2018年河南省新乡市中考数学一模试卷
2018年河南省新乡市中考数学模拟试卷
2018年河南省新乡市中考数学模拟试卷(中招备考)一、选择题(每小题3分,共24分)1.计算(+2)+(﹣3)所得的结果是()A.1B.﹣1C.5D.﹣52.如图是一个正方体的表面展开图,则原正方体标有数字“1”所在面的对面标有数字()A.2B.3C.4D.53.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.菱形4.长城被列入世界文化遗传名录,其总厂约为6700000m,若将6700000用科学记数法表示为6.7×10n (n是正整数),则n的值为()A.5B.6C.7D.85.一组数据1,2,3,4,5的方差为()A.B.1C.2D.36.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.如图,⊙O的弦AB垂直于直径CD于点E,∠BCE=22.5°,AB=2,则⊙O的半径长为()A.B.2C.D.38.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5B.12C.10070D.10080二、填空题(共7小题,每小题3分,满分21分)9.计算:﹣12×= .10.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .11.分式方程+=2的解是.12.如图,在菱形ABCD中,点M、N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AM= .13.如图,PA、PB分别切⊙O于点A、B,若∠C=55°,则∠P的大小为度.14.如图,函数y=x与y=的图象相交于A、B两点,过A、B两点分别作x轴垂线,垂足分别为点C、D,则四边形ACBD的面积为.15.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(),其中a=2﹣.17.为了宣传普及交通安全常识,学校随机调查了部分学生来校上学的交通方式,并将结果统计后制成如图所示的不完整统计图.(1)这次被调查学生共有名,“父母接送”上学的学生在扇形统计图中所占的圆心角为度;(2)请把条形图补充完整;(3)该校有1500名学生,要在“走路”的学生中,选取一名学生代表为交通安全义务宣传员,如果你是一名“走路”同学,那么你被选取的概率是多少?18.如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.19.若0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则求出m的值,并讨论方程根的情况.20.小明准备用所学数学知识测量广场上旗杆CD的高度,如图所示,在底面A处测得顶端的仰角为25.5°,在B处测得仰角为36.9°,已知点A、B、C在同一直线上,量得AB=10米.求旗杆的高度.(结果保留一位小数,参考数据:sin25.5°≈0.43,cos25.5°≈0.90,tan25.5°≈0.48;sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.21.学校为了改善办学条件,需要购买500套桌椅,已知甲种桌椅每套150元,乙种桌椅每套120元.(1)若总攻花费66000元,则购买甲、乙两种桌椅各多少套?(2)若购买甲种桌椅的费用不少于购买乙种桌椅费用,则要选择怎样购买方案才能使费用最少?最少费用是多少?22.(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2=即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC 之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.23.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.2018年河南省新乡市中考数学模拟试卷(中招备考)参考答案与试题解析一、选择题(每小题3分,共24分)1.计算(+2)+(﹣3)所得的结果是()A.1B.﹣1C.5D.﹣5【分析】运用有理数的加法法则直接计算.【解答】解:原式=﹣(3﹣2)=﹣1.故选B.【点评】解此题关键是记住加法法则进行计算.2.如图是一个正方体的表面展开图,则原正方体标有数字“1”所在面的对面标有数字()A.2B.3C.4D.5【分析】根据正方体相对面的特点及其表面展开图的特进行解答即可.【解答】解:正方体有六个面,其图中“1”字所在面的对面所标的字是“4”;故选:C.【点评】此题考查了正方体相对两个面上的文字,根据正方体展开图的特点,从它的相对面入手是解题的关键.3.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.菱形【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:等边三角形不是中心对称图形是轴对称图形;直角三角形不一定是中心对称图形也不一定是轴对称图形;平行四边形是中心对称图形不是轴对称图形;菱形是中心对称图形又是轴对称图形,故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.长城被列入世界文化遗传名录,其总厂约为6700000m,若将6700000用科学记数法表示为6.7×10n (n是正整数),则n的值为()A.5B.6C.7D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负【解答】解:6 700 000=6.7×106,则n=6,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.一组数据1,2,3,4,5的方差为()A.B.1C.2D.3【分析】根据平均数的定义先求出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:数据1,2,3,4,5的平均数是:(1+2+3+4+5)÷5=3故方差S2=[(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选C.【点评】此题考查了方差的定义,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2【分析】先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.【解答】解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x﹣k﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.7.如图,⊙O的弦AB垂直于直径CD于点E,∠BCE=22.5°,AB=2,则⊙O的半径长为()A.B.2C.D.3【分析】连接OB,利用垂径定理求得BE的长,然后求得∠OBE的度数,证明△OBE是等腰直角三角形,据此即可求解.【解答】解:连接OB.∵AB⊥CD,∴BE=AB=×2=1.在直角△BCE中,∠B=90°﹣∠BCE=90°﹣22.5°=67.5°,∵OC=OB,∴∠CBO=∠BCE=22.5°,∴∠OBE=67.5°﹣22.5°=45°,∴△OBE是等腰直角三角形,∴OB=BE=.故选A.【点评】本题考查了垂径定理和等腰直角三角形的性质,正确求得∠OBE的度数是关键.8.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5B.12C.10070D.10080【分析】由图象可知点B2016在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2016在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB===,∴B2(10,4),B4(20,4),B6(30,4),…∴B2016(10080,4).∴点B2016纵坐标为10080.故选D.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.二、填空题(共7小题,每小题3分,满分21分)9.计算:﹣12×= 2016 .【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂及二次根式性质计算即可得到结果.【解答】解:原式=﹣1+1×2017=﹣1+2017=2016,故答案为:2016【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=.故答案为:.【点评】此题考查了列表法与树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,注意概率=所求情况数与总情况数之比.11.分式方程+=2的解是x=3 .【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1+2x2﹣2x=2x2﹣2,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.12.如图,在菱形ABCD中,点M、N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AM= 6 .【考点】菱形的性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4,则AM=AN+MN=6.故答案是:6.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.13.如图,PA、PB分别切⊙O于点A、B,若∠C=55°,则∠P的大小为70 度.【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣∠P﹣90°=2∠C=110°,∴∠P=360°﹣90°﹣90°﹣110°=70°.故答案为:70【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.如图,函数y=x与y=的图象相交于A、B两点,过A、B两点分别作x轴垂线,垂足分别为点C、D,则四边形ACBD的面积为8 .【考点】反比例函数与一次函数的交点问题.【分析】设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),根据平行四边形的面积公式即可求解.【解答】解:设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),mn=4则AC=n,CD=2m.则四边形ACBD的面积=AC•CD=2mn=8.故答案是:8.【点评】本题考查了反比例函数与一次函数的交点,正确理解反比例函数的中心对称性是关键.15.