第四章铁碳合金的基本组织与状态图
2-5_铁碳合金的组织与状态图
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
Ld+Fe3CⅠ
727℃ K
Ld’+Fe3CⅠ
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
⒈ 特征点
⇄
⇄ ⇄
⇄ ⇄
J N
A
G
F +A
L+A
L
L+Fe3C
A +Fe3C
P +Fe3C
⒉ 特征线 ⑴ 液相线—ACD,
固相线—AECF
⑵ 水平线:
ECF:共晶线LC⇄ E+Fe3C
本章小结
三种典型的金属晶体结构 晶体缺陷:点、线、面 过冷度、结晶过程 晶粒大小对金属性能的影响、细化晶粒的方法 同素异构 合金的相结构、固溶强化 铁碳合金的基本组织、铁碳合金相图
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
亚共析钢组织金相图
4.过共析钢 ( Wc = 1.2% )
过共析钢组织金相图
5.共晶白口铁 ( Wc = 4.3% )
共晶白口铁组织金相图
6.亚共晶白口铁 ( Wc = 3.0% )
亚共晶白口铁组织金相图
7.过共晶白口铁 ( Wc = 5.0% )
过共晶白口铁组织金相图
2.4-铁碳合金状态图
第四节 铁碳合金及其 平衡状态图
一、铁碳合金中的基本相与基本组织 1. 铁碳合金基本相 铁素体 奥氏体 渗碳体
金属材料的组织结构
0.0006~0.0008%
金属材料的组织结构
金属材料的组织结构
2. 基本组织 三种单相组织:铁素体 奥氏体 渗碳体 三种双相组织:珠光体 高温莱氏体 低温莱氏体
金属材料的组织结构
五、铁碳合金状态图的应用 1. 选材 2. 确定钢的锻造温度范围 3. 确定铸钢和铸铁的熔化温度和浇注温度 4. 制定钢的热处理工艺
金属材料的组织结构
思 考 题
1.解释基本概念:晶体、晶体结构、过冷度、同素 异晶转变、合金、组元、相、组织、固溶强化、 共析反应、共晶反应、铁素体、奥氏体、渗碳体、 珠光体、莱氏体。 2.简述金属的结晶过程。纯金属与合金的结晶过程 有何异同? 3.晶粒度对金属机械性能有何影响,在实际生产中, 常采用哪些措施细化晶粒? 4.合金的基本相结构有哪些,合金的相和组织有何 区别和联系? 5.说明固溶体和金属化合物的晶体结构特点,并指 出二者的性能差异。
金属材料的组织结构
4. 相区 ⑴ 单相区: 液相区 奥氏体相区 铁素体相区 渗碳体相区 ⑵ 双相区——两面夹方法 以相组成表示的铁碳平衡状态图 以组织组成表示的铁碳平衡状态图
金属材料的组织结构
5. 问题 四个单项区中,液相区、奥氏体相区、铁素 体相区均为区域,而渗碳体相区为线段DFK, 为什么?
金属材料的组织结构
金属材料的组织结构
共析转变: 一种固相转变成另外两种固相的转变。 或者 共晶转变: 一种液相转变成另外两种固相的转变。 或者
金属材料的组织结构
金属材料的组织结构
五种基本组织的关系
铁碳合金状态图
金属材料及热处理
3、渗碳体
➢ 定义:铁与碳形成的金属化合物,是钢铁中的强化相,高 温下可分解, Fe3C →3Fe+C(石墨) 。
➢ 成分与性能:渗碳体中碳的质量分数为6.69%,熔点为 1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0, aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形 状、大小及分布状况对钢的性能影响很大。
过共析钢 >0.77% C
亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C
过共晶白口铸铁 >4.3% C
金属材料及热处理
含碳量对工艺性能的影响 ⑴ 切削性能:中碳钢比较合适。 ⑵ 可锻性能:低碳钢比高碳钢好。 ⑶ 铸造性能:共晶成分附近的合金铸造性能好。 ⑷ 焊接性能:低碳钢好于高碳钢。 ⑸ 热处理性能:下一节介绍。
的强度(σb=770MPa)和塑性 (δ=20~25%),硬度适中
(180HBS)。
金属材料及热处理
5、莱氏体
➢ 碳的质量分数为4.3%的液态 铁碳合金冷却到1148℃时, 同时结晶出奥氏体和渗碳体 的多相组织称为莱氏体 (ledeburite),用符号Ld表 示。
➢ 在727℃以下莱氏体由珠光体 和渗碳体组成,称为变态莱 氏体,用符号Ld′表示。
➢定义:碳溶于a-Fe中形成的间隙固溶体,以F或α表示; ➢结构:体心立方结构。 ➢成分:铁素体的溶碳能力很低,室温时溶解度Wc≤0.0008% ≈0,最大溶解度在727℃,Wc≈0.0218%。 ➢性能:铁素体的塑性、韧性很好(δ=30~50%、 aKU=160~200J/cm2),但强度、硬度较低(σb=180~ 280MPa、σs=100~170MPa、硬度为50~80HBS)。其力学 性能几乎与纯铁相同。 ➢组织:铁素体的组织为多边形晶粒。
