万万电子素数表
1~10000质数表
![1~10000质数表](https://img.taocdn.com/s3/m/910d960a02020740be1e9b3e.png)
1 到100 的质数:123 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97101 到200 的质数:101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 201 到300 的质数:211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293301 到400 的质数:307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397401 到500 的质数:401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499501 到600 的质数:503 509 521 523 541 547 557 563 569 571 577 587 593 599601 到700 的质数:601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691701 到800 的质数:701 709 719 727 733 739 743 751 757 761 769 773 787 797801 到900 的质数:809 811 821 823 827 829 839 853 857 859 863 877 881 883 887901 到1000的质数:907 911 919 929 937 941 947 953 967 971 977 983 991 9971001 到1100的质数:1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1101 到1200的质数:1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 11931201 到1300的质数:1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 12971301 到1400的质数:1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 13991401 到1500的质数:1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1501 到1600的质数:1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 15971601 到1700的质数:1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 16991701 到1800的质数:1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 17891801 到1900的质数:1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 18891901 到2000的质数:1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 19992001 到2100的质数:2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 20992101 到2200的质数:2111 2113 2129 2131 2137 2141 2143 2153 2161 21792201 到2300的质数:2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 22972301 到2400的质数:2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 23992401 到2500的质数:2411 2417 2423 2437 2441 2447 2459 2467 2473 24772501 到2600的质数:2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 25932601 到2700的质数:2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 26992701 到2800的质数:2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 27972801 到2900的质数:2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 28972901 到3000的质数:2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 29993001 到3100的质数:3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 30893101 到3200的质数:3109 3119 3121 3137 3163 3167 3169 3181 3187 31913201 到3300的质数:3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 32993301 到3400的质数:3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 33913401 到3500的质数:3407 3413 3433 3449 3457 3461 3463 3467 3469 3491 34993501 到3600的质数:3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 35933601 到3700的质数:3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 36973701 到3800的质数:3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 37973801 到3900的质数:3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 38893901 到4000的质数:3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 39894001 到4100的质数:4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 40994101 到4200的质数:4111 4127 4129 4133 4139 4153 4157 4159 41774201 到4300的质数:4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4301 到4400的质数:4327 4337 4339 4349 4357 4363 4373 4391 43974401 到4500的质数:4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 44934501 到4600的质数:4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 45974601 到4700的质数:4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 46914701 到4800的质数:4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 47994801 到4900的质数:4801 4813 4817 4831 4861 4871 4877 48894901 到5000的质数:4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 49995001 到5100的质数:5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 50995101 到5200的质数:5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 51975201 到5300的质数:5209 5227 5231 5233 5237 5261 5273 5279 5281 52975301 到5400的质数:5303 5309 5323 5333 5347 5351 5381 5387 5393 53995401 到5500的质数:5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 54835501 到5600的质数:5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 55915601 到5700的质数:5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 56935701 到5800的质数:5701 5711 5717 5737 5741 5743 5749 5779 5783 57915801 到5900的质数:5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5901 到6000的质数:5903 5923 5927 5939 5953 5981 59876001 到6100的质数:6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 60916101 到6200的质数:6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 61996201 到6300的质数:6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 62996301 到6400的质数:6301 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6401 到6500的质数:6421 6427 6449 6451 6469 6473 6481 64916501 到6600的质数:6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 65996601 到6700的质数:6607 6619 6637 6653 6659 6661 6673 6679 6689 66916701 到6800的质数:6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 67936801 到6900的质数:6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 68996901 到7000的质数:6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 69977001 到7100的质数:7001 7013 7019 7027 7039 7043 7057 7069 70797101 到7200的质数:7103 7109 7121 