程主要是在臭氧发生器中完成的。

该净水厂的臭氧发生系统经调试之后可以实现自动化控制,能根据净水所需要的臭氧量对臭氧制备进行流量控制,该厂使用的臭氧发生器参数如表1所示:项目设计臭氧产量(kg·h-1)设计臭氧质量分数% 臭氧浓度范围% 标定臭氧产量时的电耗(kw·h)冷却水温度℃放电管结构变频频率KHz 保护等级参数值13 10 6~14可调127 5% 4~32 纯硅5~6 电子表 1该发生器制备臭氧所使用的液态氧,制备过程中除有相关设备进行流量控制之外,还有相关安全配备。

臭氧—生物活性炭(O3—BAC)

臭氧—生物活性炭(O3—BAC)

臭氧—生物活性炭(O3—BAC)臭氧—生物活性炭(O3—BAC)一、臭氧—生物活性炭工艺原理臭氧—生物活性炭(O3—BAC)深度处理工艺由两部分组成:臭氧氧化和生物活性炭的物理吸附、生物降解。

臭氧具有极强的氧化能力,其在水中的氧化还原电位仅次于氟而第二位。

利用臭氧氧化作用,初步氧化分解水中的一部分简单的有机物及其还原性物质,使之变为CO2和H2O,以降低生物活性炭滤池的有机负荷。

提高活性炭处理能力;同时臭氧氧化能使水中难以生物降解的大分子有机物,如天然有机物(NOM)断链、开环、氧化成短链的小分子有机物或分子的某些基团被改变从而使原来不能生物降解的有机物转化成可降解的有机物,减少大分子极性污染物BOD浓度得到提高,所以提高了处理水的可生化性,同时使个别有机物(POC)转化为(DOC),如腐植酸等,分解后的小分子有机物的极性和亲水性得到了提高,更容易被活性炭吸附和附着在活性炭上的细菌生物降解;臭氧氧化可有效去除水中的酚、氰、硫、铁、锰,并能脱色、除嗅和味、杀藻以及杀菌消除病毒等;臭氧氧化还能有效地减少UV254的吸收。

臭氧氧化后会生成氧气和臭氧混合气体中含有的大量氧气以及剩余臭氧会迅速转化为氧气,不产生二次污染,又可增加水中溶解氧,使生物活性炭滤池有充足的溶解氧(DO),因此促使好氧微生物在活性炭上繁殖。

提高了微生物增长潜力,加快生物氧化和硝化作用,延长了活性炭使用寿命,加快有机物的生物降解,从而提高了其对有机物的去除效果;同时臭氧能氧化水中的溶解性的铁和锰,生成难溶性的氧化物。

通过过虑,铁、锰的去除率增加,提高过滤速度50%,延长过滤工作周期,降低了过滤反冲洗水量。

臭氧氧化也是减少溴酸化合物形成的有效方法,加强了活性炭对溴酸化合物的高效去除。

由于臭氧的强氧化性,在去除水中其它水处理工艺难以去除物质的同时,可以减小反应设备或构筑物的体积;臭氧化还有助于絮凝,改善沉淀效果。

因此,臭氧化技术在欧洲、美国、加拿大等国家普遍应用。

臭氧/生物活性炭工艺浅谈

臭氧/生物活性炭工艺浅谈

臭氧/生物活性炭工艺浅谈摘要:臭氧/生物活性炭工艺是水质深度处理的方法之一。

关键词:臭氧;活性炭;DOC随着居民生活水平的不断提高和健康条件的日益改善,饮用水水质标准的要求愈来愈高,当常规的絮凝、沉淀(澄清)、过滤、消毒净水工艺,已难以满足水质不断提高的要求时,有必要在现在常规处理工艺的基础上,再增加水质深度处理的工艺。

1 工艺概述臭氧/生物活性炭工艺是水质深度处理的方法之一。

主要目的是去除水中的溶解有机物(DOC)。

目前笔者参与建设的苏州某水厂深度制水工艺改造工程,由于近年太湖蓝藻较多,水厂采用的是常规平流沉淀加砂滤池的常规工艺已经难以应对特水情况,加入臭氧/生物活性炭工艺后采用如下流程:原水+臭氧(预)---絮凝----沉淀----砂滤池水+臭氧(主)----生物活性炭池水+消毒(氯)----请水库----供水管网。

原水中含有天然有机物(NOM)合成有机物,其物种、浓度、形状、分子量的大小以及吸附、生物活动各有差异,加上臭氧化、活性炭的作用机理都有极其复杂的内容,因此臭氧/活性炭工艺的采用必须在现场结合具体的水质、流程、臭氧化的目的以及臭氧化接触池(反应器)的具体条件进行从小试到中试的试验,才能获得必要的设计参数可靠数据。

也就是说设计参数的可靠数据只能从试验中得出,而无法预测。

2 臭氧系统组成臭氧系统是臭氧/活性炭工艺的重要组成部分,它的配置直接影响到净水效果与运行成本。

臭氧的氧化能力很强,仅次于氟,臭氧的制取方法有高压放电法、紫外线照射法和电解法。

用于水处理时一般采用高压放电法。

在本工程中,臭氧系统由气源系统、电源系统、臭氧发生系统、冷却水系统、PLC控制系统、臭氧投加以及尾气破坏系统组成。

此外还有大量的辅助设备如测量系统,阀门及管道等。

本工程的臭氧气源为液态氧气制备,臭氧发生器的臭氧产率高。

臭氧制备投加系统为国外成套设备,这里不展开赘述。

3 臭氧系统的控制臭氧需求量一般按以下方法确定:R=Q*D ---------(1)式中:R--臭氧需求量,kg/h;Q—处理水量,k/h;D—臭氧的投加量,g/。