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【考点】勾股定理;等腰三角形的判定;矩形的性质.【专题】分类讨论.【分析】根据题意画出符合题意的图形,进而得出答案.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为: =,则其面积为:×2×=.故答案为:2或.【点评】此题主要考查了勾股定理以及等腰三角形的性质,正确画出图形是解题关键.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(),其中a=2﹣.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=•=,当a=2﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.为了宣传普及交通安全常识,学校随机调查了部分学生来校上学的交通方式,并将结果统计后制成如图所示的不完整统计图.(1)这次被调查学生共有100 名,“父母接送”上学的学生在扇形统计图中所占的圆心角为54 度;(2)请把条形图补充完整;(3)该校有1500名学生,要在“走路”的学生中,选取一名学生代表为交通安全义务宣传员,如果你是一名“走路”同学,那么你被选取的概率是多少?【考点】条形统计图;扇形统计图;概率公式.【分析】(1)骑车人数÷骑车所占百分比可得总人数,用父母接送上学占总人数比例乘以360度可得圆心角度数;(2)用总人数减去其他方式上学的人数可得走路的人数,补充图形即可;(3)求出全校1500人中走路上学的人,可得概率.【解答】解:(1)40÷40%=100,×360°=54°;(2)走路的人数有:100﹣40﹣25﹣15=20(人),补全图形如下:(3).∵1500×=300,∴被选取的概率P=.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.【考点】切线的判定;垂径定理;相似三角形的判定与性质.【专题】几何图形问题.【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(2)解:∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴=,∴=,解得:FD=.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定等知识,得出△AEO∽△FDO是解题关键.19.若0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则求出m的值,并讨论方程根的情况.【考点】根的判别式;一元二次方程的解.【分析】将x=0代入原方程,可得出关于m的一元二次方程,解方程即可得出m的值,再根据原方程为一元二次方程,即二次项系数不为0,确定m的值,将m代入原方程,由根的判别式的符号即可得出根的情况.【解答】解:将x=0代入方程(m﹣2)x2+3x+m2+2m﹣8=0中,得:m2+2m﹣8=0,解得:m1=﹣4,m2=2.∵原方程为一元二次方程,∴m﹣2≠0,即m≠2.∴m=﹣4.当m=﹣4时,原方程为﹣6x2+3x=0,∵△=32﹣4×(﹣6)×0=9>0,∴原方程有两个不相等的实数根.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是得出m的值.本题属于基础题,难度不大,解决该题型题目时,将x的值代入原方程求出方程系数中未知数的值是关键.20.小明准备用所学数学知识测量广场上旗杆CD的高度,如图所示,在底面A处测得顶端的仰角为25.5°,在B处测得仰角为36.9°,已知点A、B、C在同一直线上,量得AB=10米.求旗杆的高度.(结果保留一位小数,参考数据:sin25.5°≈0.43,cos25.5°≈0.90,tan25.5°≈0.48;sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【考点】解直角三角形的应用-仰角俯角问题.【分析】设CD=x米,根据正切的概念用x表示出AC、BC,根据题意列出方程,解方程即可.【解答】解:设CD=x米,在Rt△ADC中,AC==,在Rt△BDC中,BC==,∵AC﹣BC=AB,∴﹣=10,解得x≈13.3.答:旗杆的高度为约13.3米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.学校为了改善办学条件,需要购买500套桌椅,已知甲种桌椅每套150元,乙种桌椅每套120元.(1)若总攻花费66000元,则购买甲、乙两种桌椅各多少套?(2)若购买甲种桌椅的费用不少于购买乙种桌椅费用,则要选择怎样购买方案才能使费用最少?最少费用是多少?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据购买费用=单价×数量可列出关于x的一元一次方程,解方程即可得出结论;(2)根据甲种桌椅的费用不少于购买乙种桌椅费用列出关于x的一元一次不等式,解不等式得出x 的值域,根据购买费用=单价×数量可得出总费用w关于x的一次函数,根据函数的单调性即可得出结论.【解答】解:(1)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据题意得:150x+120(500﹣x)=66000,解得:x=200,500﹣200=300(套).答:购买甲种桌椅200套,则购买乙种桌椅300套.(2)设购买甲种桌椅x套,则购买乙种桌椅(500﹣x)套,根据题意得:150x≥120(500﹣x),解得:x≥=222.购买桌椅费用w=150x+120(500﹣x)=30x+60000,当正整数x最小时,费用最少.所以当购买甲种桌椅223套,乙种桌椅277套时费用最少,最少费用为30×223+60000=66690(元).【点评】本题考查了一元一次不等式的应用、一元一次方程的应用以及一次函数的性质,解题的关键:(1)列出关于x的一元一次方程;(2)找出w关于x的函数关系式并通过解一元一次不等式得出x的取值范围.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.22.(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60° PA=PP′PC=P′B∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2= P′B2即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC 之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.【考点】几何变换综合题.【分析】(1)根据旋转的性质和勾股定理直接写出即可;(2)将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,论证PP′=PA,再根据勾股定理代换即可;(3)将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,论证PP′= PA,再根据勾股定理代换即可.【解答】解:(1)PC=P′BP′P2+BP2=P′B2.(2)关系式为:2PA2+PB2=PC2证明如图②:将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,则△APP′为等腰直角三角形∴∠APP′=45°PP′=PA,PC=P′B,∵∠APB=135°∴∠BPP′=90°∴P′P2+BP2=P′B2,∴2PA2+PB2=PC2(3)k=.证明:如图③将△APC 绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,可得∠APP′=30°PP′=PA,PC=P′B,∵∠APB=60°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,∴(PA)2+PB2=PC2∵(kPA)2+PB2=PC2,∴k=.【点评】此题主要考查几何变换中的旋转变换,熟悉旋转变换的性质,并通过旋转构造直角三角形运用勾股定理是解题的关键.23.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.【考点】二次函数综合题.【分析】(1)将点A、B的坐标代入抛物线的解析式得到关于a、c的方程组,从而可求得a、c的值;(2)先求得点C的坐标,然后依据待定系数法求得直线BC的解析式,由直线可抛物线的解析式可知P(t,﹣t2+3t+4),Q(t,﹣t+4),从而可求得QP与t的关系式,最后依据配方法可求得m的最大值;(3)将y=4代入抛物线的解析式求得点D的坐标,依据一组对边平行且相等的四边形是平行四边形可得到BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形,从而可求得点E的坐标.【解答】解(1)∵抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,∴.解得:a=﹣1,c=4.∴抛物线的解析式为y=﹣x2+3x+4.(2)∵将x=0代入抛物线的解析式得:y=4,∴C(0,4).设直线BC的解析式为y=kx+b.∵将B(4,0),C(0,4)代入得:,解得:k=﹣1,b=4∴直线BC的解析式为:y=﹣x+4.过点P作x的垂线PQ,如图所示:∵点P的横坐标为t,∴P(t,﹣t2+3t+4),Q(t,﹣t+4).∴PQ=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t.∴m=﹣t2+4t=﹣(t﹣2)2+4(0<t<4).∴当t=2时,m的最大值为4.(3)将y=4代入抛物线的解析式得:﹣x2+3x+4=4.解得:x1=0,x2=3.∵点D与点C不重合,∴点D的坐标为(3,4).又∵C(0,4)∴CD∥x轴,CD=3.∴当BE=CD=3时,B、C、D、E为顶点的四边形是平行四边形.∴点E(1,0)或(7,0).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、配方法求二次函数的最值、平行线四边形的判定,由抛物线和直线BC的解析式得到点P和Q的坐标,从而得到PQ与t的函数关系式是解题的关键.。
新乡市中考数学一模考试试卷
