第三章 铁碳合金状态图
铁碳合金相图
二 相图中点的含义
1A点 纯铁的熔点;温度 1538℃,Wc=0
2G点 纯铁的同素异晶转变点; 冷却到912℃时,发生 γF→α-Fe
3Q点 600℃时,碳在αFe中的 溶度,Wc=0 0057%
二 相图中点的含义
4D点 渗碳体熔点,温度 1227℃,Wc=6 69%
5C点 共晶点;温度1148℃,Wc=4 3% 成分为C的液相,冷却到此 温度时,发生共晶反应 Lc→A+Fe3C
一 铁碳合金的分类:
按含碳量的不同;铁 碳合金的室温组织可 分为工业纯钛 钢和 白口铸铁; 其中,把 含碳量小雨0 0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
纯铁 钢和铸铁的含碳量:
⑴ 工业纯铁组织为单相铁素体 (<0 0218% C)
一次渗碳体+ 低温莱氏体
性能特 强度 硬 C↑,强度 硬度逐 强度较高,硬度 硬度较高,塑性差,
点平衡 度低、 渐提高,有较好的 适中,具有一定 随着网状二次渗碳
状态 塑性好 塑性和韧性
的塑性和韧性 体增加,强度降低
硬度高;脆性大,几乎没有塑性
1 亚共析钢的组织的变化顺序:
亚共析钢的室温组 织由珠光体和铁素体 组成合金的组织按下 列顺序变化:
课堂练习:
1 共析钢冷却到S点时;会发生共析转变,从奥氏体中
同时析出
铁和素(体
)渗的碳混体 合物,称为(
) ; 珠光体
2、过共晶白口铸铁的室温组织是(一次渗碳体 )加( )。低温莱氏体
3、共晶白口铸铁的含碳量为( 4 3 )%
一 填空题
1、常见的金属晶体类型有 晶格、( )晶格和( )晶格三种; 2、金属的整个结晶过程包括( )、( )两个基本过程组成 。 3、根据溶质原子在溶剂晶格中所处的位置不同;固溶体分为( )和 ( )两种。 4、铁碳合金的基本组织中属于固溶体的有( )和( ),属 于金属化合物的有( ),属于混合物的有( )和莱氏体。 5、原子呈无序堆积状态的物体叫( );原子呈有序、有规则排 列的物体叫( )。一般固态金属都属于( )。 6、常温下金属的塑性变形方式主要有( )和( )两种。 7、变形一般分为( )变形和( )变形两种,不能随载荷的去除 而消失的变形称为( )变形。 8、细化晶粒的根本途径是控制结晶时的( )及( )。
铁碳合金相图43820
体Fe3CⅡ。
8
二、相图中的特性线
5)GS线 奥氏体冷却时开始向铁素 体转变的温度线,通常称 为A3线。
6)PSK水平线 共析线,通常称为A1线。 奥氏体冷却到共析线温度 (727℃)时,将发生共 析转变生成珠光体(P),
wC>0.0218%的铁碳合金
均会发生共析转变。 9
共晶和共析的概念:
共晶:指一定成分的液
按含碳量的不同,铁 碳合金的室温组织可 分为工业纯钛、钢和 白口铸铁。其中,把 含碳量小雨0.0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
17
纯铁、钢和铸铁的含碳量:
⑴ 工业纯铁(组织为单相铁素体) (<0.0218% C)
4.3%C)
部分莱氏体组织)
③ 过共晶白口铸铁 (4.3 ~ 6.69%C)
18
铁碳合金的室温组织及分类:
合金类别 纯铁 亚共析钢
钢 共析钢
含碳量 <0.0218
(%)
0.0218~0.77
室温组织 F
F+P
0.0218~2.11 0.77 P
过共析钢
0.77~2.11 P+Fe3CⅡ
亚共晶铸铁
白口铸铁 共晶铸铁
20
2.共析钢的组织的变化顺序: 共析钢在室温时的组 织是珠光体,合金的 组织按下列顺序ቤተ መጻሕፍቲ ባይዱ化:
• 目前应用的铁碳合金状态图是含碳量为0~6.69%的 铁碳合金部分(即Fe-Fe3C部分),因为含碳量大 于6.69%的铁碳合金在工业上无使用价值。