臭氧的净化方法

臭氧的净化方法

臭氧的净化方法
臭氧是一种高度氧化性的气体,在许多领域都有广泛的应用,例如医疗保健、空气净化、水处理等。

臭氧的净化方法有以下几种:
1. 臭氧发生器:使用臭氧发生器产生臭氧,将其喷洒在空气中,可以去除空气中的异味、有害物质和微生物。

这种方法操作简单,成本较低,适用于各种场合的空气净化。

2. 紫外线灯:使用紫外线灯照射空气,可以杀灭空气中的细菌和病毒。

这种方法适用于公共场所和家庭环境的空气净化。

3. 等离子体:等离子体是一种高能电子束,能够破坏空气中的有机物和微生物,并将其分解成无害的二氧化碳和水。

这种方法适用于空气净化和废水处理。

4. 活性炭:使用活性炭吸附空气中的有害物质,可以去除室内异味和有害气体。

这种方法适用于室内空气净化。

5. 光催化:使用光催化技术,在紫外线的作用下,将空气中的有机物分解成无害的二氧化碳和水。

这种方法适用于空气净化和废水处理。

以上是臭氧的净化方法,这些方法各有优缺点,应根据具体情况选择使用。

此外,臭氧的净化效果受到浓度、使用时间、环境等因素的影响,使用时应注意安全。

臭氧_生物活性炭技术在饮用水深度处理中的应用

臭氧_生物活性炭技术在饮用水深度处理中的应用

臭氧- 生物活性炭技术在饮用水深度处理中的应用熊云烽孙伟(昆明新投建设项目管理有限公司云南昆明650500)【摘要】介绍了国内外在探讨饮用水处理新工艺方面的情况,分析了臭氧-生物活性炭法的基本原理和作用,并提出了该方法在应用时所需注意的一些问题。

【关键词】臭氧;生物活性炭;饮用水深度处理The Application of Ozonation- Biological Activated Carbon in Drinking Water Advanc ed T reat m entXIONG Yun-feng SUN Wei(Kunming Xin Tou Construction P roject Managem ent C o., Ltd., Kunming Yunnan, 650500, C hina)【Abstract】I nvestigate the new treatment technology si t uation of the drinking water at home and abroad, anal y si s the basic principle s and role of ozonation-biologica l acti v ated carbon, and put f orward some of the problems that the method required in the application note.【Key words】Ozonation;Biologica l activated carbon;Drinking water advanced treatment在水污染日益严重的今天,原水中有毒有害化学有机污染物含量正逐年上升,品种也正逐年增多,这给饮用水处理带来了极大的困难。

大量文献表明,自来水厂传统水处理工艺已不能有效地去除水中各种污染物,特别是溶解性有机物。

浅谈臭氧—生物活性炭技术

浅谈臭氧—生物活性炭技术

浅谈臭氧—生物活性炭技术作者:宝青娜张楠来源:《创新科技》 2013年第6期宝青娜张楠(长安大学环境科学与工程学院,陕西西安710054)[摘要] 本文介绍了臭氧-生物活性炭技术的工作原理及其在国内外的发展现状,指出该技术在应用中体现的优越性,并根据目前的试验结果提出了应对臭氧-生物活性炭技术进行继续研究的一些问题。

[关键词] 臭氧-生物活性炭技术;原理;注意事项;继续研究[中图分类号] TQ424 [文献标识码] A随着人们生活水平的不断提高,人们对饮用水水质的要求也逐渐提高。

大量实例表明,传统的水处理工艺(“混凝→沉淀→砂滤→投氯消毒”)已不能适应现有的水源和水质标准。

为改变这种现状,国内外研究了多项技术,其中臭氧-生物活性炭技术因其能够高效地去除水中的溶解性有机物和致突变物[1],得到广泛的关注。

1 臭氧-生物活性炭净水的基本原理1.1 臭氧预氧化臭氧能够初步氧化分解水中的一些简单的大分子有机物,同时将难以生物降解的有机物氧化成小分子有机物,提高其可生化性,并且使其更容易被活性炭吸附。

此外,臭氧能分解成氧气,为生物活性炭滤池中的好氧微生物提供氧气,促进生物的氧化和硝化作用,提高活性炭的使用寿命。

1.2 生物活性炭活性炭具有比表面积大、高孔隙度的特性,能够迅速吸附水中的溶解性有机物,也能聚集水中大量的微生物。

因此,活性炭表面聚集的微生物能以这些溶解性有机物为营养源,同时炭床中生长繁殖的大量好氧微生物吸附降解小分子有机物。

这样便在活性炭表面形成了一层又有生物吸附和氧化降解双重作用的生物膜,由此称其为生物活性炭。

微生物和活性炭两者之间相互促进,形成相对平衡态,显著延长了活性炭的再生周期。

2 臭氧-生物活性炭技术发展及应用现状臭氧—生物活性炭工艺始于20世纪70年代,最早用于德国的杜塞尔多夫水厂[2]。

但是实验结果表明,滤后水中的平皿菌落数没有增高,而活性炭滤池内仍有活性微生物。

因此,国内外许多研究学者对臭氧生物活性炭技术进行了更为深入的研究。

臭氧活性炭技术在给水处理中的应用研究

臭氧活性炭技术在给水处理中的应用研究

臭氧-生物活性炭技术在给水处理中的应用研究摘要:本文介绍了臭氧-活性炭技术的发展概况,在给水处理中的作用机理及应用研究,并提出了此项技术在应用中存在的问题,介绍提高此项技术的应用措施。

关键词:臭氧-生物活性炭;有机物;微污染水;给水处理随着水源污染的加剧和饮用水水质标准的提高,常规处理工艺已难以满足人们对饮用水水质的要求,饮用水深度处理技术日益受到重视。

臭氧与活性炭作为饮用水深度处理的重要手段,在国外的应用已比较成熟。

由于我国地域广阔,水质多变,臭氧与活性炭技术在运行中必然存在很多问题,如在臭氧-活性炭技术中臭氧投加点和投加量的确定,以及水经臭氧活性炭处理,氯化后出水水质是否仍然具有致突变性等问题。

