ANSYS瞬态动力学分析步骤

合集下载

ANSYS典型动力学分析的方法和步骤

ANSYS典型动力学分析的方法和步骤
前5阶振动频率列表
第19页/共33页
4.观察结果
Main Menu>General Postproc>Read Results>First Set Main Menu>General Postproc>Plot Results>Deformed Shape
第20页/共33页
4.观察结果
Main Menu>General Postproc>Read Results>Next Set
第14页/共33页
3.扩展模态
(1) 再次进入ANSYS求解器。 (2) 激活扩展处理及相关选项。
第15页/共33页
3.扩展模态
振型扩展的阶数 频率范围 计算单元结果
扩展模态后重新计算 Main Menu>Solution>Solve>Current LS
第16页/共33页
扩展模态合并
7种模态提取的方法
ANSYS分析典型的动力学问题
(一)模态分析 (二)谐响应分析 (三)瞬态动力学分析
第1页/共33页
(一)模态分析
定义:模态分析用于确定设计中的结构或机器部件 的振动特性(固有频率和振型)
模态分析的步骤: 1. 建模; 2. 加载及求解; 3. 扩展模态; 4. 检查结果。
第2页/共33页
1. 建模
第9页/共33页
2. 加载及求解
3) 定义主自由度
主自由度能够描述结构动力学特性的重要的自由度, 只有采用Reduced模态提取法时才有效。
设置Block Lanczos法或Subspace法后
设置Reduced法后
第10页/共33页
2. 加载及求解

Ansys动力学瞬态动力的分析

Ansys动力学瞬态动力的分析
结果输出
将结果以图表或报告的形式输出,便于分析和评 估。
05 案例分析
案例一:桥梁的瞬态动力分析
总结词
复杂结构模型,高精度模拟,长 期稳定性
详细描述
使用ANSYS动力学瞬态分析对大 型桥梁进行模拟,考虑风载、车 流等动态因素,评估桥梁在不同 频率下的振动响应和稳定性。
案例二:汽车碰撞的瞬态动力分析
根据实际系统建立数学模型,包括确定系统的自由度和约束条件, 以及选择合适的单元类型和材料属性。
加载和求解
根据问题的实际情况,施加适当的边界条件和载荷,然后使用 ANSYS等有限元分析软件进行求解。
结果后处理
对求解结果进行后处理,包括查看位移、应力、应变等输出结果, 并进行必要的分析和评估。
瞬态动力学的应用场景
瞬态动力学是研究系统在随时间变化的载荷作用下的动力响应,其基本原理基于牛 顿第二定律和弹性力学的基本方程。
瞬态动力学考虑了时间的因素,因此需要考虑系统的初始条件和边界条件,以及载 荷随时间的变化。
瞬态动力学中,系统的响应不仅与当前时刻的载荷有关,还与之前的载荷历史有关。
瞬态动力学的分析步骤
建立模型
求解设置
选择求解器
01
根据模型特点选择合适的求解器,如直接求解器或迭代求解器。
设置求解参数
02
设置合适的求解参数,如时间步长、积分器等。
开始求解
03
启动求解过程,ANSYS将计算并输出结果。
结果后处理
查看结果
在后处理模块中查看计算结果,如位移、应力、 应变等。
分析结果
对结果进行分析,判断结构的响应和性能。
06 结论与展望
瞬态动力学的未来发展方向
更加精确的模型

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动力学瞬态分析详解
关于TIMINT和IC命令的说明参见<<ANSYS命令参考手册>>。
非零速度是通过对结构中需指定速度的部分加上小时间间隔上的小位移来实现的。比如如果 =0.25,可以通过在时间间隔0.004内加上0.001的位移来实现,命令流如下:
...
TIMINT,OFF! Time integration effects off
注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。
完全法的优点是:
·容易使用,不必关心选择主自由度或振型。
·允许各种类型的非线性特性。
·采用完整矩阵,不涉及质量矩阵近似。
·在一次分析就能得到所有的位移和应力。
·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。
·唯一允许的非线性是简单的点—点接触(间隙条件)。
§3.4 完全法瞬态动力学分析
首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:
D,ALL,UY,.001! Small UY displ. (assuming Y-direction velocity)
TIME,.004! Initial velocity = 0.001/0.004 = 0.25
LSWRITE! Write load data to load step file (Jobname.S01)
对于完全法瞬态动力学分析,注意下面两点:

ansysworkbench瞬态动力学实例

ansysworkbench瞬态动力学实例

在本文中,我将为您撰写一篇关于ANSYS Workbench瞬态动力学实例的文章。

我们将深入探讨ANSYS Workbench在瞬态动力学仿真方面的应用,从简单到复杂、由浅入深地讨论其原理和实践操作,并共享个人观点和理解。

第一部分:介绍ANSYS Workbench瞬态动力学仿真ANSYS Workbench是一种用于工程仿真的全面评台,包含了结构、流体、热传递、多物理场等多种仿真工具。