7127 7129 7151 7159 7177 7187 71937201 到7300的质数:7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 72977301 到7400的质数:7307 7309 7321 7331 7333 7349 7351 7369 73937401 到7500的质数:7411 7417 7433 7451 7457 7459 7477 7481 7487 7489 74997501 到7600的质数:7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591 7601 到7700的质数:7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 76997701 到7800的质数:7703 7717 7723 7727 7741 7753 7757 7759 7789 77937801 到7900的质数:7817 7823 7829 7841 7853 7867 7873 7877 7879 78837901 到8000的质数:7901 7907 7919 7927 7933 7937 7949 7951 7963 79938001 到8100的质数:8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 80938101 到8200的质数:8101 8111 8117 8123 8147 8161 8167 8171 8179 81918201 到8300的质数:8209 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291 8293 82978301 到8400的质数:8311 8317 8329 8353 8363 8369 8377 8387 83898401 到8500的质数:8419 8423 8429 8431 8443 8447 8461 84678501 到8600的质数:8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 85998601 到8700的质数:8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 86998701 到8800的质数:8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 87838801 到8900的质数:8803 8807 8819 8821 8831 8837 8839 8849 8861 8863 8867 8887 88938901 到9000的质数:8923 8929 8933 8941 8951 8963 8969 8971 89999001 到9100的质数:9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 90919101 到9200的质数:9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 91999201 到9300的质数:9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 92939301 到9400的质数:9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 93979401 到9500的质数:9403 9413 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 9501 到9600的质数:9511 9521 9533 9539 9547 9551 95879601 到9700的质数:9601 9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689 96979701 到9800的质数:9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 97919801 到9900的质数:9803 9811 9817 9829 9833 9839 9851 9857 9859 9871 9883 98879901 到10000的质数:9901 9907 9923 9929 9931 9941 9949 9967 9973。
10000以内的质数表
![10000以内的质数表](https://img.taocdn.com/s3/m/ea3f82035627a5e9856a561252d380eb629423e1.png)
10000以内的质数表
(原创版)
目录
1.质数的定义与重要性
2.10000 以内的质数表
3.质数在数学领域的应用
正文
1.质数的定义与重要性
质数,又称为素数,是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的数。
质数在数学领域具有极高的重要性,它不仅是数论研究的基础,还广泛应用于密码学、计算机科学和其他领域。
2.10000 以内的质数表
根据质数的定义,我们可以列出 10000 以内的质数表。
这些质数不
仅对于学术研究具有价值,还可以作为编程练习和数学爱好者的参考资料。
第1页共1页。
1—10000000以内的质数表
![1—10000000以内的质数表](https://img.taocdn.com/s3/m/ba4a264e9a6648d7c1c708a1284ac850ad020495.png)
1—10000000以内的质数表从数学上讲,质数是大于1的自然数中只能被1和它本身整除的数。
质数在数学中拥有重要的地位,因为它们可以表达任何大于1的整数。
举个例子,把30表示成2 x 3 x 5,其中2,3和5都是质数。
因此,10000-1000000之间的质数可以是该范围内整数的分解因素和最小素因子。
100000000以内的质数可由下列一系列数字构成:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997。
素数表(二)(100万-300万内)
![素数表(二)(100万-300万内)](https://img.taocdn.com/s3/m/a6c97082d4d8d15abe234ec8.png)
素数表(二)(100万—300万)孟庆馀编辑整理二〇一一年三月前言“素数表”是数论研究中的重要工具之一。
但是,目前笔者所见过的"素数表"都只列出素数,很难一下查出该素数是第几个素数。
为了方便查找素数,笔者根据目前所掌握的资料,采用座标形式编辑整理出“素数表”(二)(1000001—3000000)。
横坐标为个位数,纵坐标为十位以上的数。
使用此表可以查知三项数值:①查找任意一个素数(在此表范围内),是第几个素数。
例如查找素数29989,该数所在纵坐标是324,横坐标是5,从纵、横坐标可以知道29989是第3245个素数。
②查找第某某个素数是个什么数。
如查找第五万个素数是什么数,在表中查出纵坐标5000与横坐标0交汇处的数(611953),就是第五万个素数。
③查找任意一个自然数内(在此表范围内),共有多少个素数。
例如99999之前共有多少个素数,从表中可以查到共有9592个素数。
从以上三点可以看出,采用座标形式编辑整理的“素数表”给使用者带来很大的方便和快捷。
在编辑整理中,由于采用座标形式致使篇幅增大,只好陆续分卷编辑整理,而每卷都会在100页以上。
现将编辑整理好的“素数表”(二)(100万—300万),发表给有兴趣的读者查阅,因为工作量大、时间短,此表难免有错误的地方,如有发现,敬请读者指正。
孟庆馀2011年3月20日素数个数统计数值素数个数数值素数个数100以内251000000以内784981000以内1681500000以内11397710000以内12292000000以内148933100000以内784982500000以内183072500000以内415383000000以内216816第2页78491000003 78501000033100003710000391000081100009910001171000121100013310001511000159 78511000171100018310001871000193100019910002111000213100023110002491000253 78521000273100028910002911000303100031310003331000357100036710003811000393 78531000397100040310004091000423100042710004291000453100045710005071000537 78541000541100054710005771000579100058910006091000619100062110006391000651 78551000667100066910006791000691100069710007211000723100076310007771000793 78561000829100084710008491000859100086110008891000907100091910009211000931 78571000969100097310009811000999100100310010171001023100102710010411001069 78581001081100108710010891001093100110710011231001153100115910011731001177 78591001191100119710012191001237100126710012791001291100130310013111001321 78601001323100132710013471001353100136910013811001387100138910014011001411 78611001431100144710014591001467100149110015011001527100153110015491001551 78621001563100156910015871001593100162110016291001639100165910016691001683 78631001687100171310017231001743100178310017971001801100180710018091001821 78641001831100183910019111001933100194110019471001953100197710019811001983 78651001989100201710020491002061100207310020771002083100209110021011002109 78661002121100214310021491002151100217310021911002227100224110022471002257 78671002259100226310022891002299100234110023431002347100234910023591002361 78681002377100240310024271002433100245110024571002467100248110024871002493 78691002503100251110025171002523100252710025531002569100257710025831002619 