3
二、相图中点的含义
1)A点 纯铁的熔点,温度 1538℃,Wc=0
铁碳合金状态图课件
根据铁碳合金在不同温度下的状态,绘 制等温线。
根据铁碳合金在不同温度和成分下的状 态,在图上标记相应的区域,并注明相 应的名称。
04
铁碳合金状态图的应用
在铸造工业中的应用
铸造工艺设计
铁碳合金状态图是铸造工艺设计的重 要依据,通过分析合金的凝固温度范 围和液相线温度,可以确定合适的浇 注温度和时间。
确定比例尺
根据实际需要选择合适的比例 尺,以便在图纸上准确表示铁 碳合金的实际 状态,在图上绘制等温线。
绘制元素分布曲线
根据铁碳合金中各元素的分布 情况,在图上绘制相应的曲线。
绘制实例和演示
选择合适的比例尺,绘制坐标轴。
对绘制好的铁碳合金状态图进行演示和 讲解,以便更好地理解和掌握铁碳合金 的状态变化规律。
1 2 3
铁碳合金状态图的实验研究
当前,研究者通过实验手段深入探究铁碳合金的 相变规律和组织性能,为实际生产提供理论支持。
铁碳合金状态图的计算模拟研究
随着计算材料学的进步,研究者利用计算机模拟 手段预测和模拟铁碳合金的状态和性能,为新材 料的开发提供有力支持。
铁碳合金状态图的应用研究
在实际生产中,钢铁企业根据铁碳合金状态图选 择合适的材料和工艺,提高产品质量和降低成本。
适的锻造温度和变形量。
锻件质量控制
通过铁碳合金状态图,可以预测锻 件在不同温度和变形条件下的组织 和性能变化,从而控制锻件的质量。
锻造设备选择
根据铁碳合金状态图,可以确定不 同锻造条件下材料的变形行为和所 需设备吨位,从而选择合适的锻造 设备。
在焊接工业中的应用
焊接材料选择
铁碳合金状态图可以指导焊接材 料的选择,根据母材的成分和状
1-3铁碳合金状态图
A+Fe3CⅡ
S 4 3 4
F
3
2
3
F+P
Q C%
P
P+Fe3CⅡ
P+Fe3CⅡ+Ld’’
Ld’’
Ld’’ +Fe3CⅠ
L
0.77%
2.11%
4.3%
6.67%
1538℃
A D
Y A+Y
E C
Y +Fe3CⅠ
F
1148℃ 912℃ G
A
Fe3C
A3
F+A
727℃ P S
Acm
A+Fe3CⅡ A+Fe3CⅡ+Ld’ Ld’ Ld’ +Fe3CⅠ
A3
F+A
727℃ P
3 3
Acm
A+Fe3CⅡ+Ld’ Ld’ L’ +Fe3CⅠ
K
A+Fe3CⅡ
S 4 3 4
F
3
2
3
F+P
Q C%
P
P+Fe3CⅡ
P+Fe3CⅡ+Ld’’
Ld’’
Ld’’ +Fe3CⅠ
L
0.77%
2.11%
4.3%
6.67%
铁碳合金状态图的作用
铁碳合金状态图主要是用来分析铁碳合 金的成分 温度、组织 成分、温度 组织三者之间的关系。 当含碳量增加时,铁素体的比例减少, 珠光体比例增大,故而碳钢的机械强度 和硬度增大,塑性和韧性降低;当含碳 量超过0.9%时,碳钢中C的含量增多, 硬度增加,强度、塑性、韧性均下降。 当温度一定时,控制了碳钢的含碳量 就控制了碳钢的组织和性能;碳钢的机 械性能又决定了碳钢的用途。
Fe-c
Fe—C 2. Fe C合金中的基本相
Fe—Fe3C相图中,Fe—C Fe3C相图中 在Fe Fe3C相图中,Fe C合金在不同条件 成分,温度) 可有五 个基本相: (成分,温度)下,可有五(六)个基本相: L Fe3C相、(石墨 石墨G 相、δ相、γ相、α相、Fe3C相、(石墨G)。 液相( (1)液相(L) Fe与 在高温下形成的液体溶液。 ABCD线 Fe与C在高温下形成的液体溶液。(Aห้องสมุดไป่ตู้CD线 以上) 以上) 高温铁素体( (2)δ相[高温铁素体(high temperature ferrite) ferrite)]