瞬态动力学仿真是ANSYS Workbench的重要应用之一,它能够模拟在时间和空间上随机变化的动力学过程,并对结构在外部力作用下的动力响应进行分析。

在瞬态动力学仿真中,ANSYS Workbench可以模拟诸如碰撞、冲击、振动等动态载荷下的结构响应,用于评估零部件的耐久性、振动特性、动态稳定性等重要工程问题。

通过对这些现象的模拟和分析,工程师可以更好地了解结构在实际工况下的性能,进而进行有效的设计优化和改进。

第二部分:实例分析为了更直观地展示ANSYS Workbench瞬态动力学仿真的应用,我们以汽车碰撞仿真为例进行分析。

假设我们需要评估汽车前部结构在碰撞事故中的动态响应,我们可以通过ANSYS Workbench建立汽车前部结构的有限元模型,并对其进行碰撞载荷下的瞬态动力学仿真。

我们需要构建汽车前部结构的有限元模型,包括车身、前保险杠、引擎盖等部件,并设定材料属性、连接方式等。

接下来,我们可以在仿真中引入具体的碰撞载荷,如40km/h车速下的正面碰撞载荷,并进行瞬态动力学仿真分析。

通过仿真结果,我们可以获取汽车前部结构在碰撞中的应力、应变分布,以及变形情况,从而评估其在碰撞事故中的性能表现。

第三部分:个人观点与总结通过以上实例分析,我们可以看到ANSYS Workbench瞬态动力学仿真在工程实践中的重要应用价值。

瞬态动力学仿真不仅能够帮助工程师分析结构在动态载荷下的响应,还可以为设计优化、安全评估等工程问题提供重要参考。

ANSYS动力学分析指南

ANSYS动力学分析指南

ANSYS 动力学分析指南目 录第1章 模态分析 (1)§1.1 模态分析的定义及其应用 (1)§1.2 模态分析中用到的命令 (1)§1.3 模态提取方法 (1)§1.3.1 分块Lanczos法 (2)§1.3.2 子空间法 (3)§1.3.3 PowerDynamics法 (3)§1.3.4 缩减法 (3)§1.3.5 非对称法 (3)§1.3.6 阻尼法 (4)§1.3.7 QR阻尼法 (4)§1.4 矩阵缩减技术和主自由度选择准则 (5)§1.4.1矩阵缩减 技术 (5)§1.4.2人工选择主自由度的准则 (5)§1.4.3程序选择主自由度的要点 (7)§1.5 模态分析过程 (7)§1.6 建模 (7)§1.7 加载及求解 (8)§1.7.1 进入ANSYS求解器 (8)§1.7.2 指定分析类型和分析选项 (8)§1.7.3 定义主自由度 (10)§1.7.4 在模型上加载荷 (11)§1.7.5 指定载荷步选项 (12)§1.7.6 参与系数表输出 (12)§1.7.7 求解 (13)§1.7.8 退出求解器 (14)§1.8 扩展模态 (14)§1.8.1 注意要点 (14)§1.8.2 扩展模态 (14)§1.9观察结果 (16)§1.9.1 注意要点 (16)§1.9.2 观察结果数据的过程 (16)§1.9.3 选项:列表显示所有频率 (17)§1.9.4 选项:图形显示变形 (17)§1.9.5 选项:列表显示主自由度 (17)§1.9.6 选项:线单元结果 (17)§1.9.7 选项:等值图显示结果项 (18)§1.9.9 选项:列表显示结果项 (18)§1.9.10 其它功能 (18)§1.10 有预应力模态分析 (18)§1.11 大变形预应力模态分析 (19)§1.12 循环对称结构的模态分析 (20)§1.12.1 基本扇区 (20)§1.12.2 节径 (20)§1.12.3 标准(无应力)循环对称结构模态分析 过程 (21)§1.12.4 有预应力循环对称结构模态分析 (24)§1. 13 模态分析实例 (25)§1.13.1飞机机翼模态分析实例 (25)§1.13.2 循环对称结构模态分析实例-简化齿轮的模态分析 (31)§1.13.3 其它模态分析实例的出处 (38)第2章 谐响应分析 (40)§2.1谐响应分析 的定义与应用 (40)§2.2谐响应分析中用到的命令 (40)§2.3三种求解方法 (40)§2.3.1完全法 (41)§2.3.2缩减法 (41)§2.3.3模态叠加法 (41)§2.3.4三种方法共同的局限性 (42)§2.4完全法谐响应分析 (42)§2.4.1完全法谐响应分析过程 (42)§2.4.2建模 (42)§2.4.3加载并求解 (42)§2.4.4观察结果 (49)§2.5缩减法谐响应分析 (51)§2.5.1加载并求得缩减解 (52)§2.5.2观察缩减法求解的结果 (53)§2.5.3扩展解(扩展过程) (53)§2.5.4观察已扩展解的结果 (55)§2.5.5典型的缩减法谐响应分析命令流 (56)§2.6模态叠加法谐响应分析 (57)§2.6.1获取模态分析解 (57)§2.6.2获取模态叠加法谐响应解 (58)§2.6.3扩展模态叠加解 (59)§2.6.4观察结果 (59)§2.6.5典型的模态叠加法谐响应分析命令流 (59)§2.7有预应力的完全法谐响应分析 (61)§2.7.1 有预应力的完全法谐响应分析 (61)§2.7.2有预应力的缩减法谐响应分析 (61)§2.7.3有预应力的模态叠加法谐响应分析 (61)§2.8谐响应分析实例 (61)§2.8.1“工作台-电动机”系统谐响应分析 (62)§2.8.2有预应力的吉他弦的谐响应 (66)§2.8.3其它谐响应分析实例的出处 (73)第3章 瞬态动力学分析 (74)§3.1 瞬态动力学分析的定义 (74)§3.2 学习瞬态动力学的预备工作 (74)§3.3 三种求解方法 (74)§3.3.1 完全法 (75)§3.3.2 模态叠加法 (75)§3.3.3 缩减法 (75)§3.4 完全法瞬态动力学分析 (76)§3.4.1 建造模 型 (76)§3.4.2 建立初始条件 (77)§3.4.3 设置求解控制 (79)§3.4.4 设置其他求解选项 (82)§3.4.5 施加载荷 (84)§3.4.6 存储当前载荷步的载荷配置 (84)§3.4.7 针对每个载荷步重复§3.4.3-6 (85)§3.4.8 存储数据库备份文件 (85)§3.4.9 开始瞬态求解 (85)§3.4.10 退出求解器 (86)§3.4.11 观察结果 (86)§3.4.12 完全法瞬态分析的典型命令流 (87)§3.5 模态叠加法瞬态动力分析 (89)§3.5.1 建造模型 (89)§3.5.2 获取模态解 (89)§3.5.3 获取模态叠加法瞬态分析解 (90)§3.5.4 扩展模态叠加解 (93)§3.5.5 观察结果 (94)§3.5.6 模态叠加法瞬态分析的典型命令流 (94)§3.6 缩减法瞬态动力学分析 过程 (95)§3.6.1 获取缩减解 (96)§3.6.2 观察缩减法求解的结果 (100)§3.6.3 扩展解(扩展处理) (100)§3.6.4 观察已扩展解的结果 (102)§3.7 有预应力瞬态动力学分析 (103)§3.7.1 有预应力的完全法瞬态动力学分析 (103)§3.7.2 有预应力的模态叠加法瞬态动力学分析 (103)§3.7.3 有预应力的缩减法瞬态动力学分析 (103)§3.8 瞬态分析的关键技术细节 (104)§3.8.1 积分时间步长选取准则 (104)§3.8.2 自动时间步长 (106)§3.8.3 阻尼 (106)§3.9 瞬态动力学分析实例 (109)§3.9.1 瞬态完全法分析板-梁结构实例 (109)§3.9.2 瞬态缩减法分析简支梁-质量系统实例 (114)§3.9.3 瞬态模态叠加法分析板-梁结构实例 (119)§3.9.4 其它的分析实例的出处 (124)第4章 谱分析 (125)§4.1 谱分析的定义 (125)§4.2 什么是谱 (125)§4.2.1 响应谱分析 (125)§4.2.2 动力设计分析方法 (126)§4.2.3 功率谱密度 (126)§4.2.4 确定性分析与概率分析 (126)§4.3 谱分析使用的命令 (126)§4.4 单点响应谱(SPRS)分析步骤 (126)§4.4.1 建造模型 (127)§4.4.2 获得模态解 (127)§4.4.3 获得谱解 (127)§4.4.4 扩展模态 (129)§4.4.5 合并模态 (130)§4.4.6 观察结果 (132)§4.4.7 典型的单点响应谱分析命令流 (133)§4.5 随机振动(PSD)分析步骤 (134)§4.5.1 扩展模态 (135)§4.5.2 获得谱解 (135)§4.5.3 合并模态 (138)§4.5.4 观察结果 (139)§4.5.5 典型的PSD分析命令流 (141)§4.6 随机振动分析结果应用 (143)§4.6.1 随机振动结果与失效计算 (143)§4.6.2 随机疲劳失效 (144)§4.7 DDAM(动力设计分析方法)谱分析 (146)§4.8 多点响应谱(MPRS)分析 (146)§4.9 谱分析的实例(GUI命令流和批处理) (147)§4.9.1 单点响应谱分析的算例 (147)§4.9.2 多点响应谱分析的算例 (153)§4.9.3 随机振动和随机疲劳分析算例 (156)§4.9.4 谱分析的其他例题 (165)第1章 模态分析§1.1 模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是 承受动态载荷结构设计中的重要参数。