第四章 铁碳合金
铁碳合金基本组织比较
名称 符号
结构
铁素体 F或α
间隙固溶体
奥氏体 A或γ
间隙固溶体
渗碳体 Fe3C
珠光体
P
金属化合物 机械混合物
莱氏体
Ld
机械混合物
性能
强度、硬度低,塑性、 韧性好。
强度、硬度比铁素体高, 塑性韧性也好。
硬度很高、塑性、韧 性很差
强度较高、硬度适中介 于铁素体和渗碳体之间
硬度很高,塑性很差 与渗碳体接近
奥氏体是碳在γ-Fe中的间隙固溶体,用符 号“A”(或γ)表示,面心立方晶格;
虽然FCC的间隙总体积较小,但单个间隙体 积较大,所以它的溶碳量较大,最多有 2.11%(1148℃时),727℃时为0.77%。
在一般情况下, 奥氏体是一种高温组织,稳定存 在的温度范围为727~1394℃,故奥氏体的硬度低、 塑性较高,通常在对钢铁材料进行热变形加工, 如锻造、热轧等时,都应将其加热成奥氏体状态, 所谓“趁热打铁”正是这个意思。Rm=400MPa, 170~220HBW,A=40%~50%。
质硬而脆,耐腐蚀。用4%硝酸酒精溶液浸 蚀后,在显微镜下呈白色,如果用4%苦味 酸溶液浸蚀,渗碳体呈暗黑色。
渗碳体是钢中的强化相,根据生成条件不 同渗碳体有条状、网状、片状、粒状等形 态,它们的大小、数量、分布对铁碳合金
性能有很大影响。
总结:
在铁碳合金中一共有三个相,即铁素体、奥 氏体和渗碳体。但奥氏体一般仅存在于高温 下,所以室温下所有的铁碳合金中只有两个 相,就是铁素体和渗碳体。由于铁素体中的 含碳量非常少,所以可以认为铁碳合金中的 碳绝大部分存在于渗碳体中。这一点是十分 重要的。
➢水平线ECF为共晶反应线。 碳质量分数在2.11%~6.69%之间的铁碳合金,
第04章 铁碳合金相图
铁和碳的合金称为铁碳合金, 如钢和铸铁都是铁碳合金。要掌握各种钢和铸铁的 组织、性能及加工方法等,必须首先了解铁碳合金中的
化学成分、组织和性能之间的关系。
铁碳合金相图是研究铁碳合金组织与成分、温度关 系的重要图形,了解和掌握它对制定钢铁的各种加工工 艺都有着重要的作用。
4.1
铁碳合金的基本组织 在铁碳合金系中,可配制多种成分不同的铁碳合金,它们
γ -Fe的最大空隙半径 4-3所示。由于 γ -Fe是面心立方晶格,而
略小于碳原子的半径,其晶格的间隙较大,故奥氏体的溶碳能
力较强,溶解度比铁素体高得多。在1 148℃时溶碳量可达 2.11%的最大溶解度,随着温度的下降,溶解度逐渐减小,在 727℃时溶碳量为0.77%。
4.1
铁碳合金的基本组织
应该指出的是:稳定的奥氏体属于铁碳合金的高温组织,当铁
碳合金缓冷到 727℃时,奥氏体将发生转变,转变为其他类型 的组织。
4.1
铁碳合金的基本组织
图4-4
奥氏体的显微组织
4.1
铁碳合金的基本组织
4.1.3
渗碳体
渗碳体(Fe3C)是指晶体点阵为正交系、分子式为Fe3C的一 种金属化合物。渗碳体碳的质量分数是6.69%。渗碳体具有复 杂的斜方晶格结构,如图4-5所示,与铁和碳的晶格结构完全
在不同温度下的平衡组织是各不相同的,但它们总是由几个基 本相所组成。 在液态,铁和碳可以无限互溶。在固态,碳可溶于铁中,
形成两种间隙固溶体——铁素体和奥氏体。
当碳的质量分数超过其固态溶解度时,则会出现化合物—
—渗碳体(Fe3C)。因此,在铁碳合金中,碳可以与铁组成化合
物,也可以形成固溶体,还可以形成混合物。铁碳合金在固态 下的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体等,
第四章铁碳合金状态图
第四章铁碳相图与碳钢钢铁材料都属于铁碳合金,学习本章有助于了解铁碳合金的成分、组织和性能之间的关系,以便在生产中合理地使用。
本章包括以下内容:铁碳相图碳含量对合金组织性能的影响铁碳相图的应用与局限性碳钢4.1 铁碳相图4.1.1铁碳合金中的基本相不同温度时Fe 具有不同的晶体结构α-Fe γ-Fe δ-Fe C 可以溶解到Fe 的晶格中形成固溶体α:C 在α-Fe 中的间隙固溶体;铁素体,Fγ: C 在γ-Fe 中的间隙固溶体;奥氏体,A δ:C 在δ-Fe 中的间隙固溶体; 高温铁素体 当C 含量超过溶解度时,多余的C 形成化合物Fe 3C 或石墨1394o C 912o C4.1.2 Fe-FeC相图分析3简化铁碳相图4.1.3 铁碳合金的分类按照含碳量铁碳合金可以分为三大类(一)工业纯铁: C%≤0.0218%(二)钢: 含C%为0.0218%~2.11%1. 共析钢C%=0.77%2. 亚共析钢0.0218%< C%< 0.77%3.过共析钢0.77%< C%≤2.11%(三) 白口铸铁: 2.11%< C%< 6.69%1.共晶白口铁C%=4.3%2.