新乡市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·淮南模拟) 已知是等腰直角三角形的一个锐角,则的值为()A .B .C .D . 12. (2分)(2018·台州) 在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A .B .C .D .3. (2分)(2020·乐东模拟) 下列立体图形中,主视图、左视图和俯视图都是矩形的是()A .B .C .D .4. (2分)(2019·盘锦) 如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于 BF的长为半径画弧,两弧交于点M,作射线AM交BC于点E,连接EF.下列结论中不一定成立的是()A . BE=EFB . EF∥CDC . AE平分∠BEFD . AB=AE5. (2分) (2018九上·江苏期中) 若反比例函数的图象在每一象限内, y随x的增大而增大,则m的取值范围是()A . m<-4B . m<0C . m>-4D . m>06. (2分) (2019九上·宜兴期中) 若关于x的方程x2-4x+m=0有两个相等的实数根,则m的值是()A . 1B . 2C . 4D . ±47. (2分)(2020·青海) 等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A . 55°,55°B . 70°,40°或70°,55°C . 70°,40°D . 55°,55°或70°,40°8. (2分) (2019八上·扬州月考) 如果等腰三角形的一个角是80°,那么它的底角是()A . 80°或50°B . 50°或20°C . 80°或20°D . 50°9. (2分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A . lB . 2C .D .10. (2分)(2016·深圳模拟) 如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 .上述说法正确的是()A . ①②③④B . ③④C . ①③④D . ①②二、填空题 (共4题;共5分)11. (2分)已知一元二次方程x2﹣7x+10=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为________12. (1分)(2020·郑州模拟) 已知反比例函数y= ,当x>0时,y随x增大而减小,则m的取值范围是________.13. (1分) (2019九上·镇江期末) 某公司今年4月份营业额为100万元,6月份营业额达到121万元,该公司营业额的月均增长率为x,则可列方程为________.14. (1分) (2020八下·重庆月考) 如图,菱形的边长为6,∠A=60°.取菱形各边中点并顺次连接这四个点,得到四边形,再取四边形各边中点 ,顺次连接得到四边形……以此类推,则四边形的面积是________.三、计算题 (共2题;共15分)15. (10分)(2019·长春模拟) 计算:sin30°-3tan60°+cos245°。
最新-2018年九年级数学中考第一次调研模拟试卷【新乡
新乡市2018年九年级第一次调研试卷数 学注意事项:1、本试卷共8页,三大题,满分120分,考试时间100分钟,请用钢笔或圆珠笔直接答在试卷上。
一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号 字母填入题前括号内。
1、 -5的相反数是 ( )A . 5B .15- C..-5 D .152、截止2018年末,中国证劵总市值为11.6万亿元,相对于2018末的33.3万亿元,减少了 ( ) A. 1221.710⨯元 B .122.1710⨯元 C .132.1710⨯元 D .142.1710⨯元 3.下列图形中,既是中心对称图形又是轴对称图形的是 ( )A B C D4、如图,E 为◇ABCD 的CD 边上的一点,BE 、AD 的延长线交与点F ,若DF=DE=1,BC=32,则AB的长是( ) A3 B 52C 2 D 55、如图,在◇ABCD 中,AD=5,AB=3,,060B ∠=,AE 平分BAD ∠交BC 于点E,则四边形AECD 的面积为 ( )A 4B 214C 2D 2126、如图,矩形ABCD 中有一半圆O ,直径AB=2cm ,CD 与半圆O 相切于点M ,点P 由C 点开始沿线段CM 和MB ⋂移动,到B 点终止。
若P 点移动速度为1cm/s ,设移动时间为t (s ),由线段MD 、DA 、AO 、OP 和线段PM (P 在MB ⋂上为PM ⋂)所围成的图形面积为S(2cm ),则S 与t 的函数关系图象大致是( )(第6题) A B二、填空题(每小题3分,共27 7、当x 时,根式8、请写出一个主视图和左视图相同的立体图形: 。
9、数轴上有三点A 、B 、C ,2,则线段AB 、BC 的大小关系是AB BC(填“>1.732≈≈). 10、如图,CE 是ABC ∆的外角平分线,若0045,55,1A B ∠=∠=∠=则。
精品河南省2018年精品中招第一次模拟考试数学试卷及答案
天宏大联考2018年河南省中招第一次模拟考试试卷数学(本卷满分120分,考试时间100分钟)注意:本试卷分试题卷和答题卡两部分。
考生应首先阋读试题卷及答题卡上的相关信息,然后在答题卡上作答,在试题卷上作答无效。
交卷时只交答题卡。
一、选择题(本大题共10个小题,每小题3分,共30分)1、322-的倒数是( ) A 、322B 、213-C 、83-D 、832、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,既不是中心对称图形也不是轴对称图形的是( )3、若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( )A 、6B 、3C 、3D 、124、如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A 、53°B 、63°C 、73°D 、27°第5题图 第6题图5、对于任意的实数m ,一元二次方程3x 2-x=m 的根的情况是( )A 、有两个相等的实数根B 、对于不同的实数m ,方程根的情况也不相同C 、有两个不相等的实数根D 、无实数根6、如图,Rt △ABC 中,∠ACB=90°,AC=4cm ,BC=6cm ,以斜边AB 上的一点O 为心所作的半圆分别与AC 、BC 相切于点D 、E ,则圆O 的半径为( )A 、3. 5cmB 、 2. 5cmC 、2cmD 、2. 4cm7、已知一元二次方程x 2-3x -1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为( )A 、-3B 、3C 、-6D 、68、如图,AC 是矩形ABCD 的对角线,AB=1,BC =3,点E ,F 分别是线段AB ,AD 上的点,连接CE ,CF ,若∠BCE=∠ACF ,且CE=CF ,则AE+AF =( )A 、1.2B 、332C 、433 D 、3第8题图 第9题图 第10题图9、矩形ABCD 中,AD=8cm ,AB=6cm ,动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止。
河南省新乡市中考数学一模试卷
河南省新乡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2011·嘉兴) ﹣6的绝对值是()A . ﹣6B . 6C . ±6D . -2. (2分) (2018七上·嵩县期末) 地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A . 64×105B . 6.4×105C . 6.4×106D . 6.4×1073. (2分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2015的坐标为()A . (1006,0)B . (1006,1)C . (1007,0)D . (1007,1)4. (2分)如图,观察下列用纸折叠成的图案.其中,轴对称图形和中心对称图形的个数分别为()A . 4,1B . 3,1C . 2,2D . 1,35. (2分)(2018·丹棱模拟) 下列说法正确的是()A . 打开电视,它正在播放广告是必然事件B . 要考察一个班级中的学生某天完成家庭作业的情况适合抽样调查C . 甲、乙两人射中环数的方差分别为,说明乙的射击成绩比甲稳定D . 在抽样调查中,样本容量越大,对总体的估计就越准确6. (2分)如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A . ①②④B . ①③④C . ②③④D . ①②③7. (2分)关于x的方程组的解是,则的值是()A . 5B . 3C . 2D . 18. (2分)如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A .B .C .D .9. (2分)(2016·海拉尔模拟) 一组数据:2,4,5,6,x的平均数是4,则这组数的方差是()A .B . 2C . 10D .10. (2分)在平面直角坐标系中,已知线段AB的两个端点分别是A(4 ,-1),B(1,1),线段AB平移后得到线段A 'B',若点A'的坐标为 (-2 ,2 ) ,则点 B'的坐标为()A . (-5 ,4 )B . (4 ,3 )C . (-1 ,-2 )D . (-2,-1)11. (2分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 412. (2分)(2016·济宁) 如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A . 60B . 80C . 30D . 40二、填空题 (共6题;共6分)13. (1分)边长为1的正六边形的外接圆半径是________.14. (1分)(2016·南岗模拟) 把多项式a3b﹣6a2b+9ab因式分解,最后结果等于________.15. (1分)(2018·濠江模拟) 已知关于x的方程有两个相等的实数根,那么m = ________16. (1分) (2018九下·湛江月考) 圆锥底面圆的半径为2,侧面展开图的半径为5,则侧面展开图的圆心角是________.17. (1分)若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为________ .18. (1分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是________三、计算题 (共9题;共81分)19. (5分)(2019·潮南模拟) 计算: +(π﹣2019)0﹣(﹣)﹣2﹣4cos30°20. (5分)计算:+﹣2sin60°+|tan60°﹣2|21. (10分)(2016·鄞州模拟) 如图,在平行四边形ABCD中,对角线AC,BD并于点O,经过点O的直线交AB于E,交CD于F.(1)求证:OE=OF.(2)连接DE,BF,则EF与BD满足什么条件时,四边形DEBF是矩形?请说明理由.22. (15分)已知:一次函数y=﹣2x+10的图象与反比例函数(k>0)的图象相交于A,B两点(A在B 的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在1的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y 轴于点D.