ANSYS瞬态动力学分析

ANSYS瞬态动力学分析
第八讲 瞬态动力学分析
ANSYS 理论与工程应用
8-1
瞬态动力学分析也称为时间历程分 析,用于确定结构承受任意随时间 变化荷载时的响应。 荷载和时间的相关性使得惯性力和 阻尼的作用不可忽视。
ANSYS 理论与工程应用
8-2
当惯性力和阻尼的作用可以忽视时 ,就可以使用静力学的多载荷步分 析代替瞬态分析。
有加速度。 3. 所有荷载必须施加在用户定义的主自由度
上,限制了实体模型的加载方法的使用。
ANSYS 理论与工程应用
8-7
Reduced 法缺点:
4. 整个瞬态分析过程中,时间步长必须保持 恒定,不允许自动时间步长。
5. 唯一允许的非线性是简单的点点接触
ANSYS 理论与工程应用
8-8
Mode Superposition 法优点:
By Dr Cui Mao , May 2013
ANSYS 理论与工程应用
8-5
Full 法优点:
5. 允许施加各种类型的荷载 6. 允许采用实体模型上所加的荷载
Full 法缺点: 开销大
ANSYS 理论与工程应用
8-6
Reduced法优点: 比Full法快且开销小 Reduced 法缺点:
1. 需要对主自由度的结果进行扩展。 2. 不能施加单元荷载(压力、温度)但允许
ANSYS 理论与工程应用
8-16
节点位移
ANSYS 理论与工程应用
8-17
节点轴向应力
ANSYS 理论与工程应用
8-18
节点Mises应力
ANSYS 理论与工程应用
8-19
例2 理想弹塑性悬臂梁承受时间历程荷
载 。 梁 长 20cm , 横 截 为 正 方 形 , 边 长

workbench瞬态动力分析

workbench瞬态动力分析

Dx IT20 L 波长方向的长度 c 弹性波速 E 杨氏模量 E

质量密度
非线性响应
• 非线性响应
–全瞬态分析可包括任何非线性类型. – 更小的 ITS 通常有助于平衡迭代收敛. – 塑性、蠕变及摩擦等非线性本质上是非保守的,需 要精确地遵循载荷加载历程.小的 ITS 通常有助于精 确跟踪载荷历程. – 小的ITS可跟踪接触状态的变化.
– 模态叠加法 – 直接积分法
• 运动方程可以直接对时间按步积分。在每个时间点(time = 0, Dt , 2Dt, 3Dt,….) ,需求解一组联立的静态平衡方程 (F=ma);
– 需假定位移、速度和加速度是如何随时间而变化的, (积分方案选择) – 有多种不同的积分方案,如中心差分法,平均加速度 法, Houbolt, WilsonQ, Newmark 等.
积分时间步长
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置 初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
缩减/完整结构矩阵
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

ANSYS结构动力学分析

ANSYS结构动力学分析
GUI:Main Menu>Solution> Load Step Opts>Time/Frequency>Freq and
substeps (6) 求解 求解当前载荷步。
命令:SOLVE GUI:Main Menu>Solution>Solve>Current Ls (7) 结果后处理和分析 瞬态动力学分析结果保存于结果文件Jobname.RST中。可以用POST1和 POST26观察和分析。其中,POST1用于观察在给定时间整个模型的结果, POST26用于观察模型中指定处(节点、单元等)响应随频率变化的历程分 析结果。
Kx F
(11)
如果惯性力或阻尼力足够大到必须加以考虑时,那么系统 的受力平衡方程式必须写成:
MxCxKx F (1 2)
动力效应什么时侯需考虑在力平衡方程式中?什么时侯动力效应才称为 “足够大”?
一个最保险的方法是:时刻不忽略动力效应;或者是静力分析及动力分 析各做一次,当两次分析的结果差异在可接受范围时(结果差异5%以内), 即表示动力效应是可以忽略的,反之则是不可忽略的。
3 结构模态分析(Modal Analysis)
当外力是0时,方程式1-2即为代表模态分析的控制方程式:
MxCxKx 0 (13)
从数学的观点来看,式1-3是一个特征值问题(eigenvalue problem),其特征值代表结构的自然振动频率(natural frequencies)和模态阻尼(Modal damping),而每一个特征值相 对的特征向量(eigenvector)代表振动形状(vibration shapes)。所 以模态分析的结果是自然振动频率、模态阻尼和对应的振动 形状。
4 结构谐响应分析(Harmonic Response Analysis)

ansys瞬态动力学分析初始条件如何设置

ansys瞬态动力学分析初始条件如何设置

瞬态分析的第一步是建立初始条件,即零时刻的情况,瞬态动力学分析要求给定两种初始条件,:初始位移和初始速度,如果没有设置,两者都将设置为0,然后,指定后续的瞬态载荷步及载荷步选项(对于每一个载荷步都要指定载荷值和时间值,同时要指定其他载荷步选项)。