(2)Fe—Fe3C相图的线 2 Fe Fe3C Fe3C相图的线 。
A.三条水平线 A.三条水平线
① HJB-- 包晶转变线 : HJB-1459℃ (1459℃) L0.53+δ0.09 γ0.17 (LB+δH γ J)
转变产物为奥氏体 (austenit) 强度低, 强度低,塑性好
A.三条水平线 A.三条水平线
纯铁的同素异构转变
纯铁的冷却曲线及晶体结构变化
概念
铁素体:碳在a-Fe(体心立方结构的铁)中的间隙 固溶体。 奥氏体:碳在γ -Fe(面心立方结构的铁)中的间 隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物 (F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳 4.3%)
Fe—C Fe C合金中的基本相
奥氏体(austenite) (3) 奥氏体(austenite) 奥氏体( A)是 Fe形成的间 奥氏体 ( γ 或 A) 是 C 溶解于 γ—Fe 形成的间 Fe 隙固溶体称为奥氏体(austenite)。 隙固溶体称为奥氏体(austenite) 奥氏体
第三章铁碳合金相图详解版
第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
一、Fe - Fe3C 相图的建立
4. 铁碳合金分类
(1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
(2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
三、典型铁碳合金的结晶过程
1 1)共析钢的结晶过程
1 3)过共析钢的结晶过程
T12钢组织
室温组织:P+Fe3CⅡ
1
补充:工业纯铁的结晶过程
4)共晶白口铁结晶过程
室温组织为: Ld‘ ( P+ Fe3C共晶+ Fe3CⅡ )
1
5)亚共晶白口铁的结晶过程 室温组织为P+Fe3CⅡ+Ld’。
1
6)过共晶白口铁的结
晶过程
室温组织为:Fe3CⅠ +Ld‘ Ld‘( P+ Fe3C共晶+ Fe3CⅡ )
1
第三节 含碳量对碳钢组织与性能的影响
一 、含碳量对碳钢室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类
工
钢
业
共析钢
纯
铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁
铁碳合金状态图(精)
过共析钢: (0.77%<C<2.11%)
② ③ ① 合金III: P Fe3C A Fe3C 室温 ④
LL AΒιβλιοθήκη A共晶白口铸铁: (C=4.3%) L L 'd Ld ② 合金IV: ① 室温
铁碳合金状态图
铸钢件生产技术课程
铁碳合金状态图
用来表示在平衡状态下,不同含碳量的铁碳合金 在不同温度下所处的状态,晶体结构和显微组织 特征的图称为铁碳合金状态图(又叫铁碳平衡
图)。 利用合金状态图可以全面了解不同成分的铁碳合 金在不同温度下处于什么状态,组织结构等,它 是制定熔铸、锻造、热处理工艺的重要依据,也 是分析合金组织研究相变规律的工具。
2. 铁碳合金分类
钢 含C量0.0218~
2.11% 共析钢 含C量0.77% S点 P 亚共析钢0.0218≤0.77% S点以左 F+P 过共析钢0.77≥2.11% S点以右 Fe3c+P 3.2.2.2 白口铸铁 2.116.69% 共晶白口铸铁 4.3% 亚共晶白口铸铁 2.114.3% 过共晶白口铸铁 4.36.69%
3.铁碳合金相图的用途
