光谱基础知识

合集下载

光谱分析基础知识

光谱分析基础知识

光谱分析基础知识光谱分析是一种常见的科学分析技术,通过研究物质与光的相互作用,可以获取物质的结构、组成和性质等信息。

光谱分析主要利用物质对不同波长、频率和能量的光有不同的吸收、散射、发射等现象,从而通过光谱的特征来确定物质的性质。

光谱分析的基础知识主要包括光的性质和光谱的特征。

首先,光的性质是光谱分析的基础。

光是一种电磁波,具有粒子性和波动性的双重性质。

光波具有特定的频率、波长和能量。

频率是指光波振动的次数,波长是指光波在空间中传播的距离。

频率与波长成反比关系,即频率越高,波长越短。

能量与频率成正比关系,即频率越高,能量越大。

光谱分析主要利用这些性质来研究物质与光的相互作用。

其次,光谱的特征是光谱分析的关键。

光谱是指将光按照其频率或波长进行分解,并记录下不同频率或波长的强度变化。

根据不同的物质和光谱类型,光谱可以分为连续谱、线谱和带谱三种。

连续谱是指由不同波长的连续光强度构成的光谱。

一个常见的连续谱是白炽灯发出的光,它包含了从紫外线到红外线的所有波长范围内的光。

连续谱的特点是波长范围广,且强度连续变化。

线谱是指由不连续的亮线组成的光谱。

线谱的特点是波长有限,强度集中在几个特定的波长上。

每个物质都有其独特的线谱,可以用于物质的鉴定和定量分析。

线谱的产生主要是由于物质在光谱仪中吸收、散射和发射光的特定波长。

带谱是介于连续谱和线谱之间的光谱。

带谱的特点是波长范围广,但在一些波长范围内具有一定的宽度。

带谱通常由分子或固体物质引起,故其带宽度可用于分析物质的结构和性质。

光谱分析有许多具体的分析方法,包括吸收光谱、发射光谱、拉曼光谱、荧光光谱、紫外-可见吸收光谱等。

每种方法都有其独特的应用范围和特点。

例如,吸收光谱可以用于测定物质的浓度和反应机理,发射光谱可以用于测定物质中其中一种元素的含量,拉曼光谱可以用于研究物质的结构和分子振动等。

这些不同的光谱方法在实际应用中常常相互结合使用,以提高分析的准确性和可靠性。

光谱学基础知识(3)

光谱学基础知识(3)

考虑各个能级的跃迁
Ak Aki
i
4
自发辐射跃迁几率:
由于自发辐射,激发态的粒子数 变化可以写成:
dNk Ak Nk dt
Nk t Nk 0 exp Ak t
经过时间k=1/Ak后,Nk下降到初始时的1/e, 称k为能级Ek的平均自发寿命
结论:一个能级的自发发射跃迁几率等于该能级的平均自发寿 命的倒数。
Байду номын сангаас
根据谱线宽带的定义: 1 2
I 1 I 2 I 0 / 2
D 2 20
Vp c

0
ln 2 8 kT c m
1 2
D
c
c
2 RT
热力学统计:
M N0 m R N0 k
ln 2 M
7.16 10 7 0 T / M
因此为了计算i需要计算距发光原子rrdr内最邻近粒子的几率prdr它等于drlaserspectroscopyitsapplication54考察相互作用的两个粒子根据相互作用势能表示式相互作用引起的频率变化等于用平均距离表示这个变化的平均值laserspectroscopyitsapplication55谱线的两线翼相应于频率变化的最大点对这两线翼影响最大的是那些距离r最小的最近的粒子
E (t ) E ( )e


i t
d
E ( )
1 2


0
E (t )e i t dt
Laser spectroscopy and its application
14
E(t ) E0 e
t 2

e
i0t

波谱解析知识点总结

波谱解析知识点总结

波谱解析知识点总结一、波谱解析的基本原理1. 光谱学基础知识光谱学涉及到物质对光的吸收、发射、散射等现象,它是物质分析的重要手段之一。

常见的光谱包括紫外光谱、可见光谱、红外光谱、拉曼光谱等。

每种光谱方法都有其独特的应用领域和分析特点。

2. 原子光谱原子光谱是指研究原子吸收、发射光谱的一门学科,主要包括原子吸收光谱和原子发射光谱。

原子光谱可以用于分析金属元素和非金属元素的含量,它是分析化学中的重要手段。

3. 分子光谱分子光谱是指研究分子在光的作用下吸收、发射、散射等现象的一门学科,主要包括紫外光谱、红外光谱、拉曼光谱等。

分子光谱可以用于研究分子的结构和性质,对于有机化合物的分析具有重要意义。

4. 核磁共振波谱核磁共振波谱是指研究核磁共振现象的一门学科,它可以用于研究原子核的磁共振现象,得到有关物质结构和性质的信息。

核磁共振波谱在有机化学、生物化学等领域有着广泛的应用。

二、波谱解析的仪器和设备1. 分光光度计分光光度计是用于测量物质吸收、发射光谱的仪器,它可以测量紫外、可见、红外等波段的光谱,是分析化学中常用的仪器之一。

2. 核磁共振仪核磁共振仪是用于测量核磁共振波谱的仪器,它可以测量氢、碳等核的共振信号,得到物质的结构和性质信息。

3. 质谱仪质谱仪是用于测量物质离子的质量和荷质比的仪器,它可以得到物质的分子量、结构等信息,是很多化学分析的重要手段。

4. 激光拉曼光谱仪激光拉曼光谱仪是用于测量拉曼光谱的专用仪器,它可以用激光光源激发样品,得到与分子振动信息有关的拉曼光谱。

三、波谱解析的应用领域1. 化学分析波谱解析技术在化学分析中有着广泛的应用,它可以用于定量分析、质量分析、结构分析等多个方面,对于复杂的化合物和材料有很高的分析能力。