若,求△ABC的面积.23. (11分)某校为了解学生孝敬父母的情况,在全校范围内随机抽取了若干名学生进行调查,调查的内容包括:A.帮父母做家务;B.给父母买礼物;C.陪父母聊天、散步;D.其他.调查结果如图:根据以上信息解答下列问题:(1)该校共调查了________ 名学生;(2)请把条形统计图补充完整;(3)若该校有2000名学生,估计该校全体学生中选择C选项的有多少人?24. (5分)根据下列语句,画出图形.(1)已知如图1,四点A,B,C,D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD,BC,交于点P.(2)如图2,已知线段a,b,画一条线段,使它等于2a﹣b(不要求写画法).25. (5分)某市为了改善市区交通状况,计划修建一座新大桥,如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直与新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米,sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.)26. (10分)(2016·鄞州模拟) 如图,已知边长为6的等边△ABC内接于⊙O.(1)求⊙O半径;(2)求的长和弓形BC的面积.27. (15分)(2017·兴庆模拟) 如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、计算题 (共9题;共81分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、26-1、26-2、27-1、27-2、27-3、。
最新-河南省新乡市二十一中2018年中考数学一模试卷 人
A.B.C.D.252-5 25252018年新乡市二十一中数学一模试卷(时间100分钟,分数120分)一.填空题(每题3分,共18分)1.下列计算错误的是()A.-(-2)=2 B.822= C.22x+32x=52x D.235()a a=2.不等式组2461xx>⎧⎨-≥⎩的解集在数轴上可表示为( )3.一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的( )A.①②B.③②C.①④D.③④4.三根长度分别为3cm,7cm,4cm的木棒能围成三角形的事件是()A.必然事件 B.不可能事件C.不确定事件 D.以上说法都不对5.在同一直角坐标系中,二次函数22y x=+与一次函数2y x=的图象大致是()6.如图,菱形ABCD的周长为40cm,DE AB⊥,垂足为E,3sin5A=,则下列结论正确的有()①6cmDE=②2cmBE=③菱形面积为260cm④410cmBD=A.1个B.2个C.3个D.4个二.填空题(每题3分,共27分)DCBEAyx2oAyxoByx2oCyxoD2-2-7.某市2010年第一季度财政收入为52.78亿元,用科学计数法 (结果保留两个有效数字)表示为__. 8.如图,AB CD ∥, AD 和BC 相交于点O , 2580A COD =︒=︒∠,∠,则C ∠=____.9.已知1x =是关于x 的一元二次方程22(1)10k x k x -+-=的根,则常数k 的值为___. 10.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差为13,那 么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和 方差分别是___.11.如图,甲、乙两楼相距20米,甲楼高20米,小明站 在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、 刚好在同一直线上,若小明的身高忽略不计,则乙楼的高 度是 米.12.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为_______.13.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥 漏斗的侧面积是____.14.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为______.15.如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的 扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所 有扇形面积之和是____.(结果保留π). ……第1个 第2个 第3个三.解答题(共8题总分75分)A B OCD20米乙CB A甲10米 ?米20OAB(第18题图) 60 80 100 120 140 160 180 次数42 571319 频数O16.(8分)已知:x,y 满足26190x x x y ++-++=.求代数式2211y x y x y x y⎛⎫+÷ ⎪-+-⎝⎭的值.(要求对代数式先化简,再求值.)17.(8分)如图,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2k y x =(k为常数,0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x的取值范围.18.(8分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数? (2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19.(9分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.yxB1- 1- 1 2 3 3 12 A (1,3)B ′ AB C E OxyACDEBOl 20.(10分) 如图,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6c m 4c m AB E F ==,,求CD 的长.21.(10分).如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.2(3)10x x y ∴++-+=. …………………………………1分3010x x y ∴+=-+=且.解得:3, 2.x y =-=- …………………………………3分2211yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭=222()()x x y x y x y y -⨯-+………………………………… 5分 =y x2………………………………… 7分将3,2x y =-=-代入,则 22.( 10分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E .(1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.23. (12分)如图,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x -1经过抛物线上一点D C FE A BGABCODE xyx =2B (-2,m ),且与y 轴、直线x =2分别交于点D 、E .(1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.答案一.选择题 1.D 2.A 3.B 4.B 5.C 6.C 二.填空题 7. 5.3×910 8. 75︒ 9. 0 10. 4,311. 60米 12. 2018 13.260cm π 14. 23cm 15.2n π三,解答题 (共75分)16.(8分)解: 26190x x x y ++-++= ,2(3)10x x y ∴++-+=. …………………………………1分3010x x y ∴+=-+=且.解得:3, 2.x y =-=- …………………………………3分2211yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭=222()()x x y x y x y y -⨯-+………………………………… 5分=y x2………………………………… 7分将3,2x y =-=-代入,则原式=y x 2=2(3)3.2⨯-=- …………………………………8分17.( 8 分) 解:(1)由题意,得31m =+, …………………………………(1 分) 解得2m =,所以一次函数的解析式为12y x =+.………………………………… (2 分)由题意,得31k=, …………………………………(3 分)解得3k =,所以反比例函数的解析式为23y x =. (4 分)由题意,得32x x +=,解得1213x x ==-,. (5分) 当23x =-时,121y y ==-,所以交点(31)B --,.……………… (6 分)(2)由图象可知,当30x -<≤或1x ≥时, 函数值12y y ≥.………………………………… (8 分)18.(8分) 解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8. 因为100.8>100,所以一定超过全校平均次数. …………………………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内.………………………………………………………………6分 (3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),……………7分 6605033.=.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………………8分19.(9分)解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x -=-………………………………………………………………4分整理,得 x2 - l.8x - 14.4 = 0 (6)分yxO 1- 1- 1 3 1 A (1,3)B解这个方程,得x1=4.8,x2=-3………………………………………………………………7分 经检验两根都为原方程的根,但x2=-3 不符合实际意义,故舍去.……………………8分 答:今年5月份的汽油价格为4.8元/升.……………………………………………… 9分 20.(1)证明:∵梯形ABCD ,AB CD ∥,∴CDF FGB DCF GBF ∠=∠∠=∠,, ……………. 2 分 ∴CDF BGF △∽△. …………………………. 4分 (2) 由(1)CDF BGF △∽△, 又F 是BC 的中点,BF FC = ∴CDF BGF △≌△,∴DF FG CD BG ==, …………………………. 7分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==. ……………………………………………………………10分 21.