1. 作为选用钢材料的依据:
如制造要求塑性、韧性好,而强度不太高
的构件,则应选用含碳量较低的钢;要求 强度、塑性和韧性等综合性较好的构件, 则选用含碳量适中的钢,各种工具要求硬 度高及耐性好,则应选用含碳量较高的钢。
2.定铸、锻和热处理等热加工工艺的依据
在铸造方面:
3. 典型铁碳合金的结晶过程
共析钢:(C=0.77%) L P L A A ③ 合金I: ① ② 室温 亚共析钢:(0.0218%<C<0.77%) A F L A A L ④ ② ③ 合金II: ① F P 室温
铁碳合金相图60218
铁碳合金 (按成分可
⑵钢(高温组织为单相 A,易于
变形)
分为三类)
① 亚共析钢 (0.0218 ~ 0.77%C) ② 共析钢 (0.77%C) ③ 过共析钢 (0.77 ~ 2.11%C)
(3)白口铸铁(在液态下结晶时,全部
或部分液相会发生共晶变,获得全部或
① 亚共晶白口铸铁 (2.11 ~ 4.3%C) ② 共晶白口铸铁 (4.3%C)
按含碳量的不同,铁 碳合金的室温组织可 分为工业纯钛、钢和 白口铸铁。其中,把 含碳量小雨 0.0218%的铁碳合 金称为纯铁;把含碳 量大于0.0218%而 小于2.11%的铁碳合 金称为钢;把含碳量 大于2.11%的铁碳合 金称为铸铁。 17
纯铁、钢和铸铁的含碳量:
⑴ 工业纯铁(组织为单相铁素体) (<0.0218% C)
围内,温度不宜太高,以免钢材严重氧
化或发生奥氏体晶界熔化(过烧)。终
锻(或终轧)温度,一般亚共析钢控制
在稍高于GS线,过共析钢控制在稍高
于PSK线。温度不能太低,以免钢材因
塑性变差,导致产生裂纹。
30
4、在热处理方面的ቤተ መጻሕፍቲ ባይዱ用
Fe-Fe3C相图是制订热处 理工艺的依据。应用Fe- Fe3C相图可以正确选择各种 碳钢的退火、正火、淬火等 热处理的加热温度范围。由 于含碳量的不同,各种碳钢 热处理的加热温度和组织转 变也各不相同,都可从状态 图中求得。
2、过共晶白口铸铁的室温组织是(一次渗碳)体加 ( 低温莱)氏体。
3、共晶白口铸铁的含碳量为( 4.3)%
33
一、 填空题
1、常见的金属晶体类型有( )晶格、( )晶格和( )晶格三种。
2、金属的整个结晶过程包括( )、( )两个基本过程组成。
03 铁碳合金相图
二、铁碳合金的基本相
1.铁素体 ( F或α )
碳溶于α–Fe中的间隙 固溶体,呈体心立方晶格 , 它的晶格间隙小,因而溶解 碳的能力较低。在727℃时 溶碳量最大,可达0.0218%。 随着温度的降低,它的溶碳 能力继续降低,在室温约为 0.0008%。 铁素体的组织为多边形 晶粒,性能与纯铁相似,即 铁素体的强度、硬度不高, 但塑性、韧性良好。
S ⇄FP+ Fe3C
• ⑶ 其它相线
3、铁碳合金状态图中的相区
(1)五个单相区 ABCD线以上的液相区(L);AHNA线围着的δ固溶体相 区(δ);NJESGN线围着的奥氏体相区(A);GPQG 线围着的铁素体相区(F);DFKL线垂线代表的渗碳体 相区(Fe3C)。 (2)七个双相区 ABHA线围着的L+δ相区;JBCEJ线围着的L+A相区; DCFD线围着的L+Fe3CⅠ相区;HJNH线围着的δ+A相区; EFKSE线围着的A+Fe3C相区;GSPG线围着的A+F相区; QPSKLQ线围着的F+Fe3C相区。 (3)三个三相共存区 HJB线为L 、δ、A三相区;ECF线为L、A、Fe3C三相区; PSK线为A、F、Fe3C三相区。
Fe
Fe3C
Fe2C
FeC
C%(at%) →
C
铁碳合金相图是
研究铁碳合金最 基本的工具,是 研究碳钢和铸铁 的成分、温度、
组织及性能之间
关系的理论基础,
是制定热加工、
热处理、冶炼和
铸造等工艺依据.