78701002623100264710026531002679100270910027131002719100272110027391002751 78711002767100276910027731002787100279710028091002817100282110028511002853 78721002857100286310028711002887100289310028991002913100291710029291002931 78731002973100297910030011003003100301910030391003049100308710030911003097 78741003103100310910031111003133100314110031931003199100320110032411003259 78751003273100327910032911003307100333710033491003351100336110033631003367 78761003369100338110033971003411100341710034331003463100346910035071003517 78771003543100354910035891003601100360910036191003621100362710036311003679 78781003693100371110037291003733100374110037471003753100375710037631003771 78791003787100381710038191003841100387910038891003897100390710039091003913 78801003931100394310039571003963100402710040331004053100405710040631004077 78811004089100411710041191004137100414110041611004167100420910042211004233 78821004273100427910042871004293100430310043171004323100436310043711004401 78831004429100444110044491004453100446110044771004483100450110045271004537 78841004551100456110045671004599100465110046571004659100466910046711004677 78851004687100472310047371004743100474710047491004761100477910047971004873 78861004903100491110049171004963100497710049811004987100500710050131005019 78871005029100504110050491005071100507310050791005101100510710051311005133 78881005143100516110051871005203100520910052171005223100522910052391005241 78891005269100528710052931005313100531710053311005349100535910053711005373 78901005391100540910054131005427100543710054391005457100546710054811005493 78911005503100552710055411005551100555310055811005593100561710056191005637 78921005643100564710056611005677100567910057011005709100575110057611005821 78931005827100583310058831005911100591310059311005937100595910059711005989 78941006003100600710060211006037100606310060871006091100612310061331006147 78951006151100615310061631006169100617110061771006189100619310062171006219 7896100623110062371006241100624910062531006267100627910063011006303100630778971006309100633110063331006337100633910063511006361100636710063911006393 78981006433100644110064631006469100647110064931006507100651310065311006543 78991006547100655910065831006589100660910066131006633100663710066511006711 79001006721100673910067511006769100678110067831006799100684710068531006861 79011006877100687910068831006891100689710069331006937100694910069691006979 79021006987100699110070211007023100704710070591007081100708910070991007117 79031007119100712910071371007161100717310071791007203100723110072431007249 79041007297100729910073091007317100733910073531007359100738110073871007401 79051007417100742910074411007459100746710074831007497100751910075271007549 79061007557100759710075991007609100764710076511007681100768310076931007701 79071007711100771910077231007729100773110077491007753100775910077671007771 79081007789100780110078071007813100781910078271007857100786110078731007887 79091007891100792110079331007939100795710079591007971100797710080011008013 79101008017100803110080371008041100804310081011008131100815710081811008187 79111008193100819910082091008223100822910082331008239100824710082571008263 79121008317100832310083311008347100835310083731008379100840110084071008409 79131008419100842110084331008437100845110084671008493100849910085031008517 79141008541100854710085631008571100858710085891008607100861110086131008617 79151008659100870110087191008743100877310087791008781100879310088091008817 79161008829100885110088531008857100885910088631008871100890110089111008913 79171008923100893710089471008979100898310089891008991100900710090371009049 79181009061100909710091211009139100915310091571009159100916310091891009193 79191009199100920110092071009237100924310092471009259100928910092911009301 79201009303100931910093211009343100935710093611009369100937310093871009399 79211009417100943310094391009457100948310094871009499100950110095071009531 79221009537100955910095731009601100960910096211009627100963710096431009649 79231009651100966910097271009741100974710097811009787100980710098191009837 79241009843100985910098731009901100990910099271009937100995110099631009991 79251009993100999710100031010033101006910100811010083101012910101311010143 79261010167101017910102011010203101023710102631010291101029710103291010353 79271010357101038110104071010411101041910104231010431101046110104671010473 79281010491101050110105091010519101054910105671010579101061710106231010627 79291010671101068310106871010717101071910107471010749101075310107591010767 79301010771101078310107911010797101080910108331010843101086110108811010897 79311010899101090310109171010929101095710109811010983101099310110011011013 79321011029101103710110671011071101107710110791011091101110710111371011139 79331011163101116710111911011217101122110112291011233101123910112711011277 79341011281101128910113311011343101134910113591011371101137710113911011397 79351011407101143110114431011509101153910115531011559101158310115871011589 79361011599101160110116311011641101164910116671011671101167710116971011719 79371011733101173710117491011763101177910117971011799101181710118271011889 