最后,需要将每一个载荷步写入文件并一次性求解所有载荷步。

具体的加载与求解步骤如下:·指定分析类型选择菜单MainMenu:Solution—NewAnalysis,选择TransientDynamic(瞬态动力学分析)。

·
指定分析选项选择菜单MainMenu:Solution—AnalysisOption,设置MODOPT 为Full(瞬态动力学分析方法,共3种)。

·定义主自由度(仅Reduced方法使用)选择菜单MainMenu:Solution—MasterDOFs—Define,设置MDOF(主自由度数,必须大于节点数的2倍)。

·
施加约束选择菜单MainMenu:Solution,单击Apply按钮,选择Dis—placement,选约束作用位置,输入约束参数。

·施加载荷选择菜单MainMenu:Solution,单击Apply按钮,选择Force,选载荷作用位置,输人载荷参数。

·指定载荷步选择菜单MainMenu:Solution—Time/Frequency,设置载荷步参数。


求解选择菜单MainMenu:Solution—CurrentLS。


设定下一个载荷步并求解,重复以上步骤。

ANSYS瞬态动力学分析理论基础

ANSYS瞬态动力学分析理论基础

•ANSYS瞬态动力学分析理论基础本文主要介绍了ansys软件进瞬态动力分析与计算的理论,通过介绍使读者可以更好的理解软件和操作软件以便进行相关的分析。

一假设和限制1、系统的初始条件已知,即速度和位移。

2、结构瞬态分析中当需要时可以考虑陀螺或科里奥力效应。

二结构和其他二阶系统分析对于线性结构的瞬态动力学平衡方程:(1)ANSYS里使用两种方法求解方程(1):向前差分时间积分和Newmark积分(包括改进后的算法称为HHT)。

向前差分方法适用于求解显示的瞬态分析。

Newmark和HHT方法使用隐式方法来求解瞬态问题。

Newmark方法使用有限差分法,在一个时间间隔内有,(2)(3)其中:α,δ:Newmark积分参数我们主要的目的就是计算下一时刻的位移u n+1,则在t n+1时刻的控制方程(1)为:(4)为了求解u n+1,可以把(2)和(3)重新排列,得(5)(6)其中:注意到(5)代入到(6)中,则,可以通过u n+1求出。

由(5)、(6)和(4)得(7)一旦求出u n+1,速度和加速度可以利用(5)和(6)求得。

对于初始施加于节点的速度或加速度可以利用位移约束并利用(3)计算得到。

根据Zienkiewicz的理论,利用(2)和(3)式得到的Newmark求解方法的无条件稳定必须满足:(8)Newmark参数根据下式输入:(9)其中:γ:振幅衰减因子通过观察(8)和(9)可以发现无条件稳定也可以表述为,并且γ≥0。