1 臭氧-生物活性炭技术的发展概况1.1 臭氧氧化技术臭氧是一种很强的氧化剂和消毒剂,其氧化还原电位在碱性环境中仅次于氟。

臭氧氧化主要发生在净水过程的三个阶段:预臭氧化,中间臭氧化,最后的消毒。

预臭氧化的作用是去除悬浮物质,大颗粒物质和水体的色、味、嗅等,并把较大的天然有机物质分解成较小的有机物质以提高后序絮凝、沉淀等步骤的效率。

中间臭氧化主要为降解有机微污染物,去除“三致”前体物和提高可生物降解性。

由于其降解产物较小,易被微生物充分利用,通常在此步骤后加以砂滤或生物活性炭过滤;最后的消毒是指臭氧氧化去除残余微生物以及可能形成的消毒副产物。

由于臭氧氧化的持续时间较短,出水水质可以加二氧化氯保质。

1.2 生物活性炭吸附活性炭是用烟煤、褐煤、果壳或木屑等多种原料经碳化和活化过程制成的黑色多孔颗粒。

由于粒状活性炭具有极其丰富的微孔和巨大的比表面积,使其具备良好的吸附性能。

活性炭吸附作为饮用水深度处理的重要手段广泛应用于城市给水处理厂。

目前世界上已有成百座使用粒状活性炭的水厂在运行。

大量的研究结果已证明了活性炭吸附在饮用水处理中的优势,活性炭对水中存在的有机污染物的各项指标均有很好的去除效果。

1.3 臭氧-生物活性炭技术臭氧氧化和生物活性炭技术都各自有其局限性,到了上个世纪六七十年代,一种新型组合工艺“臭氧-生物活性炭”(ozone-biological activated carbon,O3-BAC)技术诞生了,它具有优异的去除污染物效能,尤其是有机污染物,因而受到人们的高度重视。

臭氧-生物活性炭工艺

臭氧-生物活性炭工艺

臭氧-生物活性炭工艺臭氧-生物活性炭工艺结合了臭氧工艺和生物活性炭工艺,净水前通过臭氧预氧化,对于无机物,臭氧在水中可以有效地将其中的溶解性铁,锰等无机离子转化成难溶解性氧化物从水中沉淀出来,从而在混凝沉淀与过滤中去除。

而对于有机物,臭氧分子与有机污染物间的直接氧化作用缓慢且有明显的选择性反应。

另一种是臭氧被分解后产生羟基自由基间接地与水中的有机物作用。

在臭氧后氧化中增加水中的溶解氧,有利于后继生物活性炭上好氧微生物的生长。

生物活性炭滤池位于臭氧接触池之后,活性炭因其内部具有发达的孔隙结构和巨大的比表面积从而用微孔吸附的方法去除有机物,活性炭的吸附性也可经济有效的去除嗅,味,色度,农药,放射性有机物及其其它人工合成有机物。

由于活性炭是一种兼有吸附,触媒和化学反应活性的多功能载体。

好氧微生物群落可以分散在炭段表面,也可以成膜覆盖在整个炭粒外表面,形成生物活性炭,这样可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质,并能处理那些采用单纯生化处理或活性炭吸附法所不能去除的污染物质。

影响臭氧-生物活性炭工艺主要因素1、微生物生命活动对水温、pH值等因素的变化很敏感,容易导致炭床中生物降解效率发生波动。

当温度低于5℃时,水处理效果极差。

2、活性炭柱承担着吸附和生物降解有机物的双重作用,延长水与活性炭柱的接触时间对去除有机物有利;而反冲洗条件对保护某些菌落很重要。

3、为了维持活性炭的生物平衡和避免高于微生物生命形式的发展,活性炭定期冲洗是维护生命活动的重要手段。

活性炭冲洗一般采用水洗、气洗、气水同时冲洗等几种方式。

反冲后重新启动时水质一般较差,将持续10-20min,以使扰乱的炭层复原到正常过滤状态。

工程实践证明,反冲效果的好坏直接影响处理水质。

4、臭氧-生物活性炭工艺一般设置在砂滤之后,去除有机物的效果取决于水中有机物的性质、活性炭的特性、操作条件、温度等。

5、在臭氧-生物活性炭工艺中,臭氧的重要作用是将大分子有机物降解为小分子有机物,提高原水的可生化性。

净水厂改造的必需技术:臭氧-活性炭深度处理

净水厂改造的必需技术:臭氧-活性炭深度处理

在我国以往一直为解决水量问题而努力,现在由于工业结构调整,对一些城市,水量的矛盾基本解决,而水质问题比较突出,过去在计划经济时代臭氧-活性炭技术被认为“高不可攀”,仅在很少经济条件好的企业(如石油化工企业)中采用,现在按照市场经济规律,水价已经涨到1~2元。水源水质又遭到污染,水质标准越来越高,因此在当前条件下,陈旧的净水厂采用臭氧-活性炭进行改造的时代已经到来。
何种措施才能达到我国吸取外国成就,自己做出几个像样产品,作为竞争的资本,请大家献良策、献良奇计!
净水厂改造的必需技术:臭氧-活性炭深度处理
王占生 (给水深度处理研究会 理事长 清华大学环境科学与工程系 教授)
饮用水安全保证的有效技术-臭氧活性炭。臭氧是强氧化剂,活性炭是吸附有机物最有效的吸附附剂,这两个技术联用,还可在活性炭上浓缩氧气、浓缩有机物、微生物,使活性炭成为生物炭,也即在炭上凹洼处、大孔处由微生物结群与分泌物一起形成生物膜,活性炭的生物膜有降解水中有机物的作用,在活性炭吸附与脱附有机物过程中起着再生的作用。
臭氧能对大分子有机物开环、断链,使之成为较小分子有机物,使难以降解的有机物变成易于降解,有利于后续活性炭吸附与生物降解。臭氧还能直接氧化一些有机物成为CO2与H2Oห้องสมุดไป่ตู้活性炭置于臭氧之后能较有效吸附小分子有机物并成了微生物载体,生物膜可以氧化一些微量有机物。因此臭氧-活性炭联用技术可以有化学氧化、物理吹附与生物降解三方面的作用,还有活性炭介质的过滤作用,与此同时,还可以有效的脱色、除味、除浊。是目前在国际上最常用、最成熟的去除有机物的技术。
臭氧发生器的制造至今我国还较落后,落后就要挨打,因此一些国际上名牌厂家不愿与我们合作共同生产,只让做他们的地区代表,代销其产品,虽然也有不少有志之士尽囊相投,奋发研究,但因投入不足多数分散研究,目前还难于与国际上竞争。臭氧技术主要在于:臭氧发生单元的研制(搪瓷、陶瓷管.....)中须装置与专用变压器的配备,其实在我国单项技术的研究不乏其人,但综合研究就显得不足了。