2. 药物研发波谱解析技术在药物研发中有着重要的应用,它可以用于研究药物的成分、结构和性质,对于新药物的研究和开发有很大帮助。

3. 生物医学波谱解析技术在生物医学领域有着广泛的应用,它可以用于研究生物分子的结构和功能,对于临床诊断和治疗有着重要意义。

光谱基础知识解读

光谱基础知识解读

太阳光光谱紫外线谱带:波长280-400nm之间,其特点是穿透性强,可使人体皮肤黑色素沉积,颜色加深,过度的紫外线曝晒会导致皮肤癌,可导致地毯、窗帘、织物及家具油漆褪色。

可见光谱带:波长380~780nm之间,其特点是肉眼可以看见的唯一光谱,可见光波段进一步可以分为不同的颜色(赤橙黄绿蓝靛紫七色),对人体没有直接伤害。

红外光谱带:波长700~2400nm之间,其特点是我们可以直接感受到阳光“不可见”的热量,所含能量最大,所以热量也高。

各波段的远近红外线构成了太阳能的53%,紫外线占3%,可见光占44%。

元素光谱简介如果物质是以单原子的形式而存在,关键看该原子的电子激发能了。

如果在可见光的某个范围内,并且吸收某一部分光线,那它就显剩下的部分的光线的颜色。

如该原子的电子激发能非常低,可以吸收任意的光线,该原子就是黑色的,如果该原子的电子激发能非常高。

不能吸收任何光线,它就是白色的。

如果它能吸收短波部分的光线,那它就是红色或黄色的。

具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。

元素燃烧发出的光谱燃烧所发出的光色根据不同的元素发出不同的光谱,每一种元素燃烧时都发出多条光谱,这种光通过三梭镜或光栅后会在屏障上显现出多条亮线,也就是说只发出有限的几种频率的光,这就是这种元素的光谱。

其中会有一条或几条最亮的线,这几条最亮的线决定了在人眼中所看到的颜色。

观察光谱的方法连续光谱的光线在通过含某种元素的气体时在光谱带上会出现多条暗线,这些暗线刚好与这种元素的光谱线位置相同,强度刚好相反,(光谱线越强的位置暗线越明显)这就是元素的吸收光谱。

天文学家就是利用吸收光谱来查明遥远的恒星大气和星云中所含的元素,观察恒星红移或蓝移也要利用吸收光谱。

观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱原子决定明线光谱实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构。

光谱仪基础知识

光谱仪基础知识

第1章衍射光栅:刻划型和全息型衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。

(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。

全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。

全息光栅可在平面、球面、超环面以及很多其他类型表面生成。

本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。

1.1 基础公式在介绍基础公式前,有必要简要说明单色光和连续谱。

提示:单色光其光谱宽度无限窄。

常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。

这些即为大家所熟知的“线光源”或者“离散线光源”。

提示:连续谱光谱宽度有限,如“白光”。

理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。

有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。

本书中的公式适用于空气中的情况,即m0=1。

因此,l=l0=空气中的波长。

定义单位α - (alpha) 入射角度β - (beta) 衍射角度k - 衍射阶数整数定义单位n - 刻线密度刻线数每毫米DV- 分离角度µ- 折射率无单位λ - 真空波长纳米λ0 - 折射率为µ0介质中的波长其中λ0 = λ/µ1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm最基础的光栅方程如下:(1-1)在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。

因此,分离角D V成为常数,由下式决定,(1-2)对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:(1-3)假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

光谱仪基础知识

光谱仪基础知识

第1章衍射光栅:刻划型和全息型衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。

(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。

全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。

全息光栅可在平面、球面、超环面以及很多其他类型表面生成。

本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。

1.1 基础公式在介绍基础公式前,有必要简要说明单色光和连续谱。

提示:单色光其光谱宽度无限窄。

常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。

这些即为大家所熟知的“线光源”或者“离散线光源”。

提示:连续谱光谱宽度有限,如“白光”。

理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。

有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。

本书中的公式适用于空气中的情况,即m0=1。

因此,l=l0=空气中的波长。

定义单位α - (alpha) 入射角度β - (beta) 衍射角度k - 衍射阶数整数定义单位n - 刻线密度刻线数每毫米DV- 分离角度µ- 折射率无单位λ - 真空波长纳米λ0 - 折射率为µ介质中的波长其中λ0= λ/µ1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm最基础的光栅方程如下:(1-1)在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。

因此,分离角D V成为常数,由下式决定,(1-2)对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:(1-3)假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