((10分))解:(1)在Rt △B ′OC 中,tan ∠OB ′C =43,OC =9, ∴ 934OB ='. ………………………………………………………………………3分解得OB ′=12,即点B ′ 的坐标为(12,0). ………………………………………4分 (2)将纸片翻折后,点B 恰好落在x 轴上的B ′ 点,CE 为折痕, ∴ △CBE ≌△CB ′E ,故BE =B ′E ,CB ′=CB =OA .由勾股定理,得 CB ′=22OB OC '+=15. … …………………………………5分 设AE =a ,则EB ′=EB =9-a ,A B′=AO -OB′=15-12=3. 由勾股定理,得 a2+32=(9-a)2,解得a =4. ∴点E 的坐标为(15,4),点C 的坐标为(0,9). 5分设直线CE 的解析式为y =kx+b ,根据题意,得 9,415.b k b =⎧⎨=+⎩…………… 8分DC F E ABG解得9,1.3b k =⎧⎪⎨=-⎪⎩ ∴CE 所在直线的解析式为 y =-31x+9. 022.(10分)(1)解:在△AOC 中,AC=2,∵ AO =OC =2,∴ △AOC 是等边三角形.………2分∴ ∠AOC =60°,∴∠AEC =30°.…………………4分(2)证明:∵OC ⊥l ,BD ⊥l .∴ OC ∥BD . ……………………5分 ∴ ∠ABD =∠AOC =60°. ∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°. ……………7分 ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. ………………………………9分 又∵ OB =OC =2.∴ 四边形OBEC 是菱形. ……………………………10分 23.(12分)(1)∵ 点B(-2,m)在直线y=-2x-1上,∴ m=-2×(-2)-1=3. ………………………………(1分) ∴ B(-2,3)∵ 抛物线经过原点O 和点A ,对称轴为x=2, ∴ 点A 的坐标为(4,0) .设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分) 将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ 41=a . ∴ 所求的抛物线对应的函数关系式为)4(41-=x x y ,即x x y -=241. (5分)(2)①直线y=-2x-1与y 轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5). 过点B 作BG ∥x 轴,与y 轴交于F 、直线x=2交于G , 则BG ⊥直线x=2,BG=4.在Rt △BGC 中,BC=522=+BG CG .∵ CE=5,∴ CB=CE=5. ……………………(7分)②过点E 作EH ∥x 轴,交y 轴于H ,则点H 的坐标为H(0,-5). 又点F 、D 的坐标为F(0,3)、D(0,-1), ∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°. ∴ △DFB ≌△DHE (SAS ),∴ BD=DE.即D 是BE 的中点. ………………………………(9分)(3) 存在. ………………………………(10分)A C D EBOl AB C O D Ex yx =2 G FH由于PB=PE ,∴ 点P 在直线CD 上, ∴ 符合条件的点P 是直线CD 与该抛物线的交点. 设直线CD 对应的函数关系式为y=kx+b.将D(0,-1) C(2,0)代入,得⎩⎨⎧=+-=021b k b . 解得 1,21-==b k .∴ 直线CD 对应的函数关系式为y=21x-1 ∵ 动点P 的坐标为)41,(2x x x -), ∴.21x -1=x x -241 ………………………………(11分) 解得 531+=x ,532-=x . ∴2511+=y ,2511-=y .∴ 符合条件的点P 的坐标为(53+,251+)或(53-,251-).…(12分)(注:用其它方法求解参照以上标准给分.)。
【3套试卷】新乡市中考一模数学试题及答案
中考模拟考试数学试题一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣32.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)24.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a26.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或二.填空题(共5小题)11.计算的结果为.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣3【分析】先找出最小数和最大数,再求出差即可.【解答】解:在﹣1,﹣3,0,1这四个数中,最小的数是﹣3,最大的数是1,差为﹣3﹣1=﹣4.故选:B.2.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=70°,故可按同旁内角互补两直线平行补充条件.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=180°﹣70°=110°(同旁内角互补两直线平行).故选:C.3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)2【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣16)=x(y+4)(y﹣4),故选:A.4.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:827122亿元用科学记数法表示为8.27122×1013.故选:D.5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a)2=4a2,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.6.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.【分析】设原计划每天施工x米,实际每天施工(x+50)米,根据工作时间=工作总量÷工作效率结合实际比原计划少用3天,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天施工x米,实际每天施工(x+50)米,依题意,得:﹣=3.故选:C.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°【分析】根据圆周角定理求得、:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【解答】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故选:B.8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选:D.9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B,∴AB=,OA=,∵∠OAB=90°,∴∠B=∠AOB=45°,由勾股定理得:OB=AD=2,∵C(1,0),∴CD=,即PA+PC的最小值是故选:B.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.二.填空题(共5小题)11.计算的结果为 1 .【分析】利用平方差公式计算.【解答】解:原式=()2﹣1=2﹣1=1.故答案为1.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为x2+(6﹣x)2=9 .【分析】设AE=x,则DE=(6﹣x),根据正方形的面积公式及剪下的两个正方形的面积和为9,即可得出关于x的一元二次方程,此题得解.【解答】解:设AE=x,则DE=(6﹣x),依题意,得:x2+(6﹣x)2=9.故答案为:x2+(6﹣x)2=9.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为91 .【分析】根据图形的变化规律即可得结论.【解答】解:第①个图形中一共有3个菱形,即12+(1+1)第②个图形中一共有7个菱形,即22+(2+1)第③个图形中一共有13个菱形,即32+(3+1)……,第n个图形中一共有[n2+(n+1)]个菱形,∴第⑨个图形中菱形的个数为92+9+1=91.故答案为91.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为2π﹣4 .【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×42=2π﹣4.故答案为2π﹣4.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为 2 .【分析】连接AD、CD,由勾股定理得:AB=DE==5,BD==2,CD=AD==,得出AB=DE=AB=BC,BD2+AD2=AB2,证出△ABD是直角三角形,∠ADB=90°,同理△BCD是直角三角形,∠BDC=90°,证出A、D、C三点共线,得出AC=2AD=2=BD,证明△ABC≌△DEB(SSS),得出∠BAC=∠EDB,证出DF⊥AB,BD平分∠ABC,由角平分线的性质得出DF=DG=2即可.【解答】解:连接AD、CD,如图所示:由勾股定理得:AB=DE==5,BD==2,CD=AD==,∵BE=BC=5,∴AB=DE=AB=BC,BD2+AD2=AB2,∴△ABD是直角三角形,∠ADB=90°,同理:△BCD是直角三角形,∠BDC=90°,∴∠ADC=180°,∴A、D、C三点共线,∴AC=2AD=2=BD,在△ABC和△DEB中,,∴△ABC≌△DEB(SSS),∴∠BAC=∠EDB,∵∠EDB+∠ADF=90°,∴∠BAD+∠ADF=90°,∴∠BFD=90°,∴DF⊥AB,∵AB=BC,BD⊥AC,∴BD平分∠ABC,∵DG⊥BC,∴DF=DG=2;故答案为:2.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)原式=++1﹣2×=++1﹣=;(2)原式=•+=+=,当时,原式=.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图①当PA⊥OD时,∵PA∥OC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)【分析】(1)按照题目所给作法,即可用尺规作出图;(2)根据所作图1,先利用圆心角、弧、弦关系定理推出∠AOP=∠BOQ,再证∠AOP=∠OPQ,由内错角相等即可证明PQ∥l;(3)原理一通过用尺规作出同位角构造平行线,原理二通过作三角形的中位线构造平行线,原理三通过作平行四边形构造平行线.