臭氧—生物活性炭微污染水处理技术探讨

臭氧—生物活性炭微污染水处理技术探讨

浅谈臭氧—生物活性炭微污染水处理技术杨存莉微污染水,指微量和痕量有毒有害的有机污染物进入水体后被污染的水。

有机污染物是近十几年来出现在给水处理技术中的术语,也是一个没有严格界限的术语,主要包括各类可溶性有机物、氮以及铁、锰等重金属。

大同市位于山西省北部,属全国110座严重缺水城市之一,人均水资源占有量只占全国人均水平的1/5,特别是一些企事业单位,用水困难的问题更突出。

如果把微污染水进行有效的处理,使其达到生活杂用水水质标准,用在冲厕、道路清扫和消防、城市绿化、车辆冲洗、建筑施工等方面,可有效循环利用水资源,使用水问题得到一定程度上的缓解。

1 微污染水的处理方法在我国,微污染水源的污染程度要比西方国家的高很多,处理难度也较大,处理方法分为常规处理和深度处理等。

1.1 微污染水的分段处理1.1.1 常规处理包括混凝、沉淀、过滤和消毒。

这种方法可以较好地去除水中的浊度、色度、悬浮物、胶体及病原菌,比较适合处理有机物含量较少的原水,而对有机物含量较多的微污染水却显得力不从心。

1.1.2 深度处理包括臭氧氧化和活性炭吸附等。

我们应根据不同的水源水质和出水水质要求结合经济因素确定合适的处理工艺。

在此,主要讨论微污染水深度处理技术中的一种:臭氧——生物活性炭技术。

臭氧——生物活性炭技术因氧化性强、副产物少、吸附与降解效果显著等特点日益受到重视并迅速推广。

目前这一技术已被越来越多国家实际应用于污染水源净化、城市污水再生回用作生活杂用水等方面。

1.2 臭氧——生物活性炭技术工艺臭氧——生物活性炭工艺是活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒4种技术合为一体的工艺。

该工艺一般设在砂滤之后。

首先利用臭氧预氧化作用,初步氧化分解水中的有机物及其他还原性物质,降低生物活性炭滤池的有机负荷,同时臭氧氧化能使水中难以生物降解的有机物断链、开环,转化成简单的脂肪烃,改变其生化特性。

臭氧本身的特性决定了臭氧化技术具有以下特点:①臭氧由于其氧化能力极强,可去除其他水处理工艺难以去除的物质;②臭氧化的反应速度较快,从而可以减小反应设备或构筑物的体积;③剩余臭氧会迅速转化为氧气,既不产生二次污染,又能增加水中溶解氧;④在杀菌和杀灭病毒的同时,可除嗅、除味;⑤臭氧化有助于絮凝,可以改善沉淀效果。

臭氧生物活性炭技术11上课讲义

臭氧生物活性炭技术11上课讲义
原因:可能由于O3分解起到的充氧作用使各流程DO大大提高,
促使砂粒表面的生物生长。也可能与传统工艺水中较高的氯浓度
的抑制作用有关
饮用水深度处理应用效果
氨氮去除率比较
传统工艺:沉淀池对NH+4-N的去除率较大,均值为58.9%.滤池 对NH+4-N的去除率为2.6%.
组合工艺:澄清后氨氮质量浓度仍比原水高1.2倍,砂滤池出水 的NH+4-N相对原水去除率为80%左右,后续的深度处理后,氨 氮的质量浓度低于检测限
适 反冲洗强度:10~15L/(s.㎡),10~20min 工作周期:生物活性炭的使用周期按1年设计
工艺应用条件与设计参数
构筑物形式:
饮用水深度处理: 目前,国内活性炭滤池已建成水厂多采用普通快滤池、虹吸滤池、
V型滤池、翻板滤池等池型,其中以V型滤池和翻板滤池更具代 表性。 工业废水处理: 活性炭塔
臭氧分解增加水中DO,促进活性炭表面好氧微生物的生长, 增强微生物的活性。
作用原理——生物活性炭技术
生物活性炭技术:
利用具有巨大比表面积及发达孔隙结构的活性炭,对水中有机物 及溶解氧有强的吸附特性,以及将其作为载体,是微生物集聚、 繁殖生长的良好场所,在适当的温度及营养条件下,同时发挥活 性炭的物理吸附作用和微生物生物降解作用的水处理技术,或称 为生物活性炭法。
嗅阈值(TON),出厂水为6,是用常规处理工艺出厂水的1/4·1/3(测 定常规处理出厂水的TON为18~24)
内分泌干扰物烷基酚(AP),采用臭氧生物活性炭处理可使AP降至 10μg/L以下安全浓度。(常规处深度处理工艺与常规处理工艺效果比较
臭氧生物活性炭技术
主要内容
臭氧生物活性炭技术简介 作用原理 工艺应用条件与设计参数 饮用水深度处理应用效果 优缺点 其他应用

臭氧应用优缺点

臭氧应用优缺点

臭氧应用优缺点预臭氧的主要作用是杀藻、改善絮凝沉淀效果、去除部分有机物、优点:臭氧-生物活性炭滤池工艺是将活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒四种技术合为一体,与传统水处理工艺相比,具有明显的优势,主要体现在:①常规加氯工艺处理的自来水的Ames致突变试验结果多为阳性,而臭氧-生物活性炭工艺处理后为阴性;②臭氧-活性炭工艺对有机污染物的去除率为50%以上,比常规处理提高15~20个百分点;③提高色度和嗅味的去除率,改善感官性指标;④提高对铁、锰的去除率;⑤可以去除氨氮到90%左右,水中的氨氮和亚硝酸盐可被生物氧化为硝酸盐,从而减少了后氯化的投氯量,降低了三卤甲烷等消毒副产物的生成;⑥有效去除AOC、蛋白氨氮,提高处理水的生物稳定性,提高管网水质。