2.5.2 形成Fe - Fe3C 相图组元和基本相的结构与性能
一、组元
* 铁 (Fe)
机械性能特点是强度、硬度低,塑性 好 * 渗碳体 (Fe3C ) 机械性能特点硬而脆
铁碳合金状态图
② 亚共析钢
③ 过共析钢
3)白口铸铁
2.11% < WC ≤ 6.69%
按室温组织不同,又可分为以下三种: ① 共晶白口铸铁 WC = 4.3% 室温组织:低温莱氏体 ② 亚共晶白口铸铁 2.11% < WC < 4.3% 室温组织:低温莱氏体 + 珠光体 + 二次渗碳体 ③过共晶白口铸铁 4.3% < WC ≤ 6.69% 室温组织:低温莱氏体 + 一次渗碳体。
渗碳体是强化相,其形状有条状、网状、
片状、粒状等,它的形状、大小和分布对 钢的性能起重要作用。
四、珠光体
珠光体(P)
定义:F与 Fe3C 所形成的机械混合物
(平均含碳量:0.77%)
性能组织:介于F 和 Fe3C之间具有良好的综合力学性能
层片状
颗粒状
五、莱氏体
莱氏体(Ld)
定义:A与 Fe3C 所形成的机械混合物
727
共晶相图
共析相图
0.0218
0.77
2.11
4.3
Fe — Fe3C状态图
第一节 铁碳合金的基本相
一、铁素体
铁素体(F 或α):碳溶于α-Fe中所形成的间隙固溶体
晶格结构:体心立方晶格
最大溶解度:0.0218%(727℃)
性能组织:强度低、硬度低而塑性好。
二、奥氏体
奥氏体(A
2、制定铸、锻、热处理工艺的重要依据
1)铸造方面: 浇注温度一般在液相线以上50~100°C 铸造生产中,共晶成分附近的铸铁应用最多在此范围的钢, 其结晶温度范围小,铸造性能好
2)锻造方面: 锻造时,将其温度加热到A体区域, 能获得良好的塑性,易于锻造成形 白口铸铁中有大量硬而脆的渗碳体, 故不能锻造
03 铁碳合金状态图
1、特性点:由字母标出的具有特定意义的点
2、特性线
ACD——液相线; AECF——固相线 其中:ACE区——L+A; CDF区——A+Fe3CI C点:共晶点 共晶反应:LC←-→Ld(AE+Fe3C) ECF——共晶线;wC=(2.11~6.69)%的铁碳合金,缓冷至 1148°C(ECF共晶线)都发生共晶转变。 共晶:在一定条件下(温度、成分),由液体合金中同时结晶出 两种不同晶体的转变。 GS——A冷却析出F开始线, 通常称为 A3线。 ES——C在A中溶解度曲线/ 冷却时A析出Fe3C开始线, 又称 Acm线。 PSK——共析线,又称A1线。wC>0.021 8% 的铁碳合金,缓冷至 727°C(PSK共析线)都发生共析转变。 S点:共析点 共析反应:AS←-→P(FP+ Fe3C) PQ——C在F中的溶解度曲线。
2)钢(ωc=0.0218%~2.11%)
3)白口铸铁(ωc=2.11%~6.99%)
四、典型的铁碳合金平衡结晶过程及组织
1) 共析钢的结晶过程分析
2结晶过程
4) 共晶白口铸铁的结晶过程
5) 亚共晶白口铸铁的结晶过程
6) 过共晶白口铸铁的结晶过程
1)图中的点、线和区域
三个基本相:L是Pb与Sn两组元形成的均匀的液相, α是Sn溶于Pb的固溶体,β是Pb溶于Sn的固溶体 三个单相区和三个两相区:即L+α、L+β、α+β相区。 在三个两相区之间有一根水平线MEN,是L+α+β三相 并存区 。
第3章 铁碳合金相图
珠光体(P)
Pearlite
HBS=170~230 (纯铁HBS=50~80)
工程材料及热加工
莱氏体 奥氏体(珠光体)与渗碳体的机械混合物
含碳量:4.3% 共晶反应式:
L 4 .3 % C (A+Fe3C)
1148 C
性能:硬度高,塑性、韧性差
莱氏体(L)
Ledeburite
工程材料及热加工
珠光体中的渗碳体称共析渗碳体。
工程材料及热加工
合金液体在 1-2点间转变 为。到S点 发生共析转 变:
S⇄P+Fe3C, 全部转变
为珠光体。