亚共晶白口铁2.11%< C%< 4.3%3.过共晶白口铁4.3%< C%< 6.69%4.1.4 典型合金结晶过程1 工业纯铁室温组织为:α+Fe3C III2-1 共析钢室温组织为:珠光体P(F+Fe 3C)室温组织中组织组成物相对重量:W F = ×100% = 88% W Fe3C 共析= ×100%=12%0.026.690.776.69−−0.02-6.690.020.77−2-2 亚共析钢30钢的室温组织40钢的室温组织室温组织:F 初+P (F +Fe 3C )W P = ×100% = 51%W F 初= 1 -51% = 49%0.020.770.020.4−−2-3 过共析钢室温组织:Fe 3C Ⅱ+P (F +Fe 3C )1.2%C 钢的室温组织组成物相对重量为:Fe 3C Ⅱ%=×100%=7%,P %=1-7%=93%0.776.690.771.2−−3-1 共晶白口铸铁3-2 亚共晶白口铸铁3-3 过共晶白口铸铁Fe-Fe 3C组织组成物相图4.2 碳含量对组织性能的影响4.2.1 组织相:随着C %↑F ↓Fe 3C ↑组织:主要涉及碳化物的数量与形态: 少量Fe 3C III ,P ,二次Fe 3C II ,莱氏体基体4.2.2 含碳量对力学性能的影响F 为软相,Fe 3C 为硬脆相。
铁碳合金状态图
② 亚共析钢
③ 过共析钢
3)白口铸铁
2.11% < WC ≤ 6.69%
按室温组织不同,又可分为以下三种: ① 共晶白口铸铁 WC = 4.3% 室温组织:低温莱氏体 ② 亚共晶白口铸铁 2.11% < WC < 4.3% 室温组织:低温莱氏体 + 珠光体 + 二次渗碳体 ③过共晶白口铸铁 4.3% < WC ≤ 6.69% 室温组织:低温莱氏体 + 一次渗碳体。
渗碳体是强化相,其形状有条状、网状、
片状、粒状等,它的形状、大小和分布对 钢的性能起重要作用。
四、珠光体
珠光体(P)
定义:F与 Fe3C 所形成的机械混合物
(平均含碳量:0.77%)
性能组织:介于F 和 Fe3C之间具有良好的综合力学性能
层片状
颗粒状
五、莱氏体
莱氏体(Ld)
定义:A与 Fe3C 所形成的机械混合物
727
共晶相图
共析相图
0.0218
0.77
2.11
4.3
Fe — Fe3C状态图
第一节 铁碳合金的基本相
一、铁素体
铁素体(F 或α):碳溶于α-Fe中所形成的间隙固溶体
晶格结构:体心立方晶格
最大溶解度:0.0218%(727℃)
性能组织:强度低、硬度低而塑性好。
二、奥氏体
奥氏体(A
2、制定铸、锻、热处理工艺的重要依据
1)铸造方面: 浇注温度一般在液相线以上50~100°C 铸造生产中,共晶成分附近的铸铁应用最多在此范围的钢, 其结晶温度范围小,铸造性能好
2)锻造方面: 锻造时,将其温度加热到A体区域, 能获得良好的塑性,易于锻造成形 白口铸铁中有大量硬而脆的渗碳体, 故不能锻造
工程材料与机械制造基础 第四章 铁碳合金相图及碳素钢
织为单相A (γ)
① 亚共析钢 (0.0218~0.77%C) ② 共析钢 (0.77%C) ③ 过共析钢
亚共 共析 析钢 钢 工 业 纯 铁 过 共 析 钢 亚 共 晶 白 口 铁 共 晶 白 口 铁 过 共 晶 白 口 铁
(0.77~2.11%C)
§4-3 铁碳合金的结构和相图
三、典型成分铁碳合金的平衡结晶过程
Fe3C
P
过共析钢组织金相图
§4-3 铁碳合金的结构和相图
三、典型成分铁碳合金的平衡结晶过程
过共析钢室温组织为P+ Fe3CⅡ。 Fe3CⅡ量随含碳量而增加, 含碳量为2.11%时, Fe3CⅡ量最大:
含1.4%C钢的组织
§4-3 铁碳合金的结构和相图
室温下两相的相对重量百分比:
1 2
3 4
3
在2点, 共晶
(A)发生共析反应,转变为珠光体,这种由
P与 Fe3C组成的共晶
体称低温莱氏体, 用
Le’表示。 2 点以下,共晶体中P 的变化同共析钢。
S
§4-3 铁碳合金的结构和相图
共晶白口铁室
温组织为Le’
(P+ Fe3C), 它 保留了共晶转 变产物的形态 特征。
室温下两相的 相对重量百分 比为:
d). 1.2%C 铁素体+二次渗碳体 500×
§4-3 铁碳合金的结构和相图
三、典型成分铁碳合金的平衡结晶过程
5、共晶白口鉄的结晶过程
合金冷却到C点发生共晶反应全部转变为莱氏体(Le),莱氏体是共晶 (A)
与共晶Fe3C的机械混合物, 呈鱼骨状。
Fe3C
§4-3 铁碳合金的结构和相图
铁碳合金状态图
(2)合金的平衡结晶过程及其组织
1)固溶体合金(合金Ⅰ)
成分位于M点以左(即wSn≤19%)或N点以右(即wSn≥97.5%)的合金称为固溶体合金 液态合金缓冷至温度1,开始从L相中结果出α固溶体。随温度的降低,液相的数量不断减少,α固