光谱作业指导书

光谱作业指导书

光谱作业指导书一、引言光谱是研究物质性质和结构的重要手段之一,广泛应用于化学、物理、生物学等领域。

本指导书旨在匡助学生理解光谱的基本原理和操作步骤,提供相应的实验指导,以便学生能够顺利完成光谱作业。

二、光谱基础知识1. 光谱的定义光谱是指将光按照波长进行分解并记录其强度的过程。

根据波长范围的不同,光谱可分为可见光谱、紫外光谱、红外光谱等。

2. 光谱的分类根据光谱的测量方法和原理,光谱可分为吸收光谱、发射光谱和拉曼光谱等。

3. 光谱仪的构成光谱仪主要由光源、样品室、光栅、检测器和数据处理系统等组成。

光源产生光,样品室用于放置待测样品,光栅用于分散光束,检测器用于测量光强度,数据处理系统用于记录和分析数据。

三、光谱实验操作指导1. 实验前准备a. 检查光谱仪的各部件是否完好,并进行必要的校准。

b. 准备待测样品,并按照实验要求进行处理,如稀释、溶解等。

2. 光谱测量步骤a. 打开光谱仪电源,待仪器启动完成后,进行暗噪声测量。

b. 将待测样品放置于样品室中,并调整光栅的角度和入射光强度。

c. 选择合适的测量模式(吸收光谱、发射光谱等),设置波长范围和积分时间。

d. 点击开始测量按钮,记录测量数据,并保存数据文件。

3. 数据处理与分析a. 使用数据处理软件打开保存的数据文件。

b. 根据实验要求,进行光谱数据的处理,如峰位分析、吸收峰面积计算等。

c. 进行数据图表的绘制,以便更直观地展示实验结果。

d. 根据实验目的,对实验结果进行分析和讨论,并撰写实验报告。

四、光谱实验注意事项1. 安全操作在进行光谱实验时,要注意避免直接接触光源和样品,以免造成伤害。

同时,注意遵守实验室的安全规定,佩戴实验室所需的个人防护装备。

2. 仪器操作在操作光谱仪时,要轻拿轻放,避免碰撞和摔落。

调整光栅角度时,应注意不要触碰光栅表面,以免损坏。

3. 样品处理在进行光谱实验前,要对待测样品进行适当的处理,如稀释、溶解等。

同时,要避免样品受到污染,以免影响实验结果。

光谱学的基础知识和应用

光谱学的基础知识和应用

光谱学的基础知识和应用光谱学是现代科学中极为重要的一个分支,它研究物理性质、化学性质和电磁波谱之间的关系。

在生命科学、材料科学、环境科学、天文学、能源和光电子学等领域都有着广泛的应用。

本文将介绍光谱学的基础知识和主要应用。

一、光谱学的基本概念光谱学是研究物质与电磁波(特别是可见光和紫外线)之间相互作用的学科。

电磁波是由振动的电场和磁场构成的,它们的振动频率(ν,单位为赫兹)和波长(λ,单位为米)之间满足下面的关系:c = νλ其中,c是电磁波在真空中的速度,约为300000 km/s。

光谱学最基本的概念是“光的频谱”(spectrum),即将光按频率或波长分解开来所得到的一系列分量的集合。

光的频谱大致可以分为以下几类:1. 连续光谱(continuous spectrum):它是由各种波长的光波干涉和叠加的结果。

例如黑体辐射(blackbody radiation)就是一种连续光谱。

2. 发射光谱(emission spectrum):物质被加热或激发时,会发出一定波长的光。

这些光波经常呈现出特定的波长分布,即发射光谱。

例如氢原子光谱就是一种明显的发射光谱。

3. 吸收光谱(absorption spectrum):当某一种波长的光通过某种物质时,物质会吸收这种波长的光,而不能透过去。

这种现象可以用吸收光谱来描述,吸收光谱与发射光谱是相反的。

例如太阳光通过地球大气层时的吸收现象就是一种吸收光谱。

二、光谱学的应用1. 化学分析光谱学在化学分析中有着广泛的应用,特别是原子光谱法。

原子光谱法能够分析样品中包含的元素种类和含量,主要有原子吸收光谱(atomic absorption spectroscopy,AAS)和原子发射光谱(atomic emission spectroscopy,AES)两种方法。

2. 生命科学生命科学中使用光谱学的方法是非常多样的,例如:(1)荧光光谱可以研究生物分子的结构、功能。

光谱基础知识

光谱基础知识

光谱:处于不同状态的物质,在状态发生变化时所产生的电子辐射,经色散系统分光后,按波长或频率或能量顺序排列就形成了光谱。

射频区:核磁共振,电子自旋共振,10m-1cm微波区:分子转动能级间跃迁,1cm-100um红外区:分子振动能级变化,100um-1um可见、紫外光谱区:原子外层电子跃迁,价电子能级间跃迁,1um-10nmX射线区:原子内壳电子跃迁10nm分立谱和连续谱分立谱由一些线光谱组成,线光谱是在某些频率上出现极大值分布的光强分布形式。

原子的束缚能级间跃迁产生分立的线光谱。

有发射光谱和吸收光谱连续谱是在一段光谱区上光强为连续过渡而无法分离的光谱,一般热辐射所产生的光谱为连续光谱。

当原子或分子在辐射的激发下电离时,能形成连续的吸收光谱,在等离子体中电子的韧致辐射或电子与离子的复合会产生连续的发射光谱光谱按能量传递方式可分为:发射光谱、吸收光谱、荧光光谱和拉曼光谱。

原子光谱:由于原子状态发生变化而产生的电子辐射。

磷光是一种缓慢发光的光致冷发光现象。

当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与荧光过程不同,当入射光停止后,发光现象持续存在。

发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。

所谓的"在黑暗中发光"的材料通常都是磷光性材料,如夜明珠。

荧光是一种光致发光的冷发光现象。

当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出出射光(通常波长比入射光的的波长长,在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。

具有这种性质的出射光就被称之为荧光。

等离子体是原子分子集团处于高度电离的状态。

其特点是高温和高度电离光谱特点:在正常原子的离化限附近存在着一片能记得准连续区。

荧光光谱基础知识

荧光光谱基础知识

荧 光 光 谱(Fluorescence Spectroscopy )韩荣成(10303023)北京大学,03级生物医学工程一、背景知识:1.荧光,是指物质在吸收紫外光后发出的波长较长的紫外荧光或可见荧光,以及吸收波长较短的可见光后发出波长较长的可见荧光。

除了紫外荧光和可见荧光,还有红外荧光、X 射线荧光等。

在很多情况下,分子从激发态回到基态过程中,能量通过热量等形式散失到周围。

但 是在某些情况下,能量能以光子发射的形式释放出来。

分子的能量状态在光学分析中涉及的分子能量有:E 0=Ee+Ev+Er ,其中Ee:价电子运动能(electron ); Ev :原子在平衡位置的振动能(vibration );Er :分子绕其重心的转动能(rotation )。

Ee 大约为1eV 数量级;Ev 大约为10-1~10-2 eV ;Er 大约为10-4~10-5eV 数量级,可见⊿Ee>⊿Ev>⊿Er分子吸收能量后,处于激发态的分子通过非辐射过程丢失能量,首先到达S1的最低振动能级,这一过程称为内转换(internal conversion),发生在10-11s内。