工程材料及热加工
4)过共析钢结晶动态示意图 液相
奥氏体
析 出
奥氏体+二次渗碳体
共析 转变
珠光体+二次渗碳体
从奥氏体中析出的Fe3C称二次渗碳体, 用Fe3CⅡ表示
组成物标注区别 主要在+ Fe3C和
+Fe3C两个相区. + Fe3C相区中有
四个组织组成物
区, +Fe3C 相区
+ Fe3C
+ Fe3C
中有七个组织组
成物区。
工程材料及热加工
A
H
L+
温N A+ 度
A
J
B
L
D
L+A
E S
P A+ Fe3CⅡ P+ Fe3CⅡ
C A+ Fe3C
工程材料及热加工
第三章 铁碳合金相图
第一节 铁碳合金的组元及基本相 第二节 Fe-Fe3C相图 第三节 含碳量对碳钢组织与性能的影响
3-3 铁碳合金相图
铁 碳 合 金 状 态 图
5) ECF水平线(1148C)为共晶线: 与该线成分(2.11%~6.69%C)对应的合金在 该线温度下将发生共晶转变:L4.3 A2.11 + Fe3C。 转变产物为奥氏体和渗碳体的机械混合物,称为 莱氏体,用符号“Ld”表示。莱氏体的组织特点 为蜂窝状,以Fe3C为基,性能硬而脆。
3、过共析钢的结晶过程 过共析钢在3点以前与共析钢类似; 当缓冷到3点温度时,奥氏体的溶碳量随着温度的 下降而逐渐降低,并沿着奥氏体晶界析出二次渗 碳体;随着温度继续下降,二次渗碳体不断析出 ,而剩余奥氏体的碳含量沿ES线逐渐减少; 温度降到4点(727℃)时;剩余奥氏体恒温下发生 共析转变而形成珠光体; 共析转变结束后,合金组织为珠光体加二次渗碳 体,直至室温。 所有过共析钢的室温平衡组织都是珠光体+网状二 次滲碳体。 但随着含碳量的增加,组织中珠光体的数量减少 ,网状二次 滲碳体的数量增加,并变得更粗大。
L(4.3%C) Ld(A+Fe3C)
铁 碳 合 金 状 态 图
2、主要特性线 2) ) ACD AECF 线 31 ) GS 线线 液相线,由各成分合金开始结晶温度点所组成 固相线,由各成分合金结晶结束温度点所组成 奥氏体冷却时开始向铁素体转变的温度线,通 的线,铁碳合金在此线以上处于液相。 的线。在此线以下,合金完成结晶,全部变为固体 常称为 A3线。 AC线下结晶出奥氏体;CD线下结晶出渗碳体。 状态。
w
2、亚共析钢(以 c=0.45%为例) 过W c=0.45%的亚共析钢作合金线,与相图 分别交于1、2、3、4点温度。 亚共析钢在3点以前的结晶过程与共析钢类似; 当缓冷到3点时,从均匀的奥氏体中开始析出铁素 体; 温度继续下降,奥氏体量逐渐减少,铁素体 量逐渐增加,就会将多余的碳原子转移到尚未转 变的奥氏体中,引起未转变的奥氏体的含碳量沿 GS线逐渐增加。 当温度降至4点(727℃)时,剩余奥氏体含碳 量增加到了Wc=0.77%,具备了共析转变的条件, 转变为珠光体。原铁素体不变保留了在基体中。 4点以下不再发生组织变化。故亚共析钢的室 温组织为铁素体+珠光体。
第三节 铁碳合金状态图分析和应用
金属工艺学电子教案(7)【课题编号】7-3.3【课题名称】铁碳合金状态图分析(二),铁碳合金状态图的应用。
[教材版本】郁兆昌主编.中等职业教育国家规划教材—金属工艺学(工程技术类).第2版.北京:高等教育出版社,2006【教学目标与要求】一、知识目标较熟悉碳钢的结晶过程及组织,铁碳合金状态图的应用。
二、能力目标会分析碳钢的结晶过程及组织,会应用状态图制定热加工工艺和选用钢铁材料。
三、素质目标了解碳钢的结晶过程及组织,会应用状态图制定热加工工艺和选用钢铁材料。
四、教学要求对铁碳合金状态图有一般的认识,具有初步的分析和应用能力。
【教学重点】典型成分钢的结晶过程及组织。
【难点分析】典型成分铁碳合金的结晶过程及组织。
【分析学生】1、具有学习本次课的知识基础。
2、具有学习本次课的能力基础。