79381011893101191710119371011943101194710119611011973101197910120071012009 79391012031101204310120491012079101208710120931012097101210310121331012147 79401012159101217110121831012189101220110122131012217101222910122411012259 79411012261101226710122791012289101230710123211012369101237310123791012397 79421012399101241110124211012423101243310124391012447101245710124631012481 79431012489101250710125131012519101252310125471012549101255910125731012591 7944101259710126011012619101263110126331012637101265710126631012679101269179451012699101270310127171012721101273310127511012763101276910127711012789 79461012811101282910128311012861101290310129191012931101296710129811012993 79471012997101300310130091013029101304110130531013063101314310131531013197 79481013203101322710132371013239101324910132631013267101327910132911013321 79491013329101337710133991013401101342910134311013471101347710135011013503 79501013527101353110135331013563101356910135811013603101360910136271013629 79511013641101367110136811013687101369910137111013713101371710137291013741 79521013767101377310137911013813101381910138271013833101383910138431013851 79531013879101389110138931013899101392110139231013933101399310140071014029 79541014037101406110140891014113101412110141271014131101413710141491014157 79551014161101417310141931014197101419910142291014257101425910142631014287 79561014301101431710143191014331101433710143411014359101436110143711014389 79571014397101445110144571014469101448710144931014521101453910145471014557 79581014571101459310146171014631101464110146491014677101469710147191014721 79591014731101474310147491014763101477910147871014817101482110148331014863 79601014869101487710148871014889101490710149411014953101497310149891015009 79611015039101504310150511015057101506110150671015073101508110150931015097 79621015123101512710151391015159101516310151711015199101520710152771015309 79631015349101536110153631015367101536910154031015409101542310154331015451 79641015453101545910154631015471101548110154991015501101550710155171015523 79651015541101554910155591015561101557110156011015603101562710156611015691 79661015697101570910157231015727101573910157471015753101576910158131015823 79671015829101584310158531015871101587710158911015897101590710159131015919 79681015967101598110159911016009101601110160231016027101603310160511016053 79691016069101608310160891016111101612310161371016143101615310161591016173 79701016201101620310162211016227101623110162371016263101630310163391016341 79711016357101635910163711016399101640110164191016423101644110164531016489 79721016497101652710165671016569101657310165811016597101659910166111016621 79731016641101666310166811016689101673110167371016749101677310167771016783 79741016789101683910168431016849101687910168811016891101690910169211016927 79751016929101694110169471016959101697110170071017011101703110170411017043 79761017061101707710170971017119101713110171391017157101717310171791017193 79771017199101720910172271017277101729310172991017301101730710173111017319 79781017323101732910173471017353101736110173711017377101738310173911017437 79791017439101744910174731017479101748110175391017551101755310175591017607 79801017613101761710176231017647101764910176731017683101770310177131017719 79811017721101774910177811017787101779910178171017827101784710178511017857 79821017859101788110178891017923101795310179591017997101800710180191018021 79831018057101809110180971018109101812310181771018201101820710182171018223 79841018247101825310182711018291101830110183091018313101833710183571018411 79851018421101842910184391018447101847110184771018489101851310185431018559 79861018583101861310186211018643101864910186511018669101867310186791018697 79871018709101871110187291018733101876310187691018777101878910188071018811 79881018813101881710188591018873101887910188891018903101890710189311018937 79891018949101895710189671018981101898710189931018999101902310190331019059 79901019069101907110190771019093101911910191291019173101917710191971019209 79911019237101925110192571019261101926710192731019281101929710193291019339 7992101935110193531019357101937710193991019411101941310194231019443101944979931019453101946710194711019479101950310195091019531101953310195371019549 79941019563101961710196391019647101965710196631019687101969310196991019701 79951019713101971710197231019729101973110197411019747101977110197831019801 79961019819101982710198391019849101985710198611019873101989910199031019927 79971019971102000110200071020011102001310200231020037102004310200491020059 79981020077102007910201011020109102011310201371020143102015710201631020223 79991020233102024710202591020269102029310203011020329102033710203531020361 80001020379102038910204011020407102041310204191020431102045110204571020491 80011020517102052910205411020557102058310205891020599102061910206311020667 80021020683102068910207071020709102074310207511020757102077910207971020821 80031020823102082710208391020841102084710208531020881102089310209071020913 80041020931102095910209611020967102097310209771020979102098910209911020997 80051021001102101910210431021067102107310210811021087102109110210931021123 