从S1的最低振动能级以光子形式放出能量而回到基态的不同振动能级,这一过程称为荧光(fluorescence),发生在10-9s内;如果以非辐射的形式丢失能量则称为淬灭(quenching)。

如果某种物质在被某种波长的光照射以后能在较长的时间内发出比荧光波长更长的波长的光,则称这种光为磷光。

磷光产生的机制与荧光是不同的,虽然它们都属于发射光谱,但磷光不是处于第一电子激发态的最低振动能级的分子直接释放出光子回到基态的结果,而是从某种能量低于第一电子激发态的最低振动能级的另一种亚稳能级⎯三重态向基态的各振动能级以辐射方式产生跃迁时发出的光。

所谓三重态或三线态,是指分子中电子自旋量子数S=1,即原来两个配对的自旋方向相反的电子之一自旋方向改变,以至电子自旋之和不为0的情况。

光谱简单入门知识点总结

光谱简单入门知识点总结

光谱简单入门知识点总结一、光的波动性和粒子性光的波动性和粒子性是光谱学研究的基础。

光的波动性表现在光具有波动性质,如干涉、衍射、折射等,可以用波长、频率和波速等物理量描述光的特性。

光的粒子性表现在光具有一定的能量,并且在与物质相互作用时表现出离散的能量变化,可以用光子理论来描述光的特性。

因此,光可以用波动理论和粒子理论来解释其行为,这是光谱学研究的理论基础。

二、光谱的基本概念1. 发射光谱和吸收光谱发射光谱是指物质受到激发后,向外辐射能量的光谱,它是物质在吸收光能后释放出的光谱,常见的发射光谱有电子激发光谱、原子发射光谱和分子发射光谱等。

吸收光谱是指物质受到外界光辐射后,吸收光能的光谱,它是物质在吸收光能后产生的光谱,常见的吸收光谱有原子吸收光谱、分子吸收光谱和固体吸收光谱等。

发射光谱和吸收光谱是光谱学研究的基本对象,通过对物质的发射和吸收光谱的分析,可以了解物质的组成、结构和性质。

2. 波长和频率光谱的波长和频率是描述光的重要物理量,波长是指光波的波长,通常用λ表示,单位是纳米(nm)或艾米(Å);频率是指光波的频率,通常用ν表示,单位是赫兹(Hz)。

波长和频率是光的基本特性,它们之间的关系由光速公式c=λν确定,其中c是光速,约为3×10^8 m/s。

因此,波长和频率是描述光波性质的关键参数,它们与光的色彩、能量和功率等性质密切相关。

3. 能级结构原子、分子和固体等物质的能级结构是产生光谱的基础,它决定了物质在光作用下的吸收、发射、散射和色散等行为。

能级结构表述了物质内部的能量状态,可以用能级图来描述。

在能级图中,能级之间通过跃迁产生发射光谱和吸收光谱,不同能级之间的跃迁对应不同的光谱线。

因此,能级结构是光谱学研究的重要内容,它揭示了物质在光作用下的能量变化和光谱特性。

三、光谱分析方法1. 原子吸收光谱原子吸收光谱是通过原子吸收光能产生的光谱,它是分析和检测元素含量的重要方法。

光吸收定律

光吸收定律

光吸收定律光吸收定律是光谱学中的一个基本概念,描述了物质对于不同波长的光吸收的规律。

本文将从以下几个方面对光吸收定律进行详细介绍。

一、光谱学基础知识在介绍光吸收定律之前,需要先了解一些光谱学的基础知识。

1. 光谱:指将可见光按照波长分成一系列颜色,形成的连续或离散的条纹。

2. 光谱仪:用于分离和测量不同波长的光线,并将其转换为电信号输出的仪器。

3. 分子能级:分子在不同能量状态下所处的状态。

4. 能级跃迁:分子从一个能级跃迁到另一个能级所释放或吸收的能量。

二、光吸收定律定义根据光谱学中的实验结果,发现物质对于不同波长(或频率)的电磁辐射有选择性地吸收或透过。

这种现象被称为物质对于辐射的选择性吸收。

而根据实验结果得到了著名的“比尔-朗伯-伯勒特定律”,即物质在一定波长范围内对于辐射的吸收与物质浓度成正比,与辐射强度成反比。

这个定律被称为光吸收定律。

三、比尔-朗伯-伯勒特定律比尔-朗伯-伯勒特定律是光吸收定律的数学表达式,它描述了物质对于单色光(即波长相同)的吸收规律。

该定律可以表示为:A = εlc其中,A表示吸光度,ε表示摩尔吸光系数(或摩尔消光系数),l表示样品厚度,c表示物质浓度。

这个公式表明,在一定波长下,物质对于辐射的吸收与其浓度成正比,与样品厚度成正比。

而摩尔吸光系数则是一个常数,它描述了单位浓度下物质对于辐射的吸收程度。

四、分子能级和能级跃迁分子在不同能量状态下所处的状态被称为分子能级。

分子能级可以由外部能量激发而产生变化。

当分子从一个高能量态向低能量态跃迁时,会释放出一定波长的辐射,这个现象被称为发射。

而当分子从低能量态向高能量态跃迁时,会吸收一定波长的辐射,这个现象被称为吸收。

五、光谱学应用光谱学是一门研究物质结构、性质和反应机理的重要科学。

它广泛应用于化学、生物化学、环境科学等领域。

下面列举一些光谱学应用:1. 紫外可见光谱:用于测定分子中含有的双键、三键等共轭体系。

2. 红外光谱:用于测定分子中含有的官能团(如羧基、酮基等)以及分子结构。

有机化学基础知识点有机化合物的光谱分析

有机化学基础知识点有机化合物的光谱分析

有机化学基础知识点有机化合物的光谱分析有机化合物的光谱分析光谱分析是有机化学中一种重要的实验方法,它通过测量物质与电磁波的相互作用来获取有关分子结构和化学环境的信息。