3、分析碳钢的结晶过程及组织,学会应用铁碳合金状态图是本章的学习重点、难点和最终目的,也是往后学习碳钢、钢的热处理、低合金钢和合金钢、铸铁以及铸造、锻压、焊接等内容的基础。
【教学设计思路】教学方法:讲练法、演示法、讨论法、归纳法。
【教学资源】1.郁兆昌,潘展,高楷模研编制作.金属工艺学网络课程.北京:高等教育出版社,20052.郁兆昌主编.金属工艺学教学参考书(附助学光盘).北京:高等教育出版社,2005 【教学安排】2学时(90分钟)教学步骤:讲授与演示交叉进行、讲授中穿插练习与设问,穿插讨论,最后进行归纳。
【教学过程】一、复习旧课(15分钟)1.简述铁碳合金的室温组织及性能、共析反应。
2.讲评作业批改情况;3.提问:题3-6;3-1。
二、导入新课分析铁碳合金的结晶过程及组织、学会应用铁碳合金状态图是铁碳合金状态图的核心内容。
三、新课教学(70分钟)1.典型铁碳合金的结晶过程及组织(40分钟)教师讲授共析钢、亚共析钢、过共析钢的结晶过程及组织。
演示网络课程上述内容。
学生课堂练习:题分析Wc=0.45%、Wc=0.77%、Wc=1.0%铁碳合金结晶过程。
第三章-铁碳合金相图【详解版】
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
• ⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
2021/1/18
4. 铁碳合金分类
• (1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
• 亚共析钢随含碳量增加,P 量增加,钢的强度、硬度 升高,塑性、韧性下降。
0.77%C时,组织为100% P, 钢的性能即P的性能。
>0.9%C,Fe3CⅡ为晶界 连续网状,强度下降, 但 硬度仍上升。
>2.11%C,组织中有以
Fe3C为基的Ld’,合金太脆.
1
2021/1/18
• 三、 含碳量对工艺性能的影响
2021/1/18
2)亚共析钢的 结晶过程
L→L+A →A→A+F先共析 AS(0.77% C) →P 室温组织为:P+F
2021/1/18
20钢组织
40钢组织
2021/1/18
• 亚共析钢室温下的组织 为F+P。
• 在0.0218~0.77%C 范围 内珠光体的量随含碳量 增加而增加。
60钢组织
2021/1/18
bcc
fcc
bcc
二、铁碳合金中的基本相
铁碳合金中的组元:Fe、C
L相:液态下无限互溶、成分均匀
Fe和C
固溶体相:C溶于Fe中形成 F、A等
金属化合物相:Fe与C化合形成Fe3C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、奥氏体(A) 奥氏体( 奥氏体是碳溶于γ-Fe中所形成的间隙固溶体, 中所形成的间隙固溶体, 奥氏体是碳溶于 中所形成的间隙固溶体 面心立方晶格。 面心立方晶格。 其强度和硬度比铁素体高,塑性、韧性也好。 其强度和硬度比铁素体高,塑性、韧性也好。 其晶粒呈多边形,晶界较铁素体平直。 其晶粒呈多边形,晶界较铁素体平直。
(6)PSK水平线 共析线又称A1线 PSK水平线 共析线又称A (7)GP线 奥氏体析出 GP线 铁素体的终了线; 铁素体的终了线;也是铁 素体转变为奥氏体的开始 线 PQ线 (8)PQ线 碳在铁素体 中的溶解度曲线
3.Fe-Fe3C状态图中的相区 Fe单相区 (1)ACD线以上区域 ACD线以上区域 液相区 AESG区 (2)AESG区 奥氏体 区(A ) GPQ区 (3)GPQ区 铁素体区 (F ) DFK线 (4)DFK线 渗碳体线 (Fe3C)
(9)PSK线以下区域 PSK线以下区域
铁素体和渗碳体区( 铁素体和渗碳体区(F+Fe3C)
第二节
铁碳合金状态图分析