80061021127102112910211571021159102118310211991021217102124310212531021259 80071021261102127110212831021289102129110212971021301102130310213271021331 80081021333102136710213691021373102138110213871021403102141710214291021441 80091021457102146310214831021487102154110215611021571102157710216211021627 80101021651102166110216631021673102169710217111021747102175310217591021777 80111021793102179910218071021831102183710218491021861102187910218971021907 80121021919102196110219631021973102201110220171022033102205310220591022071 80131022083102211310221231022129102213710221411022167102217910221831022191 80141022201102220910222371022243102224910222511022291102230310223411022377 80151022381102238310223871022389102242910224431022449102246710224911022501 80161022503102250710225091022513102251910225311022573102259110226111022629 80171022633102263910226531022677102268310226891022701102271910227291022761 80181022773102279710228211022837102284310228491022869102288110228911022899 80191022911102292910229331022963102297710229811023019102303710230411023047 80201023067102307910230831023101102310710231331023163102316710231731023199 80211023203102322110232271023229102325710232591023263102327710232891023299 80221023301102331110233131023317102332910233531023361102336710233891023391 80231023409102341310234191023461102346710234871023499102352110235411023551 80241023557102357110235771023601102364310236531023697102371910237211023731 80251023733102375110237691023821102383310238391023851102385710238711023941 80261023943102394710239491023973102397710239911024021102403110240611024073 80271024087102409110240991024103102415110241591024171102418310241891024207 80281024249102427710243071024313102431910243211024327102433710243391024357 80291024379102439110243991024411102442110244271024433102447710244811024511 80301024523102454710245591024577102457910245891024591102460910246331024663 80311024669102469310246971024703102471110247211024729102475710247831024799 80321024823102484310248531024871102488310249011024909102492110249311024939 80331024943102495110249571024963102498710249971025009102502110250291025039 80341025047102508110250931025099102511110251131025119102513710251471025149 80351025153102516110251971025203102520910252311025239102525710252611025267 80361025273102527910252811025303102532710253331025347102535110253831025393 80371025407102541310254171025419102544310254591025477102548310255031025509 80381025513102553710255431025551102556110255791025611102562110256231025641 80391025653102565910256691025693102570710257411025747102574910257671025789 8040102580310258071025819102583910258731025887102589110258971025909102591180411025917102592910259391025957102602910260311026037102604110260431026061 80421026073102610110261191026127102613910261431026167102619710261991026217 80431026227102622910262511026253102625710262931026299102631310263311026359 80441026371102638310263911026401102640710264131026427102643910264491026457 80451026479102648110265211026547102656310265771026581102658310265871026593 80461026661102666710266731026677102667910267091026733102675710267611026791 80471026799102681110268291026833102684710268531026859102688710268991026911 80481026913102691710269411026943102694710269791026989102700110270031027027 80491027031102705110270671027097102712710271291027139102715310271631027181 80501027189102719910272071027211102722310272411027261102727710272891027319 80511027321102733110273571027391102740910274171027421102742710274591027471 80521027483102748710274891027493102751910275471027549102756710275911027597 80531027613102764310276791027687102769310277031027717102772710277391027751 80541027753102775710277591027777102778310277871027799102784110278531027883 80551027891102793110279691027987102800310280111028017102802310280291028047 80561028051102806310280811028089102809910281011028107102811310281171028129 80571028141102814910281891028191102820110282071028213102822110282311028243 80581028263102827310283031028309102831710283271028329102833310283891028393 80591028411102843710284711028473102847910285091028557102856110285691028579 80601028581102859710286171028647102866310286691028681102868310287371028747 80611028749102876110287731028777102880310288091028837102884310288731028893 80621028903102893910289411028953102895710289691028981102899910290011029013 80631029023102903710291031029109102911310291391029151102915710291671029179 80641029191102919910292091029247102925110292631029277102928910293071029323 80651029331102933710293411029349102935910293611029383102940310294071029409 80661029433102946710294731029481102948710294991029517102952110295271029533 80671029547102956310295691029577102958310295931029601102961710296431029647 80681029653102968910296971029731102975110297571029767102980310298231029827 80691029839102984110298591029881102988310299071029929102993710299431029953 80701029967102998310299891030019103002110300271030031103003310300391030049 80711030061103006710300691030091103011110301211030153103015710301811030201 80721030213103021910302411030247103029110302971030307103034910303571030361 