在有机化学中,常用的光谱技术有红外光谱、质谱和核磁共振光谱等。

本文将介绍有机化合物的光谱分析方法及其基础知识点。

一、红外光谱(Infrared Spectroscopy)红外光谱是一种常用的有机化合物结构分析方法。

它通过测量物质在红外辐射下吸收光的波长和强度来研究有机分子的化学键和官能团。

在红外光谱中,最常见的峰位分别对应于C-H、C=O和O-H等功能团。

例如,红外光谱中出现在3000-2850 cm^-1的峰位通常表示有机分子中存在C-H键。

二、质谱(Mass Spectrometry)质谱是一种用来确定有机化合物分子结构和分子量的技术。

它通过测量物质中离子的质量和相对丰度来分析化合物的化学成分。

质谱的主要步骤包括样品的蒸发、离子化、质谱分析以及数据处理等。

质谱通常可以提供有机分子的分子式、分子量和结构等信息。

三、核磁共振光谱(Nuclear Magnetic Resonance Spectroscopy)核磁共振光谱是一种用来研究原子核之间相互作用以及有机分子结构的技术。

它利用核磁共振现象来测量物质中核自旋的能级差和能级的相对强度。

核磁共振光谱常用于确定有机分子的结构、官能团以及它们之间的化学键。

常见的核磁共振光谱包括^1H核磁共振和^13C核磁共振。

四、其他光谱分析方法除了红外光谱、质谱和核磁共振光谱之外,还有一些其他的光谱分析方法在有机化学中得到广泛应用。

例如,紫外-可见吸收光谱可以用于测量有机分子的电子跃迁能级,从而分析其共振结构和电子吸收性质。

拉曼光谱可以提供有机分子的振动和转动信息。

电子自旋共振光谱则用于研究物质中的自由基和电子结构等。

总结:有机化合物的光谱分析方法在有机化学中发挥着重要的作用。

通过红外光谱、质谱和核磁共振光谱等技术,我们可以获得有机分子的结构、官能团和化学键等信息,从而更好地理解和研究有机化学反应和反应机理。

分子光谱基础知识

分子光谱基础知识

分光光度计的原理分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。

但物质对光的吸收是有选择性的,各种不同的物质都有其各自的吸收光谱。

所以根据定律当一束单色光通过一定浓度范围的稀有色溶液时,溶液对光的吸收程度A与溶液的浓度c(g/l)或液层厚度b(cm)成正比。

其定律表达式A=abc荧光分光光度计原理:在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。

物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光.三. 荧光与分子结构的关系1. 分子结构与荧光具有p、p及n、p电子共轭结构的分子能吸收紫外和可见辐射而发生p -p* 或n - p* 跃迁,然后在受激分子的去活化过程中发生p*- p 或p*- n 跃迁而发射荧光。

发生p - p* 跃迁分子,其摩尔吸光系数(å)比n - p* 跃迁分子的大100—1000倍,它的激发单线态与三线态间的能量差别比n - p* 的大的多,电子不易形成自旋反转,体系间跨越几率很小,因此,p - p* 跃迁的分子,发生荧光的量子效率高,速率常数大,荧光也强。

所以——只有那些具有p- p共轭双键的分子才能发射较强的荧光;p电子共轭程度越大,荧光强度就越大(lex与lem长移)大多数含芳香环、杂环的化合物能发出荧光,且p电子共轭越长,F越大。

2. 取代基对分子发射荧光的影响(1)(苯环上)取代给电子基团,使p共轭程度升高à荧光强度增加:如–CH3,–NH2 ,–OH ,–OR等(2)(苯环上)取代吸电子基团,时荧光强度减弱甚至熄灭:如:–COOH ,–CHO,–NO2 ,–N=N–(3)高原子序数原子,增加体系间跨越的发生,使荧光减弱甚至熄灭。

光谱作业指导书

光谱作业指导书

光谱作业指导书一、引言光谱是研究物质结构、性质和相互作用的重要工具,广泛应用于化学、物理、材料科学等领域。

本指导书旨在帮助学生掌握光谱的基本原理、实验操作步骤以及数据处理方法,以便能够顺利完成光谱相关实验作业。

二、光谱基础知识1. 光谱的定义和分类光谱是指将物质辐射或吸收的电磁辐射按照波长进行分解和记录的过程。

根据测量的目的和实验条件的不同,光谱可分为发射光谱、吸收光谱和散射光谱等。

2. 光谱仪的原理和组成光谱仪是用于测量和记录光谱的仪器。

它通常由光源、样品室、光栅或棱镜、检测器和数据处理系统等组成。

光源产生光,样品室用于放置待测样品,光栅或棱镜用于分光,检测器用于测量光强,数据处理系统用于记录和分析数据。

3. 光谱的基本参数光谱的基本参数包括波长、波数、频率和强度等。

波长是指光波的长度,常用单位是纳米(nm);波数是指单位长度内所包含的波数,常用单位是cm-1;频率是指单位时间内波动的次数,常用单位是赫兹(Hz);强度是指光的能量或功率。