由相图可知合金在固态加热和冷却过程中均有组织的变化,可以 进行热处理。并且可以正确选择加热温度。
讨论:
默画出铁碳相图,标明C、S、E、F点的成分及 ECF、PSK线的温度,标明各相区;
说明铁与碳在液态和固态的相互作用以及各相的 本质,指出α-Fe与F;γ-Fe与A的区别;
写出相图中C、S两点进行相变的反应式,指出各是 什么反应,说明其相变特点;说出ECF; PSK; ES; GS各线的意义;
两种不同晶体的转变。 GS——A冷却析出F开始线, 通常称为 A3线。 ES——C在A中溶解度曲线/ 冷却时A析出Fe3C开始线, 又称 Acm线。 PSK——共析线,又称A1线。wC>0.021 8% 的铁碳合金,缓冷至
727°C(PSK共析线)都发生共析转变。 S点:共析点 共析反应:AS←-→P(FP+ Fe3C) PQ——C在F中的溶解度曲线。
三个单相区和三个两相区:即L+α、L+β、α+β相区。 在三个两相区之间有一根水平线MEN,是L+α+β三相 并存区 。
2)共晶反应
成分位于(E)点的合金,在温度达到水平线MEN所对应的温度 (tE=183℃)时,将同时结晶出成分为M点的α相及成分为N点的β 相。其转变式为:
4铁碳合金的基本组织及合金相图分析
模块二 金属学的基本知识
3、特性点 A点:纯铁的熔点 ;1538℃ ;Wc=0 C点:共晶点;1148℃; Wc=4.3% D点:渗碳体的熔点; 1227℃; Wc=6.69% S点:共析点 ;727℃; Wc=0.77% G点:纯铁的同素异晶转变点; 912℃ E点:C在γ-Fe中最大溶解度;1148℃; Wc=2.11% P点:C在α-Fe中最大溶解度;727 ℃ Q点: 600 ℃时C在α-Fe中的溶解度
模块二 金属学的基本知识
3、制定热加工工艺: 在铸造工艺方面,根据相图可确定合适的熔化温 度和浇注温度,含碳量为4.3%的铸铁铸造性最好; 在锻造工艺方面,可以选择钢材的轧制和锻造的温度 范围(800℃左右)应在奥氏体区;在焊接工艺方面, 含碳量越低,焊接性能越好。 4、应用于热处理生产: 由相图可知合金在固态加热和冷却过程中均有组织 的变化,可以进行热处理(退火、正火、淬火)。并 且可以正确选择加热温度。
模块二 金属学的基本知识
5、相区及其组织 4个单相区、5个两相区、2个三相共存线 1)4个单相区:
①液相区ACD线以上区域:L ②AESGA区:A
③GPQG区:F
④DFK直线区:Fe3C
2)5个单相区:
①ACEA区域:L+A
②CDFC区域:L+Fe3C ③EFKSE区域:A+Fe3C ④GSPG区域:F+A ⑤PSK线以下区域(室温):F+Fe3C
模块二 金属学的基本知识
PSK:共析线,含C量在0.0218 % --6.69%的 铁碳合金至此反生共析转变,产生珠光体P , 又称A1线。 727º C As P(F+Fe3C) ES:C在γ -Fe中的溶解度曲线,又称Acm线。 二次渗碳体析出。 GS:A开始析出F的转变线,加热时F全部溶入 A,又称A3线。 PQ : C在α -Fe中的溶解度曲线,三次渗碳体 析出。
2第四节 铁碳合金相图
AC
名称 亚共析钢
(C<0.77%)
转变过程 L L+A
AE
F+P P P + Fe3C
A
A3
A+F
A1
P+F
共析钢
(C=0.77%)
过共析钢
(0.77%< C<2.11%)
2
Fe-C合金状态图
状态图的分析
组织分析
常温组织
AC
名称 亚共析钢
(C<0.77%)
转变过程 L L L
AC
F+P P P + Fe3C
2
Fe-C合金状态图
室温时,含碳量低于0.0218%的合金全部为铁 素体(忽略三次渗碳体)、随着合碳量的增加,铁 素体的含量呈线性减少,到6.69%C时降为零。与 此同时,渗碳体的含量则由零直线增加至100%。 含碳量的变化不仅引起铁素体和渗碳体相对量的 变化,而且由于引起不同性质的结晶过程,使其出 现不同的组织形态,发生不同的相互结合,因此造 成不同的组织变化。
2
Fe-C合金状态图
(2)组织形态的变化:同一种组织组成物或组 成相,由于生成条件的不同,虽然本质相同,但 形态差别却很大,对性能的影响也大不一样。 1)铁素体。 固溶体转变生成的单相铁素体为块状(等轴晶 粒状);共折体中的铁素体则由于同渗碳体相互 制约,主要呈交替片状。
2
Fe-C合金状态图
2)渗碳体。 它的形态最复杂,钢铁组织的复杂化主要是它所造成 的。 一次渗碳体是从液体中直接析出,呈长条状; 二次渗碳体是从奥氏体中析出的,沿晶界呈网状; 三次渗碳体是从铁素体中析出的,沿晶界呈小片或粒 状; 共晶渗碳体是同奥氏体相关形成的,在莱氏体中为连 续的基体; 共析渗碳体是同铁素体交互形成的,呈交替片状。
第4章 铁碳合金相图和碳钢
结合不易分辨。室温组织
为P。
珠光体
2、共析钢的结晶过程
室温下,珠光体中两相的 相对质量百分比是多少?