80731030369103041110304171030429103043910304411030451103049310305111030529 80741030537103054310305711030583103061910306371030639103064310306811030703 80751030723103073910307411030751103075910307631030787103079310308011030811 80761030817103082310308311030847103086710308731030889103091910309331030949 80771030951103095710309871030993103100310310471031053103105710310811031117 80781031119103113710311411031161103118910312311031267103127910312811031291 80791031299103130910313231031347103135710313991031411103141310314231031431 80801031447103146110314771031479103148310314891031507103152110315311031533 80811031549103156110315931031609103162310316291031633103166910316771031707 80821031717103172910317311031741103175310317591031761103180910318131031831 80831031837103186910319111031923103198110319991032007103204710320491032067 80841032071103210710321311032151103219110321931032211103222110322331032259 80851032287103229910323071032319103232910323411032347103234910323731032377 80861032391103239710324071032419103243310324571032463103246710324911032497 80871032509103251110325271032541103257110325831032601103260710326131032617 8088103264310326491032679103268310326971032701103270910327211032727103273980891032751103276310327931032799103280310328331032839103284110328471032851 80901032853103288110328871032901103294310329491032959103296110330011033007 80911033027103303310330371033057103306110330631033069103307910330991033127 80921033139103317110331811033189103322310332711033273103328910332971033303 80931033309103331310333371033339103334310333491033363103336910333811033387 80941033393103342110334231033427103344110334511033457103346310334691033489 80951033493103349910335071033517103353710335411033559103356710336011033603 80961033631103366110336631033667103367910336871033693103374110337511033759 80971033777103378310337891033793103380110338071033829103384110338431033867 80981033927103395110339871034003103400910340271034029103406910340711034101 80991034119103412310341471034167103417110341771034183103419710342071034219 81001034221103423310342371034239103424910342511034281103430910343171034323 81011034339103435310343571034359103438110343871034419103444310344611034477 81021034479103448910344911034503103451310345491034567103458110345911034597 81031034599103461710346391034651103465310346591034707103472910347311034767 81041034771103478310347911034809103482710348331034837103484910348571034861 81051034863103486710348791034903103494110349511034953103495910349831034989 81061034993103500710350191035043103506110350771035107103513110351631035187 81071035191103519710352111035241103524710352571035263103527710353011035313 81081035323103534110353431035361103537910353831035403103540910354131035427 81091035449103545110354671035469103547310354791035499103552710355331035547 81101035563103557110355811035599103560710356131035631103563710356411035649 81111035659103570710357331035743103576110357631035781103579110358291035869 81121035893103591710359491035953103595910359731035977103600110360031036027 81131036039103606710360691036073103609310361091036117103612110361291036153 81141036163103618310362131036223103622910362471036249103625310362611036267 81151036271103629110362971036307103631910363271036331103633910363491036351 81161036363103636710363691036391103641110364591036471103649310364991036513 81171036531103653710365611036579103661310366191036631103664910366611036667 81181036669103668110367291036747103675110367571036759103676910367871036793 81191036799103682910368311036853103687310368771036883103691310369211036943 81201036951103695710369791036991103699310370411037053103705910370811037087 81211037089103712310371291037137103714310372131037233103724910372611037273 81221037293103729710373031037317103732710373291037339103734710374011037411 81231037437103744110374471037471103747910374891037497103750310375371037557 81241037563103756710375931037611103762710376531037657103767710376811037683 81251037741103774710377531037759103776710377911037801103781910378311037857 81261037873103787910378931037903103791710379291037941103795710379631037983 81271038001103801710380191038029103804110380431038047103807310380771038119 81281038127103814310381571038187103819910382031038209103821110382271038251 81291038253103825910382631038269103830710383111038319103832910383371038383 81301038391103840910384211038449103846310384871038497103850310385231038529 81311038539103856310385891038599103860110386171038619103862310386291038637 81321038643103867110386891038691103870710387211038727103873110387571038797 81331038803103881110388231038827103883310388811038913103893710389411038953 81341039001103900710390211039033103903710390391039043103906710390691039081 81351039109103911110391271039139103915310391691039187103922910392491039279 8136103928910393071039321103932710393431039349103935110393871039421103942781371039429103946310394691039477103948110395131039517103953710395431039553 81381039603103960710396311039651103965710396671039681103973310397631039769 81391039789103979910398171039823103983710398911039897103990110399211039931 81401039943103994910399791039999104002110400291040051104005710400591040069 