三、光谱实验操作步骤1. 准备实验设备和样品首先,确保光谱仪和相关设备处于正常工作状态。

选取合适的样品,根据实验目的选择适当的测量方法,如发射光谱、吸收光谱或散射光谱。

2. 设置光谱仪参数根据实验要求,设置光谱仪的参数,如波长范围、光强范围、扫描速度等。

确保参数设定正确,以获得准确可靠的光谱数据。

3. 校准光谱仪使用标准样品进行光谱仪的校准。

校准的目的是确保光谱仪测量的准确性和可重复性。

4. 放置样品并测量将待测样品放置于样品室中,确保样品与光源之间的距离适当。

启动光谱仪,开始测量。

根据实验要求,选择适当的测量模式和时间,记录光谱数据。

5. 数据处理和分析将测量得到的光谱数据导入数据处理系统,进行数据处理和分析。

常用的数据处理方法包括峰值识别、峰面积计算、光谱拟合等。

根据实验要求,对光谱数据进行相应的处理和分析,得出结论。

四、光谱实验注意事项1. 实验操作前,务必熟悉光谱仪的使用说明书,并按照操作规程进行操作。

红外光谱学的基础知识

红外光谱学的基础知识

红外光谱学的基础知识红外光谱学是指利用红外线对物体进行光谱学分析的一种技术。

它是化学、生物、环境、医药等领域中非常重要的手段,在物质结构、组成和环境中的应用非常广泛。

红外光谱学的基础知识是研究这一技术的先决条件,下面就介绍一下红外光谱学的基础知识。

一、红外光谱学的定义红外光谱学是一种物质分析技术,其基础原理是物质对红外辐射的吸收和散射。

在这一技术中,通过对被测样品引入一定的红外辐射,然后对通过样品的辐射光进行监测和分析,从而得到被测样品的红外光谱。

红外光谱学的应用非常广泛,可以用于材料及其构造分析、品质控制、安全检测等多个领域。

二、红外光谱的产生原理对于物质的分子而言,它们是由原子和化学键组成的。

原子和化学键由电子环组成,当红外辐射照射到这些分子结构中时,它们就能够与其中的电场产生相互作用,从而使分子振动。

对于不同的原子或化学键,其振动的频率和振动模式是不同的。

同时,由于物质的分子构造也是多种多样的,所以它在被照射后也会产生吸收的信号。

这样,就能利用这些吸收信号来识别不同的物质。

三、红外光谱学的分析方法根据分析方法的不同,红外光谱学可以分为四种基本方法。

分别是:透射法、拉曼散射法、反射法和化学发光法。

下面分别介绍一下这四种方法的原理。

1、透射法透射法是通过将红外辐射通过样品透明部分测量其强度削减的方法。

这样,就可获得被测样品的吸收光谱。

需要注意的是,透射法所使用的样品需要具有较好的透过性质。

对于不同的样品,其需使用的样品尺寸也是不同的。

2、拉曼散射法拉曼散射法是通过同样的红外辐射照射到物质中,同时监测散射光而得到的一种分析方法。

这种分析方法比较适用于样品表面和非平衡相中的物质。

在拉曼散射法中,所使用的激光波长比较短,可以根据散射的波长从而对样品进行分析。

3、反射法反射法所使用的激光波长比较长,能够适用于大多数样品。

在反射法中,激光首先照射到样品表面,然后通过样品表面的反射光测量其吸收。

需要注意的是,对于不同的样品,需要选用不同种类的反射器,以获得比较准确的分析结果。

光谱基础知识-PPT

光谱基础知识-PPT
光谱分析基础知识
基本概念
光学分析法是根据物质发射的电磁辐射或 电磁辐射与物质相互作用而建立起来的一类分 析化学方法。
1.电磁辐射
电磁辐射是高速通过空间的光子流,通常简 称为光。它具有二象性,即:波动性和粒子性。波 动性表现在光的折射、衍射和干涉等现象;粒子性 表现在光电效应等现象。
每个光子的能量(EL)与其频率()、 波长()及波数()之间的关系为:
图3-1 吸收光谱和荧光光谱能级跃迁示意图
需要注意的是: (1)整个过程是在单线态之间进行的; (2)产生荧光的过程极快,约在10-8秒左右 内完成; (3)荧光的产生是由第一电子激发态的最低 振动能级开始,而与荧光分子被激发至哪一 个能级无关。因此,荧光光谱的形状和激发 光的波长无关。
c. 散射光谱
常用的有:原子发射光谱和荧光光谱。
对于原子发射光谱,由于每种元素的原子 结构不同,发射的谱线各有其特征性,可以根 据元素的特征谱线进行定性分析,根据谱线的 强度与物质含量的关系进行定量分析。
荧光光谱实质上是一种发射光谱,它的 产生是由于某些物质的分子或原子在辐射能 作用下跃迁至激发态,在返回基态的过程 中,先以无辐射跃迁的形式释放出部分能 量,回到第一电子激发态,然后再以辐射跃 迁的形式回到基态,由此产生的光谱称为荧 光光谱。
与其它光谱仪器比较,还有一个显著的特 点是:价格便宜、易于操作和容易普及。
缺点:进行测定时,需一个元素一个元素 地进行分析;且大多需要显色剂;样品处 理较复杂,不如其它光谱法迅速。
2. 原子荧光发射光谱法
原子荧光光度计是通过测量待测元素的原子 蒸气在辐射能激发下产生的荧光发射强度, 来确定待测元素含量的方法。气态自由原子 吸收特征波长辐射后,原子的外层电子从基 态或低能级跃迁到高能级经过约10-8s,又 跃迁至基态或低能级,同时发射出与原激发 波长相同或不同的辐射,称为原子荧光。

红外光谱知识点总结

红外光谱知识点总结

红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。

物质在光谱范围内会吸收、散射和发射红外光。

这些过程可以用来获取物质的结构信息。

2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。

根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。

3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。

在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。

4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。

常见的红外光谱仪有光散射型、光路差型和干涉型等。

二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。

该仪器操作简单,对样品的要求不高,但是分辨率较低。

2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。

它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。

3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。

其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。

4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。

而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。

三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。

光谱分析复习和思考题

光谱分析复习和思考题

光谱分析复习和思考题一、光谱法基础知识1、光谱法定义或者原理答:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射电磁辐射的波长和强度进行分析的方法。

2、光谱法的分类二、原子发射光谱1、原子发射光谱是怎样产生的为什么各种元素的原子都有其特征的谱线答:(1)当气态原子或离子的核外层电子获取足够的能量后,就会从基态跃迁到各种激发态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回到低能态时,就要释放出能量,若以光辐射的形式释放能量,即得到原子发射光谱。