另外臭氧和活性炭联合使用,还可以延长活性炭的运行寿命,减少运行费用。

缺点:尽管臭氧-生物活性炭滤池深度处理技术对于控制饮用水质污染和改善水质发挥了较好的作用,但也存在局限性。

主要表现在:①臭氧氧化处理饮用水存在臭氧利用率低、氧化能力不足等缺陷;②臭氧可以有效降解含有不饱和键或者部分芳香类有机污染物,而对于部分的稳定性有机污染物(如农药、卤代有机物和硝基化合物等)难以氧化降解。

臭氧对一些有机物的降解仅仅局限与母体化合物结构上的变化,可能会生成毒性更大且不易被生物活性炭降解的中间氧化产物;③臭氧可以将大分子有机物氧化成小分子有机物,而有研究表明,活性炭吸附对分子质量为500~ 3000Da的有机有较好的去除效果,而对大分子和小分子的有机物去除效果较差。

臭氧氧化后有机物的分子质量变小,将不利于活性炭的吸附;④当水中含有溴化物(Br-)时,臭氧氧化将会生成溴酸根(BrO3-)及溴代三卤甲烷(Br-THM)等有害副产物,对人体健康有很大的影响。

臭氧活性炭技术在水质深度处理中的应用报告070816

臭氧活性炭技术在水质深度处理中的应用报告070816

一.项目概况臭氧(O3)是一种具有刺激性特殊气味的不稳定气体,分子结构如它可在地球电离层内光化学合成,但是在地平面上仅以极低浓度存在。

臭氧的化学性质极不稳定,在空气和水中都会慢慢分解成氧气。

臭氧的氧化能力极强,其氧化还原电位仅次于氟。

臭氧的标准电极电位除比氟低之外,比氧、氯、二氧化氯及高锰酸钾等氧化剂都高。

说明臭氧是常用氧化剂中氧化能力最强的。

同时,臭氧反应后的生成物是氧气,所以臭氧是高效的无二次污染的氧化剂。

臭氧水处理技术,作为一种先进的水处理技术,可以对水中的无机物氧化,对有机物进行分解,从感官上直接解决水中因为有机物污染而引起的异味及颜色等不纯净问题,还能将水中总有机物含量(COD)降低50%。

对于生活污水、工业废水及市政自来水,依照我们传统的处理工艺,已经无法达到国家或地方对于污水、废水排放及自来水饮用的标准,其深度处理在国内已成为学术界、政府、生产企业共同研讨且必须面对解决的问题。

江苏省在2008年底要发布并实施新的水污染排放标准(DB32/1072-2007)规定,凡排入太湖地区水体的城镇污水处理厂或工业废水都必须达到设定的化学需氧量(COD)、氨氮、总氨和总磷等4种水污染物最高排放浓度限值及最高允许排水量限制;已经颁布实施的新国家标准《生活饮用水卫生标准》(GB5749-2006),改变了我国20年来自来水标准不变的落后状况,水质标准正向国际先进水平接轨。

以上标准的提高,使得国内大部分相关水处理厂的工艺,不管是生活污水、工业废水还是市政自来水,都需要增加深度处理这一不可逾越的工艺。

本项目的核心处理技术是臭氧加生物活性炭法。

通过臭氧的强氧化能力和生物活性炭的分解吸附能力,并根据原水水质分析报告,辅之以其它传统配套工艺,达到降低COD,降低水中氮磷含量,使处理对象达到国家或地方相应的法规标准。

本项目所含技术在国外已经有很好的推广使用,发达国家80%已经采用该项水处理技术,理论可行,经验充实,结果信服。

臭氧生物活性炭技术11

臭氧生物活性炭技术11

A
17 饮用水深度处理应用效果
常规处理水厂氨氮处理效果
常规水处理工艺中混凝 沉淀对氨氮有一定的去 除作用,但主要靠砂滤 池微生A 物作用去除
18
饮用水深度处理应用效果
三卤甲烷生成潜能比较
预臭氧后三卤甲烷总量有所增加。
整个工艺去除三卤甲烷生成潜能的最关键部分是生物活性炭滤 池,其对三卤甲烷生成潜能的去除率达到52.9%,出水后三卤甲烷生 成潜能仅为519μg·L-1,大大降低了消毒出水中过量消毒副产物产 生的风险。
与过滤配合使用——生物活性炭前需设过滤,不能将生物活性 炭作为过滤器来运行。一般生物活性炭进水的浊度<5NTU。
换炭再生——使用一定时间后必须更换新炭,饱和炭进行就地再 A生或是外运委托再生,否则将影响出水水质。
10
工艺应用条件与设计参数
设计参数:
吸附容量(qe);高出单纯活性炭4~20倍 通水倍数(n):根据水质确定 空塔速度(LV):4-5m/h,满足足够的接触时间,微生物降解 炭层高度(Hc):一般1~2m,不宜过高 气水比:炭层内应有足够溶解氧(>1mg/L),4~6:较为合
炼油废水
隔油 浮选 生物曝气 后浮选 生物活性炭工艺。生物活性炭的吸 附容量已达到2.52 gCOD/kg炭。
A
22
其他应用——生活污水深度处理
宝钢厂采用SBR 生物活性炭工艺,分别在各厂区陆续建成十多套 800 m3/d的综合污水处理及再生装置。
A
23
已连续运行2年以上,没有更换过新炭,处理出水达到中水水质标 试验
臭氧氧化一生物活性炭的第一次联合使用是1961年在德国 Dusseldorf(杜塞尔多夫)市Amstaad水厂中开始的,它的成 功引起了德国以及西欧水处理工程界的重视。

臭氧活性炭工艺的探讨

臭氧活性炭工艺的探讨

臭氧活性炭工艺的探讨摘要:传统的饮用水处理工艺是混凝、沉淀、过滤及消毒,主要处理的是细菌、浊度及色度等,但不能有效去除臭味、有机物、氨氮、藻类及内分泌干扰物等,且传统的氯消毒会产生“三致”消毒副产物等问题。