【解答】解:(1)如图(2)证明:如图1,连接OQ,BQ在⊙O中,由作图知AP=BQ,∴∠AOP=∠BOQ∴∠AOP=又∵OP=OQ∴∠OPQ=∠OQP∴∠OPQ=∴∠AOP=∠OPQ∴PQ∥l;(3)如图19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为500 件,扇形统计图中D厂家对应的圆心角为90°;(2)抽查C厂家的合格零件为380 件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【分析】(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【分析】(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,∴⊙O的半径为.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列不等式求出a的值,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)≥12800,由(2)可知,8≤a≤10,故采购A种型号净水器8台,采购B种型号净水器22台;或采购A种型号净水器9台,采购B种型号净水器21台;或采购A种型号净水器10台,采购B种型号净水器20台;公司能实现利润12800元的目标.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是AM=CN.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)【分析】(1)结论:AM=CN.先证明△AOK≌△AOJ(ASA),推出OK=OJ,AK=CJ,∠AOK =∠AJO,再证明△EKM≌△GJN(ASA)即可解决问题.(2)过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.首先证明四边形QMRN是平行四边形,再证明QM=QN即可.(3)结论:∠MQN=∠AOE.理由三角形的外角的性质以及平行线的性质即可解决问题.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD=,则AJ=2,解直角三角形求出∠BOC的度数,结合图象即可解决问题.【解答】解:(1)结论:AM=CN.理由:如图2中,设AB交EG于K,CD交EG于J.∵四边形ABCD是矩形,四边形EFGH是矩形,∴AB∥CD,EF∥EG,OA=OC=OE=OG,∴∠MEK=∠JGN,∠OAK=∠OAJ,∵∠AOK=∠AOJ,∴△AOK≌△AOJ(ASA),∴OK=OJ,AK=CJ,∠AOK=∠AJO,∴EK=JG,∵∠EKM=∠AKO,∠GJN=∠CJO,∴∠EKM=∠GJN,∴△EKM≌△GJN(ASA),∴KM=JN,∴AM=AN.(2)证明:过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.由题可知:矩形ABCD≌矩形EFGH∴AD=EH,AB∥CD,EF∥HG∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS)∴MQ=NQ∴四边形QMRN为菱形.(3)结论:∠MQN=∠AOE.理由:如图3﹣1中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD=,则AJ=2,∵CD=2+,∴CJ=AJ=2,∴∠JCA=∠JAC,∵∠AJD=45°=∠JCA+∠JAC,∴∠ACJ=22.5°,∵OC=OD,∴∠OCD=∠ODC=22.5°,∴∠BOC=45°,观察图象可知,当点F与点C重合或点G与点D重合时,四边形QMRN的面积最大,最大值=2,∴∠AOE=45°或135°时,四边形QMRN面积最大为.23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.【分析】(1)利用待定系数法求二次函数的表达式;(2)先求出OB和AB的长,根据勾股定理的逆定理证明∠ABO=90°,由对称计算∠QCB =60°,利用特殊的三角函数列式可得BQ的长;(3)因为D在OB上,所以F分两种情况:i)当F在边OA上时,ii)当点F在AB上时,当F在边OA上时,分三种情况:①如图2,过D作DF⊥x轴,垂足为F,则E、F在OA上,②如图3,作辅助线,构建△OFD≌△EDF≌△FGE,③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,当点F在OB上时,过D作DF∥x轴,交AB于F,连接OF与DA,依次求出点E的坐标即可.ii)当点F在AB上时,分两种情况:画出图形可得结论.【解答】解:(1)将点A的坐标代入二次函数的解析式得:﹣×42+4b=0,解得b=2,∴二次函数的表达式为y=﹣x2+2x.(2)∵y=﹣x2+2x=﹣(x﹣2)2+2,∴B(2,2),抛物线的对称轴为x=2.如图1所示:由两点间的距离公式得:OB==2,BA==2.∵C是OB的中点,∴OC=BC=.∵△OB′C为等边三角形,∴∠OCB′=60°.又∵点B与点B′关于CQ对称,∴∠B′CQ=∠BCQ=60°.∵OA=4,OB=2,AB=2,∴OB2+AB2=OA2∴∠OBA=90°.在Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC=,∴tan60°=,∴BQ=CB=×=.(3)分两种情况:i)当F在边OA上时,①如图2,过D作DF⊥x轴,垂足为F,∵△DOF≌△DEF,且E在线段OA上,∴OF=FE,由(2)得:OB=2,∵点D在线段BO上,OD=2DB,∴OD=OB=,∵∠BOA=45°,∴cos45°=,∴OF=OD•cos45°==,则OE=2OF=,∴点E的坐标为(,0);②如图3,过D作DF⊥x轴于F,过D作DE∥x轴,交AB于E,连接EF,过E作EG⊥x轴于G,∴△BDE∽△BOA,∴=,∵OA=4,∴DE=,∵DE∥OA,∴∠OFD=∠FDE=90°,∵DE=OF=,DF=DF,∴△OFD≌△EDF,同理可得:△EDF≌△FGE,∴△OFD≌△EDF≌△FGE,∴OG=OF+FG=OF+DE=+=,EG=DF=OD•sin45°=,∴E的坐标为(,);③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,过B作BM⊥x轴于M,过E作EN⊥BM于N,由翻折的性质得:△DOF≌△DEF,∴OD=DE=,∵BD=OD=,∴在Rt△DBE中,由勾股定理得:BE==,则BN=NE=BE•cos45°=×=,OM+NE=2+,BM﹣BN=2﹣,∴点E的坐标为:(2+,2﹣);ii)当点F在AB上时,①过D作DF∥x轴,交AB于F,连接OF与DA,∵DF∥x轴,∴△BDF∽△BOA,∴,由抛物线的对称性得:OB=BA,∴BD=BF,则∠BDF=∠BFD,∠ODF=∠AFD,∴OD=OB﹣BD=BA﹣BF=AF,则△DOF≌△DAF,∴E和A重合,则点E的坐标为(4,0);②如图6,由①可知:当E与O重合时,△DOF与△DEF重合,此时点E(0,0);综上所述,点E的坐标为:(,0)或(,)或(2+,2﹣)或(4,0)或(0,0).中考一模数学试题及答案一、选择题(本大题共10小题,共30.0分)1.-6的倒数是()A. 6B.C.D.2.下列运算正确的是()A. B. C. D.3.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B.C. D.4.如图所示的几何体的主视图是()A.B.C.D.5.反比例函数y=的图象经过点(3,-2),下列各点在此图象上的是()A. B. C. D.6.不等式组的整数解的个数是()A. 6B. 5C. 4D. 37.分式方程=1的解是()A. B. C. D.8.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A. B. C. D.9.如图,点E是▱ABCD的边BC延长线上一点,连接AE交CD于点F,则下列结论中一定正确的是()A. B. C. D.10.甲、乙两人在笔直的公路上问起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时向t(分)之间的函数关系如图所示,下列说法中正确的是()A. 甲步行的速度为8米分B. 乙走完全程用了34分钟C. 乙用16分钟追上甲D. 乙到达终点时,甲离终点还有360米二、填空题(本大题共10小题,共30.0分)11.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列,行程最长,途经城市和国家最多的一趟专列全程长1300km,将13000用科学记数法表示应为______ 12.函数中,自变量x的取值范国是______.13.把多项式3x3-6x2+3x分解因式的结果是______.14.计算的结果是______.。
河南省新乡市2018年中考数学一模试卷(解析版)
2018年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)1. ﹣3相反数是()A. B. ﹣3 C. ﹣ D. 3【答案】D【解析】解:﹣3相反数是3.故选D.2. 下列四个图案中,是中心对称图形的是()A. B. C. D.【答案】C【解析】解:A是轴对称图形,故A错误;B是轴对称图形,故B错误;C是中心对称图形,故C正确;故选C.3. 由6个小正方体搭成的几何体如图①所示,它的主视图是图②,则它的②俯视图为()A. B. C. D.【答案】C【解析】解:从上面看,左边有3个正方形,右边有2个正方形.故选C.4. 移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为()A. 3.79×108B. 37.9×107C. 3.79×106D. 379×106【答案】A【解析】解:3.79亿=3.79×108.故选A.5. 如图,AB∥CD,点E在AB上,点F在CD上,EF⊥FH,FH与AB相交于点G,若∠CFE=40°,则∠EGF的度数为()A. 40°B. 50°C. 60°D. 70°【答案】B【解析】解:∵EF⊥FH,∴∠EFG=90°,∴∠EFC+∠DFG=90°.∵∠CFE=40°,∴∠DFG=50°.∵AB∥CD,∴∠EGF=∠DFG=50°.故选B.6. 下列计算正确的是()A. a2•a3=a6B. (a2)4=a6C. (2a2b)3=8a6b3D. 4a3b6÷2ab2=2a2b3【答案】C【解析】解:A.a2a3=a5,故原题计算错误;B.(a2)4=a8,故原题计算错误;C.(2a2b)3=8a6b3,故原题计算正确;D.4a3b6÷2ab2=2a2b4,故原题计算错误.故选C.7. 