81411040071104008910400931040101104011310401191040141104015310401591040161 81421040167104018310401891040191104020310402191040227104031110403271040339 81431040353104037110403811040387104040710404111040419104044710404491040483 81441040489104050310405211040531104056310405791040581104059710406291040651 81451040657104065910406711040717104073110407471040749104077110407771040779 81461040783104079710408031040807104081310408211040827104083310408571040861 81471040873104088110408911040899104092910409391040947104095110409591040981 81481040989104104110410771041083104109110411091041119104112110411271041137 81491041149104115110411631041167104116910412031041221104122310412391041241 81501041253104126910412811041283104128910413071041311104131710413291041343 81511041349104137310414211041427104144910414511041461104149710415111041517 81521041529104155310415591041563104157110415771041583104161710416191041643 81531041653104167110416731041701104173110417371041757104177910417871041793 81541041823104182910418411041853104185710418631041869104188910418931041907 81551041919104194910419611041983104199110420011042021104203910420431042081 81561042087104209110420991042103104210910421211042123104213310421411042183 81571042187104219310422111042241104224310422591042267104227110422731042309 81581042331104233310423571042369104237310423811042399104242710424391042451 81591042469104248710425191042523104252910425711042577104258310425971042607 81601042609104261910426311042633104268110426871042693104270310427091042733 81611042759104278110427991042819104282910428371042849104286110428971042901 81621042903104293110429491042961104299710430111043023104304710430831043089 81631043111104311310431171043131104316710431731043177104318310431911043201 81641043209104321310432211043279104329110432931043299104331110433231043351 81651043369104337710434011043453104346710434791043489104350110435131043521 81661043531104354310435571043587104359110435931043597104359910436171043639 81671043657104366310436831043701104372310437431043747104375310437591043761 81681043767104377310438311043837104383910438431043849104385710438691043873 81691043897104389910439211043923104392910439511043969104398110440191044023 81701044041104405310440791044091104409710441331044139104414910441611044167 81711044179104418110441871044193104420910442171044227104424710442571044271 81721044283104428710442891044299104434310443471044353104436710443711044383 81731044391104439710444091044437104444310444511044457104447910445091044517 81741044529104455910445691044583104458710446131044619104462910446531044689 81751044697104472710447331044737104473910447491044751104476110447671044779 81761044781104480910448111044833104483910448471044851104485910448771044889 81771044893104493110449411044971104499710450031045013104502110450271045043 81781045061104506310450811045111104511710451231045129104515110451531045157 81791045183104519310451991045223104522910452371045241104527310452771045307 81801045309104532110453491045367104539110453931045397104540910454111045423 81811045427104546910454871045493104550710455231045529104554310455471045549 81821045559104557110455731045607104562110456331045643104565110456631045679 81831045691104572710457291045739104576310457991045801104581910458291045841 8184104585910459031045907104596310459811045987104599710460291046047104605181851046053104606910460771046081104611310461191046179104618310461891046191 81861046203104620710462371046239104625710462631046329104634710463511046369 81871046371104638910463931046399104641310464471046449104645910464971046519 81881046527104655710465791046587104659710465991046627104664110466571046659 81891046677104668110466871046701104671110467791046791104679710468071046827 81901046833104684910468631046867104689710469171046933104695110469591046977 81911046993104699910470311047041104704310470611047077104708910470971047107 81921047119104712710471311047133104713910471571047173104719710471991047229 81931047239104724710472711047281104728310472891047307104731110473131047317 81941047323104734110473671047373104737910473911047419104746710474691047479 81951047491104749910475111047533104753910475511047559104758710475891047647 81961047649104765310476671047671104768910476911047701104770310477131047721 81971047737104775110477631047773104777910478211047833104784110478591047881 81981047883104788710479231047929104794110479611047971104797910479891047997 81991048007104800910480131048027104804310480491048051104806310481231048127 82001048129104813910481891048193104821310482171048219104826110482731048291 82011048309104834310483571048361104836710483871048391104842310484331048447 82021048507104851710485491048559104857110485731048583104858910486011048609 82031048613104862710486331048661104868110487031048709104871710487211048759 82041048783104879310487991048807104882910488371048847104886710488771048889 82051048891104889710489091048919104896310489911049011104902310490391049051 82061049057104906310490771049089104909310491011049117104912910491311049137 82071049141104914310491711049173104917710491831049201104921910492271049239 82081049263104928110492971049333104933910493871049413104942910494371049459 