主要通过研究臭氧-活性炭技术,发掘其对深度饮用水处理带来的应用。

关键词:臭氧,活性炭,臭氧-活性炭臭氧具有强氧化性,能在水中分解为羟基自由基,将有机物氧化成小分子有机物,反应速度快且不产生有害物质。

且有除臭、脱色的功效。

臭氧 - 活性炭技术是 1961 年在欧洲最先使用,该技术将臭氧氧化技术、活性炭吸附技术等组合在一起。

臭氧氧化技术与活性炭技术非常互补,在一起能发挥彼此的优势,先对饮用水进行臭氧预氧化,使水中的有机物及其他还原性物质得到氧化,提高活性炭滤池进水可生化性的同时也降低了活性炭滤池的有机负荷。

Takeuchi 等人通过研究发现,臭氧 - 活性炭工艺中,水样经臭氧氧化后,BOD/COD 增加了 0.23,极大的改善了水样的可生化性。

西方国家水厂资料统计表明,该工艺中活性炭使用寿命是单独使用活性炭的 6 倍,且对有机物的去除能力也大大增加,大约是 10 倍之高。

尤其我国已经研制出比国外更低价高效的优质活性炭,相信在不久的将来,通过我们研究的深入,臭氧 - 活性炭技术会在我国有更广泛的应用。

目前,昆明水厂、北京田村山水厂及上海周家渡水厂等都有应用该技术进行饮用水的深度处理[1]。

1、臭氧活性炭工艺技术机理臭氧的化学氧化作用、活性炭的屋里吸附作用以及微生物的降解作用三项特点的有机结合,构成了臭氧活性炭工艺技术的技术优势。

活性炭负责吸附难以降解的大分子有机物所氧化分解成的小分子,臭氧在处理过程中能够产生氧气,水中含氧量有所提高,微生物生存所需的营养源有所保障,一些好氧微生物能够很好的生活在该环境中,对活性炭的工作寿命也有很大的积极影响,实现大幅降解有机物从而将有机物从水中去除的目的。

有机污染物能够被活性炭表面所附着的细菌和微生物降解掉,同时,能够高效吸附水中的残余臭氧和处理过程中所产生的副产物,提高了饮用水的安全指数。

浅谈臭氧-生物活性炭工艺及应用

浅谈臭氧-生物活性炭工艺及应用

浅谈臭氧-生物活性炭工艺及应用摘要:臭氧-生物活性炭工艺是一种先进的饮用水深度净化工艺,它将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体。

关键词:臭氧-生物活性炭;深度处理前言臭氧-生物活性炭工艺一般设在砂滤之后,砂滤水经臭氧氧化后,其中一小部分有机物被彻底氧化为水和二氧化碳,大部分有机物转化为臭氧化中间产物,使原来不能被生物降解的有机物变为可生物降解的有机物,提高水的可生化性;臭氧在水中可以自动分解为氧,使活性炭床处于富氧状态,增强了活性炭表面好氧微生物的活性,形成生物膜,降解吸附在活性炭中的有机物,使活性炭得到更高程度的使用[1]。

1 臭氧-生物活性炭工艺机理该工艺将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附、生物氧化降解四种作用紧密结合为一体,它们互相促进,取得多重效应[2]。

(1).臭氧预氧化。

臭氧初步氧化分解水中的有机物及其他还原性物质,降低生物活性炭滤池的有机负荷,同时使水中难以生物降解的有机物断链、开环,将大分子有机物氧化为小分子有机物,提高其可生化性和可吸附性,使其能够被生物降解。

同时氧化水中溶解性的锰和铁,生成难溶性的氧化物,提高砂过滤的效果,提高锰、铁的去除率。

臭氧在水中分解生成氧气,使生物活性炭滤池有充足的溶解氧(DO),使好氧微生物活性增强,提高了微生物增长潜力,加快了生物的氧化和硝化作用,延长了活性炭的使用寿命,加快了有机物的生物降解,从而提高了对有机物的去除效果[3]。

(2).生物活性炭处理。

主要发挥以下几种作用:①破坏水中残余臭氧;②通过吸附去除化合物或臭氧副产物;③通过活性炭表面细菌的生物活动降解有机物;④吸附水中浓度较低、其他方法难以去除的有臭味或异味的物质;⑤附着的硝化菌还可以降低水中氨氮的浓度[4]。

(3).臭氧后氧化。

破坏细菌体上的脱氢酶,干扰细菌的呼吸作用,导致细菌死亡;氧化有机物,如杀虫剂、清洁剂、苯酚等;去除DOC;氧化分解螯合物,如EDTA和NTA等[5]。

臭氧活性炭系统工作原理

臭氧活性炭系统工作原理

臭氧活性炭系统工作原理
臭氧活性炭系统是一种利用臭氧氧化和活性炭吸附的方法来处理空气中污染物的技术。

其工作原理如下:
1. 吸附:首先,空气中的污染物通过进气口进入臭氧活性炭系统。

系统内部配有活性炭滤网,其具有大量微孔和表面活性位点,能够有效吸附和储存气体污染物。

2. 臭氧生成:系统内部还通过一种叫做臭氧发生器的装置产生臭氧气体。

臭氧是一种具有很强氧化能力的氧分子(O3),它能够与空气中的许多污染物发生氧化反应,从而将其分解或转化为无毒无害的物质。

3. 氧化:臭氧通过喷射或扩散到活性炭滤网上,与吸附在滤网上的污染物接触反应。

这些污染物因臭氧的氧化作用而发生分解或转化,使其降解成较小的分子或无害的物质。

4. 吸附与解吸:活性炭滤网在反应过程中不仅起到吸附污染物的作用,还能够在臭氧氧化后重新吸附新的污染物。

这样,活性炭滤网就可以循环使用,延长其寿命。

通过上述工作原理,臭氧活性炭系统能够高效地净化空气中的污染物,提高空气质量,保护人体健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈臭氧-生物活性炭深度水处理工艺摘要主要探讨臭氧—生物活性炭深度水处理工艺的优缺点,总结工艺设计的要点,并介绍了它们的一些具体运用,为臭氧-生物活性炭深度水处理工艺的进一步推广提供技术支持。