在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()A. 平均数是87B. 中位数是88C. 众数是85D. 方差是230【答案】C【解析】解:平均数=(75+85+91+85+95+85)÷6=86,故A错误;把6个数据从小到大排列为:75,85,85,85,91,95.中位数为(85+85)÷2=85,故B错误;这组数据中,85出现3次,次数最多,故众数为85.故C正确;方差= =,故D错误.故选C.8. 抛物线y=(x﹣1)2+3的顶点坐标是()A. (1,3)B. (﹣1,3)C. (﹣1,﹣3)D. (1,﹣3)【答案】A【解析】∵y=(x−1)²+3,∴顶点坐标为(1,3),故选A.9. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是()A. B. C. D.【答案】B【解析】从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是.故选B10. 如图,□ABCD中,AB=cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA 运动,到达点A为止.设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.【答案】A【解析】解:分三种情况讨论:(1)当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB=,∴AE=1,∴S=BP×AE=×t×1=t;(2)当2<t≤时,S==×2×1=1;(3)当<t≤时,S=AP×AE=×(-t)×1=(-t).故选A.点睛:本题考查了动点问题的函数图象.解题的关键是要分三种情况讨论.二、填空题(每小题3分,共15分)11. 计算:﹣|2﹣|=_____【答案】【解析】解:原式=2﹣2+=.故答案为:.12. 一次函数y=(k﹣2)x+3﹣k的图象经过第一、二、三象限,则k的取值范围是_____【答案】2<k<3【解析】解:由题意得:,解得:2<k<3.故答案为:2<k<3.13. 如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则=_____.【答案】【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,BC∥AD,且AD=BC.∵EF∥CD,∴四边形ABEF 是平行四边形,∴BE=AF.∵=2,∴==,设S△ECG=a,由BC∥AD知△ECG∽△F AG,则=()2,即=,则S△F AG=4a.由EF∥AB知△ECG∽△BCA,则=()2,即=,则S△BCA=9a,∴S四边形ABEG=S△BCA﹣S△ECG=8a,则==.故答案为:.点睛:本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握平行四边形的判定与性质及相似三角形的判定与性质.14. 如图所示,半圆O的直径AB=4,以点B为圆心,2为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____.【答案】【解析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为:.15. 菱形ABCD的边长是4,∠DAB=60°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN 沿MN折叠得到△A'MN,若△A'DC恰为等腰三角形,则AP的长为_____【答案】或.【解析】解:设AP=x,则A′P=AP=x.∵菱形ABCD的边长是4,∠DAB=60,∴菱形较短的对角线为4,较长的对角线AC=,∴A′C=.∵△A'DC为等腰三角形,∴分三种情况讨论:①A′C=DC,即=4,解得:x=;②DC=DA′.∵DC=4,∴DA′=4,此时A′与A重合,此种情况不成立;③DA′=CA′=.∵ABCD是菱形,∠DAB=60,∴∠DCA=30°,过A′作A′F⊥DC于F.∵DA′=CA′,∴DF=FC=2,∴A′F=,∴A′C=2 A′F=,∴=,解得:x=.综上所述:AP的长为或.故答案为:或.点睛:本题主要考查了菱形的性质以及等腰三角形的性质,分类讨论是解答本题的关键.三、解答题(本大题共8小题,满分75分)16. 先化简,再求值:()÷,其中a=+1,b=﹣1.【答案】1【解析】试题分析:根据分式的运算法则即可求出答案.试题解析:解:原式=﹣=﹣=当a=+1,b=﹣1时,原式==1.17. 2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表组别成绩分组(单位:分)频数频率A 80≤x<85 50 0.1B 85≤x<90 75C 90≤x<95 150 cD 95≤x≤100 a合计 b 1根据以上信息解答下列问题:(1)统计表中,a=_____,b=_____,c=_____;(2)扇形统计图中,m的值为_____,“C”所对应的圆心角的度数是_____;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?【答案】(1). 225(2). 500(3). 0.3(4). 45(5). 108°【解析】试题分析:(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360°乘C组的频率可得;(3)总人数乘以样本中D组频率可得.试题解析:解:(1)b=50÷0.1=500,a=500﹣(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=×100%=45%,∴m=45,“C”所对应的圆心角的度数是360°×0.3=108°.故答案为:45,108°;(3)5000×0.45=2250.答:估计成绩在95分及以上的学生大约有2250人.点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18. 如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.(1)求证:四边形ADCE是矩形;(2)①若AB=17,BC=16,则四边形ADCE的面积=_____.②若AB=10,则BC=_____时,四边形ADCE是正方形.【答案】(1). 120(2). 10【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE 是矩形.(2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.②当BC=时,DC=DB=.∵ADCE是矩形,∴OD=OC=5.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.19. 如图,在平面直角坐标系中,原点O是矩形OABC的一个顶点,点A、C都在坐标轴上,点B的坐标是(4,2),反比例函数y=与AB,BC分别交于点D,E.(1)求直线DE的解析式;(2)若点F为y轴上一点,△OEF和△ODE的面积相等,求点F的坐标.【答案】(1)直线DE的解析式为y=﹣x+3;(2)F的坐标为(0,3)或(0,﹣3).【解析】试题分析:(1)先求出D、E的坐标,然后用待定系数法即可求出直线的解析式;(2)先求出△ODE的面积,然后由△OEF和△ODE的面积相等,求出OF的长,即可得到结论.试题解析:解:(1)由B(4,2)知,点D的横坐标是4,点E的纵坐标是2,又∵点D,E都在的图象上,∴D(4,1),E(2,2).设直线DE的解析式为,把D(4,1),E(2,2)代入,得:解得:∴直线DE的解析式为.(2)∵D(4,1),E(2,2),B(4,2),∴S△ODE= S矩形OABC-S△OCE-S△BDE-S△OAD=3.∵点F为y轴上一点,S△OEF=S△ODE,∴S△OEF.∴OF=3.∴F的坐标为(0,3)或(0,-3).20. 如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A处的俯角为50°.求此山的高度AB.(参考数据:tan31°≈0.6,tan50°≈1.2)【答案】山的高度AB约为1.6千米.【解析】试题分析:设AE=x,则在Rt△ADE中,可表示出CE.在Rt△ACE中,可表示出AE,继而根据AB=BE-AE,可得出方程,解出即可得出答案.试题解析:解:由题意知CH=BE=4千米.设AE=x千米.Rt△ADE中,∵∠ADE =50°,∴,∴.Rt△ACE中,∵∠ACE =31°,∴,即.解得:x=2.4.∴AB=BE-AE=4-2.4=1.6(米).答:山的高度AB约为1.6千米.点睛:本题主要考查了仰角俯角的计算,正确理解图形中的两个直角三角形之间的联系是解题的关键.21. 某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【答案】(1)篮球每个50元,排球每个30元;(2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过800元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得.答:篮球每个50元,排球每个30元.(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)≤800.解得:m≤10.又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴只能取8、9、10.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球10个,排球10个,费用为800元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.22. 如图①,在△ABC与△ADE中,AB=AC,AD=AE,∠A是公共角.(1)BD与CE的数量关系是:BD_____CE;(2)把图①中的△ABC绕点A旋转一定的角度,得到如图②所示的图形,①求证:BD=CE;②BD与CE所在直线的夹角与∠DAE的数量关系是什么?说明你理由;(3)若AD=10,AB=6,把图①中的△ABC绕点A顺时针旋转α度(0°<α≤360°),直接写出BD长度的取值范围.【答案】=【解析】试题分析:(1)由线段的和差即可得到结论;(2)①由旋转的性质得到∠DAE=∠BAC,进而得到∠BAD=∠CAE.然后证明△ABD≌△ACE,再由全等三角形的对应边相等即可得到结论;②延长DB交CE于点F.由全等三角形对应角相等,得到∠ADB=∠AEC,再由三角形内角和定理即可得到结论;③当B在线段DA上时,DB最短,当B在DA的延长线上时,DB最长,由此即可得出结论.试题解析:解:(1)=.理由如下:∵AB=AC,AD=AE,∴AD- AB =AE–AC,∴BD=CE;(2)①由旋转的性质得到:∠DAE=∠BAC,∴∠DAE+∠BAE=∠BAC+∠BAE,即∠BAD=∠CAE.