1 2
4L Q QL 6.69 0.77 88.5% 6.69 0.0008 Q Fe 3C 100% 88.5% 11.5%
石墨(G): Fe-─C合金中游离存在的碳; 石墨的强度、塑性、硬度都很低。 由于碳在-Fe中的溶解度很 小,因而常温下碳在铁碳合金 中主要以Fe3C或石墨的形式存 在。
钢中的渗碳体
渗碳体组织金相图
铸铁中的石墨
4、珠光体(P)
1)共析转变:恒温下,一种固相同时析出两种不同成分固 相的机械混合物(共析体)。
三、典型成分铁碳合金的结晶过程
(一)铁碳合金的分类(P46) 1、工业纯铁 Wc≤0.0218% 2、碳素钢 0.0218%< Wc≤2.11%
1)共析钢 Wc=0.77% 2)亚共析钢 0.0218%< Wc<0.77% 3)过共析钢 0.77%< Wc≤2.11%
3、白口铸铁 2.11% < Wc <6.69%
第四章 铁碳合金相图和碳钢 (P42)
第一节 纯铁﹑铁碳合金的组织结构 及其性能
第二节 铁碳合金相图
第三节 碳钢
第一节 纯铁﹑铁碳合金的组织结 构及其性能(P42)
一、纯铁及其同素异构转变
同素异构转变:物质在固态下,晶 体结构随温度变化的现象。 同素异构转变属于相变之一—固态 相变。 1、铁的同素异构转变: 铁在固态冷却过程中有两次晶体 结构变化,其变化为:
都是体心立方间隙固溶体。铁素体的 溶碳能力很低,在727℃时最大为 0.0218%,室温下仅为0.0008%。
铁碳合金状态图
4.3
碳对铁碳合金组织和性能的影响
二、对铁碳合金力学性能的影响
4.4
铁碳合金状态图的应用
1、在选材方面的应用
Fe- Fe3C相图反映了铁碳合金组织和性能随成分的变化规律。这样, 就可以根据零件的工作条件和性能要求来合理的选择材料。例如, 桥梁、船舶、车辆及各种建筑材料,需要塑性、韧性好的材料, 可选用低碳钢(ωc =0.1%~0.25%);对工作中承受冲击载荷和 要求较高强度的各种机械零件,希望强度和韧性都比较好,可选 用中碳钢(ωc =0.25%~0.65%);制造各种切削工具、模具及 量具时,需要高的硬度、而耐磨性,可选用高碳钢(ωc =0.77%~1.44%)。对于形状复杂的箱体、机器底座等,可选用 熔点低、流动性好的铸铁材料。
G
A
E A+ Fe3CⅡ
Ld
A+Ld+Fe3CⅡ
S A+F F ( F+ Fe3C ) P Q P+F Fe
P
P+Fe3CⅡ
0.0218%C 0.77%C
2.11%C
4.2
1、特征点:
特性点 符号
铁碳合金状态图
二、 Fe - Fe3C 相图的分析
温度/℃ ωc/% 含义
A C D E G S P Q
4.4
铁碳合金状态图的应用
2、在铸造生产上的应用
由Fe- Fe3C相图可见,共晶成分 的铁碳合金熔点低,结晶 温度范围最小,具有良好的铸造 性能。因此,在铸造生产中, 经常选用接近共晶成分的铸铁。
铁碳相图与铸锻工艺间的关系
4.4
铁碳合金状态图的应用
3、在锻压生产上的应用
钢在室温时组织为两相混合物,塑性较差,变形困难。而奥氏 体的强度较低,塑性较好,便于塑性变形。因此在进行锻压和 热轧加工时,要把坯料加热到奥氏体状态。加热温度不宜过高, 以免钢材氧化烧损严重,但变形的终止温度也不宜过低,过低 的温度除了增加能量的消耗和设备的负担外,还会因塑性的降 低而导致开裂。所以,各种碳钢较合适的锻轧加热温度范围是: 始锻轧温度为固相线以下100~200℃;终锻轧温度为 750~850℃。对过共析钢,则选择在PSK线以上某一温度,以便 打碎网状二次渗碳体。
第四章 铁碳合金
wγ =
6.69 4.30 100% 6.69 2.11
=52%
=1-52%=48% 含碳量在2.11%~6.69%之间的合金,都要进行共晶转变,这类合 金叫做铸铁,因组织中都含有莱氏体,并因断口呈银白色而叫做白口 铸铁。
3
wFe C
其中,碳含量在2.11%~4.30%之间的合金叫亚共晶白口铸铁 。这类合金由液相开始凝固时,从BC线开始析出先共晶奥氏体, 然后剩余液相在共晶温度通过共晶转变为莱氏体。先共晶奥氏体 一般具有树枝晶的形貌。值得指出的是在共晶温度1148℃与共析 温度727℃之间,先共晶奥氏体和共晶奥氏体中的碳含量都将从 2.11%降至0.77%,并析出二次渗碳体(用Fe3CⅡ表示),随后又都 在727℃转变为珠光体。 含碳量为4.3%~6.69%范围内的合金叫过共晶白口铸铁。这 类合金冷却时,冷却到CD线开始从液相中析出先共晶渗碳体,然 后剩余液相在共晶温度通过共晶转变为莱氏体。先共晶渗碳体呈 板片状,也称为一次渗碳体(用Fe3CⅠ)。
图4.4
渗碳体晶胞中的原子数
4.2
4.2.1
Fe-Fe3C相图分析
相图中的点、线、区及其意义
图4.5
Fe-Fe3C相图
相图上的液相线是ABCD,固相线是AHJECF,相图中有五个单相 区,分别是: ABCD以上——液相区(L) AHNA——δ 固溶体区(δ ) NJESGN——奥氏体区(γ ) GPQG——铁素体区(α ) DFKL——渗碳体区(Fe3C或Cm) 相图上有七个两相区,它们分别存在于相邻两个单相区之间, 这些两相区分别是: ABJHA——液相+δ 固溶体区(L+δ ) JBCEJ——液相+奥氏体区(L+γ ) DCFD——液相+渗碳体区(L+Fe3C) HJNH——δ 固溶体+奥氏体区(δ +γ ) GSPG——铁素体+奥氏体区(α +γ ) ECFKSE——奥氏体+渗碳体(γ +Fe3C)