因此只要γ≥0,则求解就是稳定的。

对于压电分析参数设置为:α=0.25;δ=0.5并且θ=0.5。

通常情况下衰减因子γ=0.005。

当γ=0时即α=0.25,δ=0.5时Newmark方法为平均加速度法。

由于平均加速度法在位移幅值误差方面不产生任何数值阻尼。

如果其他方面也没有阻尼,缺乏数值阻尼在高频结构计算中会产生不可接受的数值噪声。

我们期望有一定水平的数值阻尼并且通过设置γ>0来实现。

ansys 瞬态动力学设置两物体相对移动

ansys 瞬态动力学设置两物体相对移动

一、概述在工程领域中,研究物体相对移动的动力学行为具有重要意义。

在实际工程应用中,瞬态动力学分析是评估机械设计的重要手段之一。

本文将通过ANSYS软件进行瞬态动力学设置,研究两物体相对移动的问题。

二、瞬态动力学分析基本原理1. 瞬态动力学分析瞬态动力学分析是指在物体受到外部力或扭矩作用下,物体产生瞬时运动或者受到瞬时力的影响时的动力学分析方法。

该方法适用于应用于工程领域中需要考虑加速度、惯性力、阻尼等瞬态动力学因素的问题。

2. ANSYS软件ANSYS软件是一种用于工程仿真和设计的有限元分析软件。

它能够模拟和分析多种工程问题,包括结构分析、热分析、流体力学分析等。

在瞬态动力学分析中,ANSYS软件可以模拟物体的瞬时运动、应力分布等。

三、两物体相对移动问题分析1. 问题描述假设有两个物体A和B,它们之间通过一根弹簧相连。

当施加外力使得物体A移动时,弹簧会受到拉力,同时对物体B施加相等反作用力。

我们希望通过瞬态动力学分析,研究物体A和B在相对移动过程中的动力学行为。

2. ANSYS设置我们需要建立物体A和B的几何模型,并在ANSYS中导入。

根据物体的材料属性、外部力的施加情况等,设置瞬态动力学分析的条件和参数。

在设置过程中,需注意考虑物体的刚度、弹簧的刚度、阻尼等因素。

3. 模拟过程在模拟过程中,我们可以通过ANSYS软件对物体A施加外力,观察物体A和B在相对移动过程中的运动状态、应力分布等动力学行为。

通过分析模拟结果,可以得出两物体在相对移动过程中所受到的动力学影响。

四、模拟结果分析1. 动态响应通过模拟分析,我们可以观察到物体A受到外力作用后的瞬时加速度、速度和位移变化。

物体B也会在弹簧的作用下产生相对运动。

通过观察动态响应,我们可以得出两物体相对移动的动力学特性。

2. 应力分布在瞬态动力学分析中,我们还可以观察到物体A和B在相对移动过程中受到的应力分布情况。

弹簧受到的拉力、物体产生的应力等都可以得到清晰的分析和展示。

瞬态动力学分析的求解方法

瞬态动力学分析的求解方法

瞬态动力学分析的求解方法ANSYS提供了两种方法求解方程式,即中心差分时间积分法和Newmark时间积分法(包括改进的HHT方法)。

中心差分时间积分法用于ANSYS LS-DYNA的显示瞬态动力学分析,读者可参阅LS-DYNA的相关书籍,而Newmark时间积分法用于ANSYS隐式瞬态动力学分析。

ANSYS使用Newmark时间积分方法在离散的时间点上求解这些方程,两个连续时间点间的时间增量称为积分时间步长(integration time step)。

ANSYS提供了3种Newmark时间积分方法,即完全法、缩减法及模态叠加法,分别介绍如下:(1)完全法完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减),允许包括各类非线性特性(如塑性、大变形和大应变等),它是3种方法中功能最强、最容易使用的方法。

完全法的优点是:1)容易使用,不必关心选择主自由度或振型。

2)允许各种类型的非线性特性。

3)采用完整矩阵,不涉及质量矩阵近似。

4)一次分析就能得到所有的位移和应力。

5)允许施加所有类型的载荷,如节点力、外加的(非零)位移和单元载荷(压力和温度),还允许通过TABLE 数组参数指定表边界条件。

6)允许在实体模型上施加载荷。

完全法的主要缺点是它比其他方法开销大。

(2)缩减法缩减法通过采用主自由度及缩减矩阵压缩问题规模。

计算出主自由度处的位移之后,ANSYS 可将解扩展到原有的完整自由度集上,这种方法的优点是比完全法快且开销小。

缩减法的缺点是:1)初始解只计算主自由度的位移,需进行扩展计算,以得到完整空间上的位移、应力和力。

2)不能施加单元载荷(如压力和温度等),但允许施加加速度。

3)所有载荷必须施加在用户定义的主自由度上。

4)整个瞬态分析过程中时间步长必须保持恒定,不允许采用自动时间步长。

5)唯一允许的非线性是简单的点-点接触(间隙条件)。

(3)模态叠加法模态叠加法通过对模态分析得到的振型(特征向量)乘上因子并求和来计算结构的响应,它的优点是:1)对于许多问题,它比缩减法或完全法更快、开销更小。

ANSYS三种动力学分析方法的一般步骤

ANSYS三种动力学分析方法的一般步骤

ANSYS三种动力学分析方法的一般步骤
完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:
1.建造模型
2.建立初始条件
3.设置求解控制
4.设置其他求解选项
5.施加载荷
6.存储当前载荷步的载荷设置
7.重复步骤3-6定义其他每个载荷步
8.备份数据库
9.开始瞬态分析
10.退出求解器
11.观察结果
模态叠加法通过乘以放大系数后的振型(从模态分析得到)叠加求和来计算结构的动力学响应。

这种方法在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Structural及ANSYS/Professional中是可用的。

使用这种方法的过程由五个主要步骤组成:
1.建造模型;
2.获取模态解;
3.获取模态叠加法瞬态分析解;
4.扩展模态叠加解;
5.观察结果。

缩减(Reduced)法是用缩减矩阵来计算动力学响应,在ANSYS/Multiphysics,ANSYS/Mechanical及ANSYS/Structural中均可采用。

如果在分析中不准备包含非线性特性(除了简单的节点对节点接触),就可以考虑使用这种方法。

缩减法瞬态动力学分析的过程由五个主要步骤组成:
1.建造模型;
2.获取缩减解;
3.观察缩减法求解结果;
4.扩展解(扩展处理);
5.观察已扩展解的结果。

在这些步骤中,第一步和完全法中的相同,不过不允许有非线性特性(简单的节点对节点接触除外,它是被指定为间隙条件而非单元类型)。

其它步骤的细节在下面解释。

ANSYS瞬态动力学分析步骤

ANSYS瞬态动力学分析步骤

瞬态动力学分析步骤进行瞬态动力学分析主要有:FULL(完全法)、Reduced(缩减法)和ModeSuperposition(模态叠加法)。

书上介绍的一般都是FULL法,其分析过程主要有8个步骤:(1)前处理(建立模型和划分网格)(2)建立初始条件(3)设定求解控制器(4)设定其他求解选项(5)施加载荷(6)设定多载荷步(7)瞬态求解(8)后处理(观察结果)1Full法步骤具体步骤如下:第1步:载入模型Plot>Volumes第2步:指定分析标题并设置分析范畴1设置标题等UtilityMenu>File>ChangeTitleUtilityMenu>File>ChangeJobnameUtilityMenu>File>ChangeDirectory2选取菜单途径MainMenu>Preference单击Structure,单击OK第3步:定义单元类型MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现ElementTypes对话框,单击Add出现LibraryofElementTypes对话框,选择StructuralSolid,再右滚动栏选择Brick20node95,然后单击OK,单击ElementTypes对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModels。