(2)因为各种元素原子的核外电子能级不同,所跃迁产生光谱线的波长也不同,所以各种元素的原子都有其特征的谱线。

2、影响原子发射光谱的谱线强度的因素是什么产生谱线自吸及自蚀的原因是什么答:(1)谱线强度的基本公式:i i KT Ei i h A e g g N I i υ-=00, N 0—单位体积的基态原子数;gi ,g0 —激发态和基态的统计权重;Ei —激发电位; K —Boltzmann 常数;T —温度/K ;Ai —为跃迁几率;υi —为发射谱线的频率。

主要影响因素为统计权重、跃迁几率;激发电位、激发温度;电离度、蒸发速率常数、逸出速率常数。

(2)谱线自吸:某元素发射出的特征光由光源中心向外辐射过程中,会被处于光源边缘部分的低能级的同种原子所吸收,使谱线中心发射强度减弱,这种现象叫自吸。

(3)自蚀:在自吸严重情况下,会使谱线中心强度减弱很多,使表现为一条的谱线变成双线形状,这种严重的自吸称自蚀。

3、解释下列名词:(1)激发电位和电离电位。

激发电位:低能态电子被激发到高能态时所需要的能量。

电离电位:每个气体化合物被离子化的能量称为电离电位。

(2)共振线、原子线、离子线、灵敏线、最后线。

共振线:由激发态直接跃迁至基态时辐射的谱线称为共振线。

原子线:原子核外激发态电子跃迁回基态所发射出的谱线。

M * M离子线:离子核外激发态电子跃迁回基态所发射出的谱线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


优点:

(1)有较低的检出限,灵敏度高。特别对Cd、Zn 等元素有相当低的检出限,Cd可达0.001ng•cm-3、 Zn为0.04ng•cm-3。由于原子荧光的辐射强度与激 发光源成比例,采用新的高强度光源可进一步降低 其检出限

(2)干扰较少,谱线比较简单,采用一些装置, 可以制成非色散原子荧光分析仪。这种仪器结构简 单,价格便宜。 (3)分析校准曲线线性范围宽,可达3~5个数量 级。
光谱分析方法的分类 根据物质对不同波谱区辐射能的吸收和 发射,建立了不同的光谱分析方法。

紫外-可见分子吸收光谱法 原子荧光发射光谱法 原子吸收光谱法 电感耦合等离子体原子发射光谱法 X射线原子荧光发射光谱法
光谱分析法的主要仪器设备
1. 仪器种类
(1)紫外-可见分光光度法仪器—紫外-可见
光谱的定义 广义:各种电磁波辐射都叫做光谱。 自然界的一切物质可以与各种频率的电 磁波辐射发生相互作用,这种作用表现为对 光的吸收或吸收光后再发射出各种波长的光, 这取决于各自的特殊物质结构。 根据各种不同的物质吸收或者发射出 某一特征频率的光信号及信号强度的大小可 以实现对物质的定性与定量分析。
图3-1 吸收光谱和荧光光谱能级跃迁示意图
需要注意的是: (1)整个过程是在单线态之间进行的; (2)产生荧光的过程极快,约在10-8秒左右 内完成;
(3)荧光的产生是由第一电子激发态的最低
振动能级开始,而与荧光分子被激发至哪一 个能级无关。因此,荧光光谱的形状和激发
光的波长无关。
c. 散射光谱
光谱分析,一般依其波长及其测定的方法
可以分为:射线(0.005~1.4 Ả); X射线(0.1~100 Ắ);
光学光谱(100 Ắ ~1000 m);
微波波谱(0.1~100 cm)。

狭义:通常所说的光谱,一般仅指光学光谱
而言。
根据辐射能传递的情况可以分为:

吸收光谱

发射光谱(包括:发光光谱)
当物质分子吸收了频率较低的光能后,并不 足以使分子中的电子跃迁到电子的激发态,而只 是上升到基态中较高的振动能级上去,若在10-15 s~10-12 s返回到原能级,此时辐射出和激发光相 同波长的光,称为瑞利散射;若返回到较原能级 稍高或稍低的振动能级上,辐射出较激发光波长 稍长或稍短的光,称为拉曼散射。散射出较激发 光波长稍长的光叫红伴线,散射出较激发光波长 稍短的光叫兰伴线。
Cu、Zn、Fe、Mn、Ca、Mg、Pb、K和Na 等很容易测定。

缺点:对一些难熔金属,例如:Be、Al、
Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Th、U、 稀土元素及B等,灵敏度不令人满意。
4. 原子发射光谱法
优点:样品处理较简单,背景干扰较少, 能同时进行几十种元素的定性和定量分析。

缺点:对于高含量样品(>1 %),则准 确度较差,用于超微量ngg-1级元素的分 析,灵敏度尚不能满足需要;对一些非金属 元素,例如:卤素等的测定,灵敏度很低; 仪器设备价格昂贵,不易普及。
色谱
色谱又称色层法或层析法,是一种物理化学分析方法, 它利用不同溶质(样品)与固定相和流动相之间的作 用力(分配、吸附、离子交换等)的差别,当两相做 相对移动时,各溶质在两相间进行多次平衡,使各溶 质达到相互分离。色谱法利用不同物质在不同相态的 选择性分配,以流动相对固定相中的混合物进行洗脱, 混合物中不同的物质会以不同的速度沿固定相移动, 最终达到分离的效果。
分光光度计
(Ultraviolet-Visible Spectrophotometer)
(2)原子荧光发射光谱法仪器—原子荧光
分光光度计(AFS)
(3)原子吸收分光光度bsorption Spectrometer)
(4)原子发射光谱法仪器—电感耦合等离
子体原子发射光谱仪(Inductively Coupled
量,回到第一电子激发态,然后再以辐射跃 迁的形式回到基态,由此产生的光谱称为荧 光光谱。 荧光光谱分为分子荧光光谱和原子荧光 光谱。
产生荧光的原因
荧光物质的分子吸收了特征频率的光
能后,由基态跃迁到能级较高的第一电子激 发态或第二电子激发态,然后通过无辐射跃
迁返回到第一电子激发态的最低振动能级
上,再从该能级降落至基态的各个不同的振 动能级上,同时放出相应能量的分子荧光, 最后以无辐射形式回到基态的最低振动能 级。
对于原子发射光谱,由于每种元素的原子
结构不同,发射的谱线各有其特征性,可以根 据元素的特征谱线进行定性分析,根据谱线的
强度与物质含量的关系进行定量分析。
荧光光谱实质上是一种发射光谱,它的
产生是由于某些物质的分子或原子在辐射能 作用下跃迁至激发态,在返回基态的过程
中,先以无辐射跃迁的形式释放出部分能