82091049471104947310494791049483104949710495091049519104952710495331049537 82101049549104956910495991049603104961110496231049639104966310496771049681 82111049683104968710497071049717104974710497731049791104980910498211049827 82121049833104983710498431049849104985710498611049863104989110498971049899 82131049941104995310499631049977104999910500111050013105003110500411050053 82141050079105008310501391050151105016710501691050191105019710502291050233 82151050239105024110502531050281105030710503171050323105033110503371050349 82161050367105039110504211050431105043710504491050451105045710504731050503 82171050509105052310505631050593105061110506311050713105072710507331050737 82181050739105074310507691050773105078110508111050817105085110508531050887 82191050899105090110509131050949105096110509771050997105100310510071051009 82201051019105102710510511051069105107910510811051139105114710511511051153 82211051157105117710511811051247105127710512831051291105130110513131051319 82221051333105137310513971051409105141710514231051459105146910514711051481 82231051499105150710515431051549105155310515591051571105159110516011051607 82241051619105162110516391051643105164910516631051697105170910517171051747 82251051759105176310517811051789105181110518191051829105184710518491051879 82261051889105190310519131051927105194910519571051961105197910519871051991 82271052027105203910520411052063105208310520991052111105211910521371052141 82281052179105219710522031052221105223110522371052269105227910522811052287 82291052299105230910523211052327105232910523331052413105241710524311052437 82301052459105247310524791052489105253110525331052537105255110525611052563 82311052567105257310526091052629105266310526931052707105271910527311052743 82321052747105276710527971052801105280310528131052819105285110528731052881。
1~100以内的质数表
![1~100以内的质数表](https://img.taocdn.com/s3/m/a76ffb694a73f242336c1eb91a37f111f1850d05.png)
1~100以内的质数表
1到100之间的质数有: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
质数又称素数,是指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。
大于1的自然数若不是素数,则称之为合数。
例如,2、3、5、7、11、13、17、19、23、29等等都是质数。
而4、6、8、9、10等等则不是质数。
质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多,孪生质数也有相同的分布规律。
质数的性质非常多,其中比较重要的性质包括:
1. 素数只能被1和它本身整除,不能被其他数整除。
2. 素数的定义是大于1的自然数中,除了1和它本身以外不再有其他因数的数称为素数。
3. 在所有的自然数中,除了1之外,素数只有两个正因数,一个是它本身,另一个是它的平方。
4. 在所有大于2的偶数中,除了2之外,所有的素数都是奇数。
5. 在所有大于5的奇数中,除了5之外,所有的素数都是偶数。
6. 两个相差4的素数的乘积一定是一个偶数。
7. 如果一个大于2的偶数不是素数,那么它的约数一定多于2个。
8. 如果一个大于5的奇数不是素数,那么它的约数一定多于3个。
9. 如果一个数是4的倍数但不是2的倍数,那么这个数一定不是素数。
10. 如果一个数是偶数但不是4的倍数,那么这个数一定不是素数。
总之,质数是数学中的一个重要概念,具有许多独特的性质和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万万电子素数表
郭凤鸣
(中国地质大学.武汉,430074)
摘要本程序可以生成万万(一亿)以内的素数,为用户提供五种选择素数的范围:1万、十万、百万、千万、万万。
关键词素数,素数表,程序,Foxpro
在很多研究工作中,往往需要大量的素数,这里提供一种万万电子素数表,即一亿以内的素数表,是一个简单的Foxpro]1[程序,而非表格。
有了它,你不需要把大量的数据保存
在纸上或者存储在磁盘上。
在需要的时候,只要运行本程序,你可以很方便地选择计算1万以内的素数,也可以计算10万,100万,1000万,万万(1亿)以内的素数。
按照程序设计思路对程序略加修改,可以计算10亿、100亿、1000亿…以致更大范围的素数。
算法描述
素数表使用的计算方法是幼拉脱斯展纳(Eratosthenes)筛法]2[,由古希腊时代幼拉脱斯展
纳发明而得名。
算法的基本思想是:要计算不超过N的一切素数,只需要从1,2,3,…,N中把不超过N 的素数的倍数划去就行了。
例如N=30,30< 6,小于6的素数是2,3,5。
求解N=30以内素数的方法如下:
1 2 3 4 5 67 8910
11 1213 14151617 1819 20
212223 242526272829 30
最后求得30以内的素数是未划线的部分:2,3,5,7,11,13,17,19,23,29。
程序简略流程——如图一
图一程序简略流程
程序清单
** 万万素数表计算程序
set defa to "c:\program files\microsoft visual studio\vfp98\sj\素数表"
set talk off
** 生成100以内的素数,存入库文件Sb00
create table sb00(shuju n )
append blank
replace shuju with 2
for i=2 to 50
append blank
replace shuju with 2*i-1
endfor
delete all for shuju%3=0 and shuju<>3
delete all for shuju%5=0 and shuju<>5
delete all for shuju%7=0 and shuju<>7
pack
go bottom
rn=recno()
** 将Sb00.dbf复制到数组X和库文件bb1备用,sb00空间继续使用
copy to array x for shuju>2
copy to bb1
** 生成10000以内的素数,存入库文件Sb00
n=10000
do js
copy to ssbyw && 将10000以内的素数表保存ssbyw.dbf中
do dy
do while .t.
clear
text
********************************
** 1.计算10万以内的素数 **
** 2.计算100万以内的素数 **
** 3.计算1000万以内的素数 **
** 4.计算1亿以内的素数 **
** 0.退出 **
********************************
endtext
@ 14,10 say "请选择您需要计算的素数1——4?" get xz default space(1) read
do case
case xz="1" && 计算10万以内的素数
n=100000
do js && 调用计算过程
copy to ssbsw && 将10万素数表复制保存
do dy && 调用打印过程
case xz="2" && 计算100万以内的素数
n=1000000
do js
copy to ssbbw
do dy
case xz="3" && 计算1000万以内的素数
n=10000000
do js
copy to ssbqw
do dy
case xz="4" && 计算1亿以内的素数
n=100000000
do js
copy to ssbbw
do dy
case xz="0"
clear
wait window at 20,20 " 停止计算,任意键退出!" cancel
endcase
enddo
procedure js && 计算过程
release x
copy to array x for shuju>2 and shuju<sqrt(n)
lx=alen(x)
zap
append blank
replace shuju with 2
for i=2 to n/2
append blank
replace shuju with 2*i-1
endfor
for i=1 to lx
delete all for shuju%x(i)=0 and shuju<>x(i)
pack
endfor
go bottom
rn=recno()
return
procedure dy && 打印过程 dy
nn=str(n/10000)
clear
? nn+"万以内的素数有"+str(rn)+"个"
wait " 已计算完成,打印吗(y/n)?" to yn
if upper(yn)="Y"
clear
go 1
for i=1 to rn
?? shuju
if i%10=0
?
endif
skip
endfor
clear
wait " "+ nn + " 万素数表打印完毕,按任意键继续!"
else
clear
endif
return
参考文献
[1]. 史济民汤观全编著.Visual Foxpro及其应用系统开发.北京:清华大学出版社,2000年4
月。
[2]. 闵嗣鹤严士健编.初等数论(第三版).北京:高等教育出版社,2005年3月。