出现DefineMaterialModelBehavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。

第5步:划分网格选取菜单途径MainMenu>Preprocessor>Meshing>MeshTool出现MeshTool对话框,一般采用只能划分网格,点击SmartSize下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现MeshVolumes对话框,其他保持不变单击PickAll,完成网格划分。

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

第10章 瞬态动力学分析
瞬态动力学分析(亦称时间历程分析)是用于确定承受任意随时间变化的载荷的结构动力学响应的一种方法。

利用瞬态动力学分析可以确定结构在静载荷、瞬态载荷和简谐载荷的随意组合下随时间变化产生的位移、应变、应力及力。

★ 了解瞬态动力学分析。

10.1 瞬态动力学分析概述
瞬态动力学分析(Transient Structural Analysis)给出的是结构关于时间载荷的响应,它不同于刚体动力学分析,在Workbench中瞬态动力学的模型可以是刚体,也可以是柔性体,而对于柔性体可以考虑材料的非线性特征,由此可得出柔性体的应力和应变值。

在进行瞬态动力学分析时,需要注意:
当惯性力和阻尼可以忽略时,采用线性或非线性的静态结构分析来代替瞬态动力学分析。

当载荷为正弦形式时,响应是线性的,采用谐响应分析更为有效。

当几何模型简化为刚体且主要关心的是系统的动能时,采用刚体动力学分析更为有效。

除上述三种情况外,其余情况均可采用瞬态动力学分析,但其所需的计算资源较其他方法要大。

10.2 瞬态动力学分析流程
在ANSYS Workbench左侧工具箱中Analysis
Systems下的Transient Structural上按住鼠标左键拖动到
项目管理区的A6栏,即可创建瞬态动力学分析项目,
如图10-1所示。

当进入Mechanical后,单击选中分析树中的
Analysis Settings即可进行分析参数的设置,如图10-2
图10-1 创建瞬态动力学分析项目。

ansysworkbench瞬态动力分析PPT教学课件

ansysworkbench瞬态动力分析PPT教学课件

求解方法
• 时间积分方案 – 两种积分方案 Newmark 和 HHT. 缺省为 Newmark
• 不同的a 和d 造成积分方案的变化 (隐式 / 显式 / 平均加速度 ).
• Newmark 是隐式积分方案. • ANSYS/LS-DYNA 利用显式积分方案.
求解方法
• 时间积分方案 - HHT 方法 :
积分时间步长
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置
初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
! Write load data to load step file
DDELE,ALL,UY
! Remove imposed displacements
TIMINT,ON
! Time integration effects on
...
非零初始位移和零初始速度
需要用两个子步[NSUBST,2]来实现,所加位移在 两个子步间是阶跃变化的[KBC,1]。如果位移不是 阶跃变化的(或只用一个子步),所加位移将随 时间变化,从而产生非零初速度。下面的例子演 示了如何施加初始条件 u0 = 1.0, v0 = 0.0:
施加初始条件的两种方法
• 以静载荷步开始 • 当只需在模型的一部分上施加初始条件时,例如,用强加的位移将悬臂梁 的自由端从平衡位置“拨”开时,这种方法是有用的;

ansys动力学瞬态动力分析

ansys动力学瞬态动力分析
型旳非线性- 大变形、接触、塑性等等。
6
瞬态分析- 术语和概念
求解措施
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法 缩减矩阵法
完整矩阵法 缩减矩阵法
7
瞬态分析 – 术语和概念
求解措施 (接上页)
运动方程旳两种求解法: • 模态叠加法(在第六章中讨论) • 直接积分法:
– 运动方程能够直接对时间按步积分。在每个时间点, 需求解一组联立旳静态平衡方程(F=ma);
33
瞬态分析环节
要求边界条件和初始条件(接上页)
实例 - 高尔夫球棒端头旳初速度
• 假定只对高尔夫球棒端头建模,而且整个端头运动 ,这时有初始条件v00。 同步又假定 u0 = a0 = 0;
• 在这种情况下使用IC 命令法是以便旳 1 选择球棒上旳全部节点; 2 用 IC 命令施加初始速度或; – 选择 Solution > Apply > Initial Condit’n > Define + – 选用全部节点 – 选择方向并输入速度值 3 激活全部节点; 4 要求终止时间,施加其他载荷条件(假如存在 旳话),然后求解。
c elastic wave speed E
E Young's modulus
mass density
14
瞬态分析
第三节:环节
• 在此节中只讨论完整矩阵 • 五个主要环节:
– 建模 – 选择分析类型和选项 – 要求边界条件和初始条件 – 施加时间历程载荷并求解 – 查看成果
15
瞬态分析环节
31
瞬态分析环节
要求边界条件和初始条件(接上页)
• 载荷步2: – 打开瞬态效应; – 删除强加位移; – 指定终止时间,连续进行瞬态分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS模态分析步骤第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。