4铁碳合金相图
工程材料及其热处理-2 8
3、单相的基本组织
在铁碳合金中,各个独立存在的相,也可以看成是单 相的基本组织。例如:铁素体组织,渗碳体组织。
4
3、渗碳体
Fe和C形成的间隙化合物。
具有固定的熔点1227℃,固定的化学成分,碳的
质量分数ωc=6.69%, 分子式Fe3C。 Fe3C在铁碳合金中是一种独立的相。性能特点硬而 脆, 相对固溶体,Fe3C属于强化相。渗碳体的数量、 形态、分布对钢的性能影响很大。
工程材料及其热处理-2
5
说明: 高温相:A 室温相主要是:F、Fe3C
3、相区
工程材料及其热处理-2 17
三、铁-渗碳体相图中各点、线含义的小结
根据上述分析结果,把铁-渗碳体相图中主要特 性点和线分别列表归纳总结。见表4-1和表4-2。
工程材料及其热处理-2
18
四、铁碳合金的分类 按含碳量不同,铁碳合金分为:工业纯铁、钢 和铸铁三大类。
工程材料及其热处理-2
19
工程材料及其热处理-2
13
2、图中各线的分析
ACD线—液相相
线—固相线
ECF线为共晶线,液相合金冷却到共晶线时, 将发生共晶转变。 ES线为C在A中的溶解度曲线。最大溶解度是E 点,随着温度下降,溶解度减小,直到S点为最小 溶解度点。 3、相区
工程材料及其热处理-2 14
二、下半部分图 形——固态下的结 晶
工程材料及其热处理-2
工程材料及其热处理-2
《铁碳合金的基本组织和相图》课件.ppt
合金的结构
合金的结晶 合金的结晶过程也是在过冷的条件下形成晶 核和晶核长大的过程。但合金的结晶过程较 为复杂, 通常运用合金相图来分析合金的结 晶过程。我们将在下面以铁碳合金为例进行 详细分析和讲解
合金的结构
间隙固溶体:溶质原子 不占据正常的晶格结点, 而是嵌入晶格间隙中, 由于溶剂的间隙尺寸和 数量有限,所以只有原 子半径较小的溶质(如 碳、氮、硼等非金属元 素)才能溶入溶剂中形 成间隙固溶体,且这种 固溶体的溶解度有限。
合金的结构
[固溶体的性能]:固溶体与纯金属相比,不仅具有 高的强度和硬度,还有良好的塑性与韧性。一般合 金都是以固溶体作为基体相。
铁碳合金的基本组 织和相图
本节难点:铁碳合金状态图的理解;
铁碳合金由于其资源广泛、 冶炼方便、价格低廉、性能优 越,在工业生产中广泛使用。
合金的结构
纯金属虽然得到了一定的应用,但 是它的机械性能较差,而且价格昂贵。 因此在工业生产上应用的大都是合金。
合金定义:由两种或两种以上的金属元 素或金属与非金属元素组成的、具有金 属特征的物质称为合金。
2 奥氏体: 碳溶于 -Fe中形成的间隙固溶体称奥氏体。用 A 或 表示。
是面心立方晶格的间隙固溶体。溶碳能力比铁素体大,
1148℃时最大为2.11%。
组织为不规则多面体晶粒,晶界
较直。强度、硬度低、塑性、韧性
好,钢材热加工都在区进行。
碳钢室温组织中无奥氏体。
奥氏体
3. 渗碳体 是铁与碳的金属化合物, 含碳6.69%,用Fe3C表示。 Fe3C具有复杂的晶格结构,硬度很高、脆性大,塑性、韧性几 乎为零,不能单独使用.是钢中的主要强化相.
第04章 铁碳合金
1、 重要的点 C点为共晶点
共晶反应的产物是奥氏体与渗碳体的共晶混 和物, 称莱氏体, 以符号 Le表示。 共晶转变线ECF:1148摄氏度,C%=4.3%。
L4.3 体),
A2.11+Fe3C(共晶渗碳
Le4.3 高温莱氏体 Le,Ld
S点为共析点 共析反应的产物是铁素体与渗碳体的共 析混合物, 称珠光体, 以符号P表示。
第一节
铁碳合金系相图
一、Fe-Fe3C相图的组元和基本相 1.组元
纯铁熔点为1538℃,具有同素异构转 变,δ -Fe(bcc) --1394℃--γ-Fe(fcc)--912℃--a -Fe(bcc) (同素异构转变) 。 性能特点是强度低、硬度低、塑性好。 抗拉强度 σb 180 MPa~230 Mpa 延伸率 δ 30%~50%
A的硬度较低,但塑性、韧性好,适于压力加工。
渗碳体 (Fe3C):
的一类重要的基本相。
它既可作为组元,也是钢中
Fe3C是亚稳定相,这对铸铁组织有重要意义,且有些合金元 素Mn、Cn可置换Fe原子,对合金钢有意义。
高 温 铁 素 体
奥氏体
铁 素 体
渗 碳 体
钢中的基本相
。
二、铁碳相图分析
点的符号 A B C D E F G H K P S 温度℃ 1538 1495 1148 1227 1148 1148 912 1495 727 727 727 含碳量% 0.00 0.53 4.30 6.69 2.11 6.69 0.00 0.09 6.69 0.0218 0.77 说明 纯铁的熔点 包晶反应时液态合金的浓度 共晶点,LcA+Fe3C 渗碳体熔点 碳在-Fe 中的最大溶解度 渗碳体 -Fe-Fe 同素异构转变点 碳在-Fe 中的最大溶解度 渗碳体 碳在-Fe 中的最大溶解度 共析点
第四章 铁碳合金的基本组织与状态图
二个重要温度: 1148 ℃ 、727 ℃ 。
一二三四五六巧记铁碳相图:
“一”指一种合金组织渗碳体( Fe3C ): 特别需要注意从金属液态直接结晶出渗碳 体称为一次渗碳体( Fe3C Ⅰ),而从A (奥氏体)中析出渗碳体称为二次渗碳体 ( Fe3C Ⅱ)。很易把两者混淆。