一、简化的Fe-Fe3C状态图特征 简化的Fe-Fe3C状态图特征 Fe 图中温度为纵坐标, 图中温度为纵坐标,碳的质量分数为横坐 其左端点是纯铁(Wc 0); (Wc= 标,其左端点是纯铁(Wc=0);右端点是 Fe3C(Wc=6.69%)。 Fe3C(Wc=6.69%)。 横坐标上的任何一 点,均代表了一种成分 均代表了一种成分 的铁碳合金。 的铁碳合金。图中的 任何一点, 任何一点,表明了某 一成分的铁碳合金在 一定温度下所具有的 状态或组织。 状态或组织。
1.Fe-Fe3C状态图的特性点 Fe(1)A点 纯铁的熔点 (2)G点 纯铁的同 素异晶转变点 600℃时 (3)Q点 600℃时 碳在α-=0.0057% Wc=0.0057% (4)D点 渗碳体 熔点
(5)C点 共晶点
Lc Ld(AE+Fe3C)
三、渗碳体(Fe3C) 渗碳体( 渗碳体是铁与碳形成的金属化合物, 渗碳体是铁与碳形成的金属化合物,碳含 量是6.69%,具有复杂的晶体结构 6.69%,具有复杂的晶体结构。 量是6.69%,具有复杂的晶体结构。 其硬度很高,塑性和韧性很差, 、 其硬度很高,塑性和韧性很差,δ、Ak接近于 脆性很大。 零,脆性很大。 四、珠光体(P) 珠光体( 珠光体是由铁素体和渗碳体组成的机械混 合物。 合物。 铁素体与渗碳体片层状交替排列, 铁素体与渗碳体片层状交替排列,平均碳含量 为0.77%。 %。 性能介于铁素体和渗碳体之间,强度较高, 性能介于铁素体和渗碳体之间,强度较高, 硬度适中,有一定的塑性。 硬度适中,有一定的塑性。
五、莱氏体(高温莱实体ld,变态莱氏体ld') 莱氏体(高温莱实体l 变态莱氏体l 莱氏体是由奥氏体和渗碳体组成的机械混合 平均碳含量4.3 4.3%。 物,平均碳含量4.3%。 存在于1148 727℃的莱氏体称为高温莱氏体 1148~ 存在于1148~727℃的莱氏体称为高温莱氏体 (Ld);存在于727℃以下的莱氏体称为变态莱氏体 存在于727℃ (Ld);存在于727℃以下的莱氏体称为变态莱氏体 ld‘),它是由渗碳体基体与珠光体组成。 ),它是由渗碳体基体与珠光体组成 (ld‘),它是由渗碳体基体与珠光体组成。 莱氏体的力学性能与渗 碳体相近硬度很高、 碳体相近硬度很高、塑性 很差。 很差。
(6)E点 碳在γ碳在γ Fe中的最大溶解度 Fe中的最大溶解度 (7)S点 共析点
Ac P(Fp+Fe3C)
碳在α (8)P点 碳在αFe中的最大溶解度 Fe中的最大溶解度
2.Fe-Fe3C状态图的特性线 FeACD线 (1)ACD线 液相线 AECF线 (2)AECF线 固相线 ECF水平线 (3)ECF水平线 共晶线 ES线 又称A (4)ES线 又称ACm线 是碳在奥氏体中的 溶解度曲线。 溶解度曲线。 GS线 又称A (5)GS线 又称A3 线 由奥氏体中析出铁 素体的开视线; 素体的开视线;也是铁 素体转变为奥氏体的终 了线。 了线。
第三章 铁碳合金状态图
第一节 铁碳合金的基本组织
铁碳合金状态图是表示在平衡状态下, 铁碳合金状态图是表示在平衡状态下,不同 成分的铁碳合金, 成分的铁碳合金,在不同温度时所具有的状态或 组织的一种图形。 组织的一种图形。
一、铁素体(F) 铁素体( 铁素体是碳溶于α-Fe中所形成的间隙固溶体, 中所形成的间隙固溶体, 铁素体是碳溶于 中所形成的间隙固溶体 体心立方晶格。 体心立方晶格。 其性能是强度、硬度很低,塑性、韧性好。 其性能是强度、硬度很低,塑性、韧性好。 显微组织是明亮的多边形晶粒。 显微组织是明亮的多边形晶粒。
两相区: 两相区: (5)ACE区 ACE区 液相和奥氏体区(L+A) 液相和奥氏体区(L+A) CDF区 (6)CDF区 液相和渗碳体区( 液相和渗碳体区(L+Fe3CⅠ) EFKS区 (7)EFKS区 奥氏体和渗碳体区( 奥氏体和渗碳体区(A+Fe3C) GSP线 (8)GSP线 奥氏体和铁素体区(A+F) 奥氏体和铁素体区(A+F)