关键词臭氧活性炭城市供水工艺设计1臭氧-生物活性炭深度水处理工艺(O3-BAC) 概述臭氧-生物活性炭深度水处理技术被称为饮用水净化的第二代净水技术,臭氧-生物活性炭技术采用臭氧氧化和生物活性炭滤池联用的方法,将臭氧化学氧化、臭氧灭菌消毒、活性炭物理化学吸附和生物氧化降解四种技术合为一体。

其主要目的是在常规处理之后进一步去除水中有机污染物、氯消毒副产物的前体物以及氨氮,降低出水中的BDOC和AOC,保证净水工艺出水的化学稳定性和生物稳定性。

臭氧是氧的同素异性体,分子式为O3,常态呈气体,淡蓝色,有特殊气味;臭氧是自然界最强的氧化剂之一,具有广谱杀微生物作用,其杀菌速度高于氯气。

臭氧投加在水中以后,主要有三个作用,一方面直接降解有机物,减少进入活性炭池中的有机负荷;一方面把大分子有机物降解为小分子有机物,改变水中有机物的分子量分布,提高水中有机物的可生化性,从而有利于强化后续活性炭工艺对于中小分子量有机物的吸附降解;最后一个作用就是为后续活性炭工艺充氧,有利于活性炭好氧微生物的生长。

活性炭几乎可以用含有碳的任何物质做原材料来制造,这包括木材、锯末、煤、泥炭、果壳、果核、蔗渣、骨、石油脚、皮革废物、纸厂废物等等,近来有的国家倾向于用天然煤和焦炭制造粒状活性炭。

活性炭的主要特征是比表面积大和带孔隙的构造,因而显示出良好的吸附性能。

活性炭分粉末活性炭和颗粒活性炭两种,两者不同之处是颗粒大小不同,其吸附性能没有本质上的区别。

活性炭作为一种多孔物质,能够吸附水中浓度较低、其它方法难以去除的物质,同时,还可以去除水中的浊度、嗅味、色度,改善水的口感,而且能够有效地吸附合成洗涤剂、阴离子表面活性剂等活性物质;活性炭还具有催化作用,催化氧化臭氧为羟基自由基,最终生成氧气,增加水中的溶解氧(DO)的浓度。

活性炭空隙多,比表面积大,能够迅速吸附水中的溶解性有机物,同时也能富集水中的微生物。

粒状活性炭吸附水中溶解性有机物,但对一些挥发性较低,难以生物降解,分子量在10000以上的高分子有机物不易吸附去除,而且吸附性能还受有机物所带官能团及分子结构的影响。

利用臭氧电位高的特点,易将许多不易生物降解的有机物分解成许多更易生物降解的较小的或含氧较多的低分子有机物,从而改变了有机物的结构形态和性质,使其易被活性炭吸附去除,而被吸附的溶解性有机物也为维持炭床中微生物的生命活动提供营养源。

同时,由于臭氧供氧充分,炭床中大量生长繁殖好氧菌,有足够时间来生物降解所吸附的低分子有机物,这样,也就在炭床中形成生物膜。

该生物膜具有生物氧化降解和生物吸附的双重作用,而活性炭孔隙中的有机物被分解后,经过反冲洗,活性炭孔隙腾出吸附位置,恢复了对有机物与溶解氧的吸附能力。

活性炭对水中有机物的吸附和微生物的氧化分解是相继发生的,微生物的氧化分解作用,使活性炭的吸附能力得到恢复,而活性炭的吸附作用又使微生物获得丰富的养料和氧气,两者相互促进,形成相对稳状态,得到稳定的处理效果,从而大大地延长了活性炭的再生周期。

活性炭附着的硝化菌还可以转化水中的氨氮化合物,降低水中NH3- N的浓度。

臭氧-生物活性炭深度水处理工艺(O3-BAC)是指臭氧和活性炭吸附结合在一起的水处理方法,采取先臭氧化后活性炭吸附,并利用活性炭表面生长微生物的生物降解作用,完成对水中有机污染物的有效去除,它集臭氧氧化、杀菌消毒、活性炭物理吸附和微生物生物氧化作用为一体,充分发挥各自特长,互相促进,取得了去除有机污染物的多重效应,从而达到水质深度净化的目的。

臭氧-生物活性炭滤池联合工艺能有效降解和去除水中的有机物、农药、藻类,去除异臭、异味、色度,去除部分重金属、氰化物、放射性物质、氨氮等。

2臭氧-生物活性炭深度水处理工艺的优缺点优点:臭氧-生物活性炭滤池工艺是将活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒四种技术合为一体,与传统水处理工艺相比,具有明显的优势,主要体现在:①常规加氯工艺处理的自来水的Ames致突变试验结果多为阳性,而臭氧-生物活性炭工艺处理后为阴性;②臭氧-活性炭工艺对有机污染物的去除率为50%以上,比常规处理提高15~20个百分点;③提高色度和嗅味的去除率,改善感官性指标;④提高对铁、锰的去除率;⑤可以去除氨氮到90%左右,水中的氨氮和亚硝酸盐可被生物氧化为硝酸盐,从而减少了后氯化的投氯量,降低了三卤甲烷等消毒副产物的生成;⑥有效去除AOC、蛋白氨氮,提高处理水的生物稳定性,提高管网水质。

另外臭氧和活性炭联合使用,还可以延长活性炭的运行寿命,减少运行费用。

缺点:尽管臭氧-生物活性炭滤池深度处理技术对于控制饮用水质污染和改善水质发挥了较好的作用,但也存在局限性。

主要表现在:①臭氧氧化处理饮用水存在臭氧利用率低、氧化能力不足等缺陷;②臭氧可以有效降解含有不饱和键或者部分芳香类有机污染物,而对于部分的稳定性有机污染物(如农药、卤代有机物和硝基化合物等)难以氧化降解。

臭氧对一些有机物的降解仅仅局限与母体化合物结构上的变化,可能会生成毒性更大且不易被生物活性炭降解的中间氧化产物;③臭氧可以将大分子有机物氧化成小分子有机物,而有研究表明,活性炭吸附对分子质量为500~3000Da的有机有较好的去除效果,而对大分子和小分子的有机物去除效果较差。