3、光学系统:光学系统的作用是充分利用激发 光源的能量和接收有用的荧光信号,减少和除 去杂散光。色散系统对分辨能力要求不高,但 要求有较大的集光本领,常用的色散元件是光 栅。非色散型仪器的滤光器用来分离分析线和 邻近谱线,降低背景。非色散型仪器的优点是 照明立体角大,光谱通带宽,集光本领大,荧 光信号强度大,仪器结构简单,操作方便。缺 点是散射光的影响大。 4、检测器:常用的是光电倍增管,在多元素原 子荧光分析仪中,也用光导摄象管、析象管做 检测器。检测器与激发光束成直角配置,以避 免激发光源对检测原子荧光信号的影响。
级间跃迁,其吸收或发射光的波长为多少纳 米?
解:根据
E=EL=h= hc/
得: = hc/E =6.62610-34Js31010 cms-1/3.37510-19J =5.8910-5cm =589 nm
2. 电磁波谱 将各种电磁辐射按照波长或频率的大 小顺序排列起来即称为电磁波谱。 各波谱区所具有的能量不同,其产生 的机理也各不相同。
Plasma Atomic Emission Spectrometer)
(5)X射线原子荧光发射光谱法仪器—X射
线原子荧光光谱仪
(X-Ray Fluorescence Spectrometer)
各种光谱分析法在用途上各自的优势与局 限性 1. 紫外-可见分光光度法 优点:此法应用极其广泛,可以应用于绝 大部分无机元素的常量、微量甚至痕量分析, 也可用于无机阴离子的定量分析。在有机物和 阴离子的定性、定量分析中的应用,非其它光 谱法所能做到的。 与其它光谱仪器比较,还有一个显著的特 点是:价格便宜、易于操作和容易普及。
散射光谱(如:拉曼光谱)

波长及其测定的方法: 真空紫外光光谱:10~200 nm 近紫外光光谱:200~400 nm 可见光谱:400~800 nm 近红外光谱:800 nm~2.5 m 中红外光谱: 2.5~50 m 远红外光谱: 50~1000 m
外形: 线状 带状 连续 电磁波辐射的本质:原子光谱和分子光谱
色谱理论
关于保留时间的理论 保留时间是是指从进样开始到某一组分浓度达到最大值 所需要的时间,不同的物质在不同的色谱柱上以不同的 流动相洗脱会有不同的保留时间,因此保留时间是色谱 分析法比较重要的参数之一 保留时间由物质在色谱中的分配系数决定 tR = t0(1 + KVs / Vm) 式中tR表示某物质的保留时间,t0是色谱系统的死时间, 即流动相进入色谱柱到流出色谱柱的时间,这个时间由 色谱柱的孔隙、流动相的流速等因素决定。K为分配系 数,Vs,Vm表示固定相和流动相的体积。这个公式又 叫做色谱过程方程,是色谱学最基本的公式之一
波长()及波数()之间的关系为:
EL=h= hc/= hc
式中:h为普朗克常数(Planck constant),其 值为6.62610-34Js; c为光速,其值为31010 cm s-1; 为波数(wave number),其单位为cm-1;为波长
(wave length),单位为cm。
原子吸收光谱为一些暗线,分子吸收光 谱为一些暗带。
根据物质对不同波谱区辐射能的吸收,
建立了各种吸收光谱法,例如:紫外-可见 分子吸收光谱法,红外光谱法等。
b. 发射光谱 物质的分子、原子或离子接受外界能量, 使其由基态或低能态跃迁到高能态(激发态), 再由高能态跃迁回低能态或基态,而产生的光 谱称为发射光谱。 常用的有:原子发射光谱和荧光光谱。

工作曲线法
先配一系列不同浓度的标准溶液并分别
测定其荧光值,然后将减去试剂空白荧光值 的标准溶液荧光值与其相应浓度作图,即得
其工作曲线。
根据试液及试液空白荧光值,在此曲线 上即可找到试液的浓度。同时根据工作曲线 的线性情况,可确定试液的最高浓度范围。
R=0.999337
3. 原子吸收光谱法

优点:对于一些常见金属元素,例如:

缺点:进行测定时,需一个元素一个元素
地进行分析;且大多需要显色剂;样品处 理较复杂,不如其它光谱法迅速。
2. 原子荧光发射光谱法

原子荧光光度计是通过测量待测元素的原子 蒸气在辐射能激发下产生的荧光发射强度, 来确定待测元素含量的方法。气态自由原子 吸收特征波长辐射后,原子的外层电子从基 态或低能级跃迁到高能级经过约10-8s,又 跃迁至基态或低能级,同时发射出与原激发 波长相同或不同的辐射,称为原子荧光。
光谱分析基础知识
基本概念
光学分析法是根据物质发射的电磁辐射或 电磁辐射与物质相互作用而建立起来的一类分 析化学方法。
1.电磁辐射
电磁辐射是高速通过空间的光子流,通常简 称为光。它具有二象性,即:波动性和粒子性。波 动性表现在光的折射、衍射和干涉等现象;粒子性 表现在光电效应等现象。
每个光子的能量(EL)与其频率()、
(4)由于原子荧光是向空间各个方向发射的,比 较容易制作多道仪器,因而能实现多元素同时测定。
相关文档
最新文档