“二”指二个坐标:C/%、T/0C;在画 的时候容易忘记这两坐标标注。
(5)ECF共晶线:金属液态结晶出奥氏体和渗 碳体的机械混合物,莱氏体(Ld)。
(6)PSK、A1共析线:当合金组织冷却到 7270C以下奥氏体(A)全部转成珠光体 (P)。
共析反应(7270C)
结晶
A
P
析出
F
Fe3C
Fe3C
L
共晶反应(1148OC) Ld 727C
L'd
1-5-3 铁碳状态图上合金的分类及其组织
铸钢和铸铁的浇注温度,为铸造工艺提供 依据。
共晶成分的铸铁合金熔点最低,结晶温 度范围小,有良好的铸造性能。因此在铸 造生产中,经常选用接近共晶成分的铸铁。 同铸铁相比钢的熔化温度和浇注温度要高 的多,其铸造性能差,易产生收缩,因此 钢的铸造工艺比较复杂。
根据Fe- Fe3C相图可以确定合金的浇注温 度。浇注温度一般在液相线以上50℃~ 100℃。从相图上可看出,纯铁和共晶白口 铸铁的铸造性能最好,它们的凝固温度区 间最小,因而流动性好,分散缩孔少,可 以获得致密的铸件,所以铸铁在生产上总 是选在共晶成分附近。在铸钢生产中,碳 含量规定在0.15-0.6%之间,因为这个范围 内钢的结晶温度区间较小,铸造性能较好。
5.莱氏体 ( Ld )奥氏体和渗碳体组成的机械混合物。
1-5-2 Fe—Fe3C状态图 几个概念:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二个重要温度: 1148 ℃ 、727 ℃ 。
一二三四五六巧记铁碳相图:
“一”指一种合金组织渗碳体( Fe3C ): 特别需要注意从金属液态直接结晶出渗碳 体称为一次渗碳体( Fe3C Ⅰ),而从A (奥氏体)中析出渗碳体称为二次渗碳体 ( Fe3C Ⅱ)。很易把两者混淆。
“二”指二个坐标:C/%、T/0C;在画 的时候容易忘记这两坐标标注。
机械零件需要强度、塑性及韧性都较好 的材料,应选用碳含量适中的中碳钢。
工具要用硬度高和耐磨性好的材料,则 选碳含量高的钢种、高碳钢。
即需要塑性好、韧性好的材料可选低碳 钢;需要强度、硬度、塑性好的材料可选 中碳钢;需要硬度、耐磨性好的材料可选 高碳钢。
纯铁的强度低,不宜用做结构材料,但 由于其导磁率高,矫顽力低,可作软磁材 料使用,例如做电磁铁的铁芯等。
亚共析钢组织金相图
2)共析钢 含C=0.77%的钢。室温组织全部 为珠光体,一般呈片状。
共析钢组织金相图
共析钢的室温组织
3)过共析钢 含C>0.77%的钢。室温组织为 珠光体和二次渗碳体构成。由于二次渗碳 体沿奥氏体晶界析出,显微组织呈网状分 布。二次渗碳体的含量随钢中碳含量增加 而增加,C=2.11%时,其量达到最大。
过共析钢组织金相图
3.白口铸铁是C 2.11~6.69%之间的铁碳合 金。特点是液态结晶时都有共晶转变产物 为以渗碳体为基的莱氏体组织,性能很脆, 不能锻造。由含碳量和室温组织不同,分 为三种。
1)亚共晶白口铸铁 C<4.3%,室温组织由 珠光体、二次渗碳体和低温莱氏体组成。 含碳量接近共晶成分的合金时,组织中莱 氏体增多,大块珠光体减少。
当碳量>2.11% 的白口铸铁,由于有较多的 渗碳体在组织中以连成基体,性能上特别 硬而脆,难以切削加工,除作为炼钢原料 一般应用不广。
3、铁碳相图的应用 (1)在选材方面 铁碳相图总结了铁碳合金组织和性能随
成分的变化规律。这样可以根据零件的服 役条件和性能要求选择合适的材料。
建筑结构和各种型钢需用塑性、韧性好的 材料,选用碳含量较低的钢材、低碳钢。
5.莱氏体 ( Ld )奥氏体和渗碳体组成的机械混合物。
1-5-2 Fe—Fe3C状态图 几个概念:
共晶转变:一定成分的液相在一定温度
(恒温)下同时结晶出两个固相的转变。 铁碳相图中C点。
11480C
L4.3% → Ld(A 2.11%C +Fe3C )
共析转变:一定成分的固溶体在一定的恒
同样,又有一个做鞋子的人到了非洲,他 看到那边的人都不穿鞋,开心地说这里的 机会很多、市场一定很大,于是他成功了。 所以,机会不是缺少,而在于你是否拥有 善于发现机会的眼睛。
奥氏体组织金相图
(三)渗碳体(Fe3C)
铁与碳形成的具有复杂结构的金属化合物, 含碳量6.69%。铁碳合金中,碳的含量超过碳在 铁中的溶解度时,多余的碳便形成Fe3C。渗碳体 的晶格是复杂斜方晶格,晶格中Fe和C都正离子 化,Fe3C有明显的金属特性,能导电、有金属光 泽。
生珠光体转变,影响范围包括任何成分的 铁碳合金,室温下的平衡组织都有珠光体 存在。
4.珠光体 ( P )铁素体和渗碳体组成的机械混合物
。
(五)莱氏体(Ld)(德国学者Ledebur)
奥氏体和Fe3C组成的机械混合物,此反应发生于 含碳量为2.0~6.67%的合金中。莱氏体 (ledeburite)
2、碳量对铁力学性能的影响
当碳量<0.9%,随着钢中含碳量增加, 钢的强度、硬度直线上升,塑性、韧度不 断降低难以加工。
当碳量>0.9%,因沿着晶界形成的二次 渗碳体网趋于完整,不仅使钢的塑性、韧 度进一步降低,强度也明显下降。故工业 上使用的钢含碳量低于1.3~1.4%以保证钢 材具有足够的强度一定的塑性和韧度。
创业具有较高的风险,但也有较高的回报。 随着商业经济的高速发展和知识经济的迅
猛来临,越来越多的大学生投入到创业的 浪潮中,并取得不少成功的经验,大学生 创业也因此成为热门的话题。