臭氧氧化后有机物的分子质量变小,将不利于活性炭的吸附;④当水中含有溴化物(Br-)时,臭氧氧化将会生成溴酸根(BrO3-)及溴代三卤甲烷(Br-THM)等有害副产物,对人体健康有很大的影响。

3臭氧-生物活性炭深度水处理工艺在国内外的应用臭氧活性炭深度水处理工艺最早于1961在西德Dusseldorf市Amestaad水厂投入使用。

从20世纪60年代以后,臭氧-生物活性炭技术逐渐被欧洲、美国、加拿大、日本等发达国家广泛地应用到微污染水的深度处理中,并且对净化饮用水水中各种污染物取得良好的效果;发展中国家应用最广泛的国家有以色列、南非、纳米比亚等。

其中有代表性的是德国的不来梅水厂、缪尔海姆水厂、法国的梅里苏瓦茨水厂、瑞士的苏黎世里格湖水厂、美国洛杉矶水厂和日本东京市的金盯净水厂、大阪市的柴岛水厂和澳大利亚的Edeope水厂等。

日本的金町净水厂位于东京市,现有供水能力约160万m3/d,占东京市水道局总供水量的23%,服务人口约250万,原水从Tone河取水。

自1972年以来,由于Tone河流域的城市化过程加快,金町净水厂取用的原水受到严重污染,尤其是在夏季,水中有很严重的霉味。

经过调查,东京市水道局发现引起霉味的主要源物质是二甲基异冰片(2- MIB)。

从1984开始,净水厂试图使用粉末活性炭去除霉味,但是由于原水中二甲基异冰片浓度的变化很快,粉末活性炭难以有效去除嗅味。

从1984年到1990年,东京市水道局进行深度处理工艺的中试测试研究。

1992年6月在金町净水厂建立了一期臭氧活性炭深度处理工艺流程,处理水量为26万m3/d,约占水厂总供水能力的六分之一。

水厂的出厂水则是将常规处理以及深度处理的水混合均匀以后对外供应,水质良好并且没有异味。

深度处理工艺流程中,臭氧活性炭池是设计在沉淀池之后,滤池的前面,这样设计的目的是基于他们认为臭氧活性炭工艺会增加出厂水浊度,因此在深度处理之后增加砂滤去除浊度。

臭氧接触池分为五个池,有效水深为6.0m,臭氧接触时间12min,臭氧最大投加量为3mg/L,一般投加量为lmg/L,这取决于水质情况;另外臭氧接触池分为三段式,各段臭氧化空气投加比率为3:2:1,活性炭滤池炭层高度为2.5m,EBCT为15min,一般每三到四天反冲洗一次。

采用气水联合反冲洗,一般先气水联合反冲4min,然后用水反冲10min。

几年的运行经验证明臭氧-生物活性炭滤池工艺不仅有效的去除了霉味的问题,还可以有效的减低氨氮浓度、UV260值(日本采用UV260作为水中对紫外有吸收峰的有机物量的替代参数)、非离子表面活性剂浓度、以及三卤甲烷前体物(THMPFP)的浓度。

在日本大阪市的柴岛水厂也建立了臭氧活性炭深度处理工艺。

柴岛水厂现有供水能力118万m3/d,其中,上系为67万m3/d,下系为51万m3/d,原水取自源于琵琶湖的淀川。

由于近年来水质恶化的影响,嗅味增加,大阪市水道局于1998年3月对下系工程进行改造和扩建。

建成后的深度处理工艺主要是在砂滤和清水池之间增加了一套臭氧活性炭工艺,并且在砂滤前增加了臭氧投加装置,即中臭氧。

中臭氧加注量为0.7mg/L,滤后水臭氧加注率为1.0mg/L。

上系还是原来的常规处理工艺。

经过对比研究,发现深度处理在常规处理的基础上可明显降低嗅味值83%,降低DOC浓度33%,降低KMNO4消耗量54%,降低TTHM浓度41%。

运行经验同时表明臭氧-生物活性炭工艺有利于去除氨氮以及降低水中锰含量。

1997年澳大利亚在维多利亚的Edenhope建成该国第一个采用臭氧活性炭技术的水厂,水厂从wallace湖取水。

wallace湖长期受到蓝绿藻类的污染,富营养化现象严重,湖中DOC 浓度特别高,平均约20mg/L,该水厂处理水量为8000m3/d,经过臭氧一生物活性炭深度处理以后,水质达到澳大利亚水质规范的要求。

臭氧-生物活性炭联合工艺在美国得到较为广泛的应用。

密执安州克莱门山市水、海斯明水厂、E. H.阿尔德雷支水厂、加州戈利塔水厂和高地公园水厂均采用臭氧-生物活性炭深度处理工艺。

美国推荐的活性炭滤池有关参数:活性炭粒径为0.5~1.0mm,不均匀系数为1.5~2.5,密度为1.35~1.37g/ cm3,滤速为7.5~15m /h,滤层深度为1.8~3.6m,反冲洗强度为30~39m3/(m2·h)。

美国水厂多采用下向流重力式活性炭滤床。

各水厂在用粒状活性炭过滤前均设有混合、絮凝、沉淀、砂滤等工序,GAC一般用于吸附。

国内在城市自来水行业中最早将臭氧-生物活性炭技术投入生产实践的是北京田村山水厂,1985年投产。

随后在北京燕山石化水厂,九江炼油厂生活水厂,南京炼油厂,大庆石化总厂,昆明自来水公司第六水厂南分厂,周家渡水厂,深圳梅林水厂,浙江杭州南星桥水厂,以及桐乡市果园桥水厂等应用了臭氧-生物活性炭处理工艺。

2004年投入生产的广州南洲水厂是我国目前规模最大的臭氧-生物活性炭水厂,日供水规模达100万吨。

北京田村山水厂是我国较早采用臭氧-生物活性炭技术的现代化水厂,处理水量为17万m3/d,是北京市第一座取用地表水源(官厅水库)的净水厂。

相关文档
最新文档