若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes第2步:指定分析标题/工作名/工作路径,并设置分析范畴1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory2 设置分析范畴Main Menu>Preference,单击Structure,OK第3步:定义单元类型Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。

第5步:划分网格Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。

当内存不足时,取消SmartSize第6步:进入求解器并指定分析类型和选项Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。

Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。

第7步:施加边界条件Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。

第8步:指定要扩展的模态数Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。

注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。

第9步:进行求解计算Main Menu>Solution>Solve>Current LS。

浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。

在出现警告(不一定有)“A check of your model data produced 1 Warning。

Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。

第10步:列出固有频率Main Menu>General Postproc>Results Summary。

第11步:动画显示模态形状查看某阶模态的变形,先读入求解结果。

执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。

如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。

第12步:结束分析SA VE_DB; Main Menu>Finish瞬态动力学分析步骤第1步:前处理,如模态分析。

第2步:设定求解类型并加载(1)求解类型:Main Menu>Solution>Unabridged Menu>Analysis Type>New analysis,选择Transient,然后选择Full,其他默认,单击OK。

(2)加载:a、施加约束或力,如模态分析。

b、如需施加位移载荷,则先定义位移函数,并经此位移函数施加在变幅杆的大端面上。

方法为:(a)Main Menu>Solution>Define Loads> Apply>Functions>Define/Edit,出现Function Editor对话框,在Function Type中选择Single equation,在(X,Y,Z)interpreted in csys中选择0,表示选择直角坐标系,在Result中输入位移函数(如=5*10^(-6)*sin(2*{PI}*20000*{TIME}),然后保存。

(b)选择Main Menu>Solution>Apply>Functions>Read File,打开上述保存的文件,在Table parameter name中输入一个名字,单击OK。

(c)加载,Main Menu>Solution>Define loads>Apply>Structural>Displacement>On AREA,选择相应的方向,在Apply as 中选择Existing table,然后选择OK,出现上步输入的名字,单击OK即可。

(3)设置初始条件:Main Menu>Solution>Define Loads> Apply>Initial Condit’n>Define,弹出Define Initial Conditions拾取菜单,在大端面拾取一节点(亦可拾取大端面上所有节点,结果一样),单击OK,弹出对话框,在Lab DOF to be specified 选择相应的方向,设置初始位移和初始速度(如位移载荷如上,则初始位移为0,初始速度为0.628)(3)设置载荷步选项:a、Main Menu>Solution>Load Step Opts>Output Ctrls>Solu Printout,FREQ= Every substep。

b、>Output Ctrls>DB/Resultts File,FREQ= Everysubstep。

c、Main Menu>Solution>Load Step Opts>Time/Frequency>Time-Time step,[TIME]=1/f,[KBC]=stepped。

d、>Time/Frequency>Time and Substps,[TIME]= 1/f,[NSUBST]=50或100即时间间距,需>20。

第3步:求解Main Menu>Solution>Solve>Current LS第4步:观察结果进入时间历程后处理:Main Menu>TimeHist PostPro,弹出对话框,里面已有默认变量时间(Time)。

其它同谐响应分析。

如果没有形成图形,可先关闭Time History Variables对话框,然后设置坐标,方法为:(1)Utility Menu>PlotCtrls>Style>Graphs>Modify Grid,弹出对话框在[/GRID]后选择X and Y lines,其他默认,单击OK;(2)设置坐标Utility Menu>PlotCtrls>Style>Graphs>Modify Axes,在[/AXLAB]文本框中输入DISP,其他默认单击OK。

(3)绘制变量图:Main Menu>TimeHist PostPro>Graph Variables,在NV AR1后输入2,NV AR2输入3,NV AR3后输入4,单击OK就可显示出图形。

第5步:结束分析SA VE_DB; Main Menu>Finish以上分析可关闭优化设置:Main Menu>Solution>Unabridged Menu>Load Opts>Solution Ctrl,弹出对话框,在【SOLCONTROL】后面选择Off,Pressure load 后选择Include。

另注意:以上分析不考虑非线性问题。

如考虑非线性问题,则:在第2步增加:Main Menu>Solution>Analysis Type>Sol’n Control,在Baisc选项中选择Large Displacement Transient;在Nonlinear选项中单击Set convergence criteria,弹出对话框,单击Replace,设置Lab Convergence is based on,V alue Reference value of Lab以及Tolerance about Value。

相关文档
最新文档