对机会的把握问题(例子)
有个做鞋子的人到了非洲,他发现那边的 人都不穿鞋,心想这儿的人不穿鞋那我的 鞋子肯定卖不掉,于是他就走了;
溶体。由于晶格间的最大空隙比α—Fe大, 溶碳能力较大11480C时为2.11%随温度下 降溶碳量逐渐减小7270C时为0.77%。
奥氏体存在于727~14950C的温度范围, 强度低,塑性好,伸长率为40%,硬度 (HB)为170~220,无铁磁性。
1、何谓创业?含义①
创业是创业者通过发现和识别商业机会, 成立活动组织,利用各种资源,提供产品 和服务,以创造价值的过程。
温下同时析出个新固体的转变。铁碳相图 中S点
7270C
A0.77%C → P(F0.0218%C+Fe3C )
Fe - Fe3C 相图
A
T°
L
D
L+A
E
A
G
A+
A+F S Fe3CⅡ F P ( F+ Fe3C )
P
Q P+F
P+Fe3CⅡ
1148℃
C
( A+Fe3C )
Ld
A+Ld+Fe3CⅡ
铸钢和铸铁的浇注温度,为铸造工艺提供 依据。
共晶成分的铸铁合金熔点最低,结晶温 度范围小,有良好的铸造性能。因此在铸 造生产中,经常选用接近共晶成分的铸铁。 同铸铁相比钢的熔化温度和浇注温度要高 的多,其铸造性能差,易产生收缩,因此 钢的铸造工艺比较复杂。
根据Fe- Fe3C相图可以确定合金的浇注温 度。浇注温度一般在液相线以上50℃~ 100℃。从相图上可看出,纯铁和共晶白口 铸铁的铸造性能最好,它们的凝固温度区 间最小,因而流动性好,分散缩孔少,可 以获得致密的铸件,所以铸铁在生产上总 是选在共晶成分附近。在铸钢生产中,碳 含量规定在0.15-0.6%之间,因为这个范围 内钢的结晶温度区间较小,铸造性能较好。
亚共晶白口铁组织金相图
亚共晶合金组织形态
2)共晶白口铸铁 C=4.3%,室温组织由珠光体、 二次渗碳体和共结晶渗碳体组成低温莱氏体。显 微镜下,珠光体呈黑色,白色基体为渗碳体,其 中二次渗碳体与共晶渗碳体连在一起,无本质区 别,不易分别。
共晶白口铁组织金相图
共晶合金组织形态
3)过共晶白口铸铁 C 4.3~6.69%范围,室 温组织为一次渗碳体和低温莱氏体组成。 显微组织中亮白色的条状(板状)为初生 渗碳体(Fe3CⅠ),基体为低温莱氏体, 其中黑点为珠光体、白色部分为渗碳体。
“三”指三个单项:A(奥氏体)、P(珠 光体)、Ld(莱氏体)。在铁碳合金相图 中,只有三个区域中是单项组织,其中在 7270C以下含碳量为0.77%时,其成分只有 P(珠光体),11480C以下含碳量为4.3% 时,其成分只有Ld(莱氏体),在这些地 方经常容易漏掉。
“四”指四个含碳量:0.77%、2.11%、4.3 %、6.69%;
(一)铁素体(F) 碳溶于α—Fe(体心立方晶格)中形成间
隙固溶体。
由于体心立方晶格的间隙小,溶碳能力极
差,在7270C时溶碳量为0.0218%,随着温度 的下降溶碳逐渐减小,6000C时为0.0057%, 室温时几乎为零。因此铁素体在室温时性
能几乎与纯铁相同,其强度、硬度不高, 但有良好的塑性与韧度。
机械混合物:由几个相组成的组织。
例:珠光体:铁素体(间隙固溶体)与渗 碳体(金属化合物)组成的机械混合物。
例:80钢 (含碳0.8%的碳素体) 平衡状态下:粗珠光体或细珠光体或极细
珠光体。
1-5 铁碳合金的基本组织与状态图 1-5-1铁碳合金的基本组织 液态:无限互溶 固态:碳能溶于铁的晶体中,形成间隙 固溶体,和固溶体与Fe3C构成机械混合物。
(5)ECF共晶线:金属液态结晶出奥氏体和渗 碳体的机械混合物,莱氏体(Ld)。
(6)PSK、A1共析线:当合金组织冷却到 7270C以下奥氏体(A)全部转成珠光体 (P)。
ห้องสมุดไป่ตู้
共析反应(7270C)
P
结晶
A
析出
F
Fe3C
Fe3C
L
共晶反应(1148OC) Ld 727C
L'd
1-5-3 铁碳状态图上合金的分类及其组织
P+Ld’+Fe3CⅡ Ld’
( P+Fe3C )
L+ Fe3CⅠ F
Ld+Fe3CⅠ
727℃ K
Ld’+Fe3CⅠ
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
Fe - Fe3C 相图的分析 五个重要的成份点: P、S、E、C、K。 四条重要的线: EF、ES、GS、FK。 两个重要转变: 共晶转变反应式、共析转
莱氏体是液态铁碳合金发生共晶转变形成的奥氏 体和渗碳体所组成的共晶体,其含碳量为ωc=4.3 %。当温度高于727℃时,莱氏体由奥氏体和渗碳 体组成,用符号Ld表示。在低于727℃时,莱氏 体是由珠光体和渗碳体组成,用符号Ld’表示,称 为低温莱氏体。因莱氏体的基体是硬而脆的渗碳 体,所以硬度高,塑性很差
“五”指五种温度:15380C,11480C,12270C, 9120C,7270C;
六指六条线: (1)ACD液相线:其以上组织都是液态。
(2)AECF固相线:其以下组织都是固态。
(3)GS、A3线:奥氏体析出铁素体的开始线: 奥氏体析出铁素体
(4)ES、Acm线:溶解度线:奥氏体析出渗 碳体称为二次渗碳体 。
白口铸铁硬度高、脆性大,不能切削加 工,也不能锻造,但其耐磨性好,铸造性 能优良,适用于作要求耐磨、不受冲击、 形状复杂的铸件,例如拔丝模、冷轧辊、 货车轮、犁铧、球磨机的磨球等。