在△ABD 和△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE.②B D与CE所在直线的夹角与∠DAE的度数相等.延长DB交CE于点F.∵△ABD≌△ACE,∴∠ADB=∠AEC.又∵∠AOD=∠EOF,∴180°-∠ADB-∠AOD =180°-∠AEC-∠EOF,即∠DAE=∠DFE.③当B在线段DA上时,DB=DA-BA=4最短;当B在DA的延长线上时,DB=DA+BA=16最长.故4≤BD≤16.点睛:本题是旋转变换综合题.利用旋转的性质证明三角形全等是解答本题的关键.23. 如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【答案】(1)抛物线解析式为:y=﹣x2+x+2;(2)当t=2时,MN有最大值4;(3)D点坐标为(0,6),(0,﹣2)或(4,4).【解析】试题分析:(1)先由直线分别交y轴、x轴于点A、B这一条件求出点A、B的坐标,将所求坐标代入抛物线列出关于的值即可得到所求抛物线的解析式;(2)如图1,由题意可知点M的横坐标为t,根据点M在直线上,点N在(1)中所求抛物线上,可用含“t”的代数式表达出点M、N的坐标,结合第一象限中,点N在点M的上方,可用含“t”的代数式表达出MN的长,把所得式子配方,即可得到所求答案;..................试题解析:(1)∵分别交y轴、x轴于A.、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=−x²+bx+c得c=2,将x=4,y=0,c=2代入y=−x²+bx+c得0=−16+4b+2,解得b=,∴抛物线解析式为:,(2)如图1,由题意可知,直线MN即是直线,∵点M在直线上,点N在抛物线上,∴点M、N的坐标分别为、,∵在第一象限中,点N在点M的上方,∴MN=,∴当时,MN最长=4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A. M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如图2所示:(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a−2|=4,解得a1=6,a2=−2,从而D1为(0,6)或D2(0,−2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,由D1、D2、M、N的坐标可求得直线D1N的解析式为:y=−x+6,直线D2M的解析式为:y=x−2,由解得,∴D3的坐标为:(4,4),综上所述,所求的D点坐标为(0,6),(0,−2)或(4,4).点睛:解第3小题时,以A、M、N、D为顶点作平行四边形,则点D必在过△AMN的顶点A、M、N所作的平行于对边的直线上,这样结合MN∥y轴,点A在y轴上,即可画图找到D1和D2的位置,连接D1N、D2M相交,则交点就是D3,这样结合图形和已知条件就可求得所求D点的坐标.。
2018年新乡市中考数学试题与答案
2018年新乡市中考数学试题及答案(试卷满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1. -52的相反数是( ) A. -52 B. 52 C.-25 D. 252. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为( ) A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113. 某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我 4. 下列运算正确的是( ) A.(-x 2)3=-x5B.x 2+x 3=x 5C.x 3·x 4=x 7D.2x 3-x 3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为 ) A.B.C.D.7. 下列一元二次方程中,有两个不相等实数根的是( )A.x 2+6x +9=0 B.x 2=x C.x 2+3=2x D.(x -1)2+1=08. 现有4张卡片,其中3张卡片正面上的图案是“۞”,1张卡片正面上的图案是“ ”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是( ) A.169 B.43 C.83 D.21 9. 如图,已知AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.(5-1,2)B.(5,2)C.(3-5,-2)D.(5-2,2)10. 如图,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s)变化的关系图象,则a 的值为( )A.5B.2C.25D.25二、填空题(每小题3分,共15分) 11. 计算:-5-9=___ ____.12. 如图,直线AB ,C D 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x 524x 3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC 中,∠A CB =90°,AC =BC =2.将△ABC 绕AC 的中点D 逆时针旋转90°得到△A B C ''',其中点B 的运动路径为'BB ,则图中阴影部分的面积为______.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△'A BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交'A B所在直线于点F,连接'A E.当△'A EF为直角三角形时,AB的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)÷,其中x=.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(k>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F。
(原创)新乡市一中2017-2018学年下期初三年级第一次模拟考试数学试卷
2017--2018学年下期初三年级第一次模拟考试数学试卷时间:100分钟,总分:120分一、选择题(每小题3分,共30分)4.下列各式计算正确的是有实数根,则m的取值范围是C.m<1D.m>1−4 C.−6第7题图第9题图第10题图第13题图第14题图第15题图三、解答题(本大题共9小题,共75分)16.(8分数作为x的值代入求值.17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下:请结合图表完成下列各题:(1)①表中a 的值为 ; ②请把频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是 ;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,则小明与小强两名男同学能分在同一组的概率是 .18.(9分) 如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 延长与⊙O 相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2) 若⊙O 的半径为6,BC =8,求弦BD 的长.19.(9分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0.75)(−1,a ),反比例函数交双曲线xk y =于另一点C ,求△OBC 的面21.(10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;CD的长为.图1 图2=−x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,抛物线的对称轴为直线x=−1,且抛物线与x轴交于另一点BACE面积的最大值;=−1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成请直接写出点M的坐标;若不能,请说明理由.图1 图2。
2018年河南省中考数学一模试卷
2018年河南省中考数学一模试卷、选择题(每小题3分,共30 分) 1. (3分)下列各数中,最小的数是() A .- 3B .- (- 2) C. 0 D .-丄42. (3分)据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )6. (3分)关于x 的一元二次方程x 2- 2x+k+2=0有实数根,则k 的取值范围在数 轴上表示正确的是( )A .7. (3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动 其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(A .Z ABC=/ ADC, Z BAD=Z BCD B. AB=BC8. (3分)郑州地铁I 号线火车站站口分布如图所示,有 A , B , C, D , E 五个进A . 9.29X 104 5 * * * 9B . 9.29X 1010 C. 92.9 X 1010( )D . 9.29X 1011C.D .④c.-1 0C. AB=CD AD=BCD .Z DAB+Z BCD=1803. (3分)如图所示的几何体的主视图是出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好 选择从同一个口进出的概率是(AE,过点B 作BF 丄AE 交AE 于点F ,贝U BF 的长为(D .10. (3分)如图,动点P 从(0, 3)出发,沿箭头所示方向运动,每当碰到矩 形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时, 点P 的坐标为()A .(1,4)B .(5,0) C.(7,4) D .(8,3)二、填空题(每小题3分,共15分) 11. (3 分)■二 _____ .12. (3 分)方程 3X 2 - 5x+2=0 的一个根是 a ,则 6a 2- 10a+2= ____ .13. (3分)点A (X 1,y 1)、B (X 2,y 2)在二次函数yrx 2 -4x - 1的图象上,若当如图,在矩形 ABCD 中, D .AB=2, BC=3.若点E 是边CD 的中点,连接 B .9. (3 分)1v X1V2,3v X2V4 时,则y1 与y2的大小关系是y1 _________ y2.(用 \”、N”、“=填空)14. (3分)如图1,在R △ ABC中,/ ACB=90,点P以每秒2cm的速度从点A 出发,沿折线AC- CB运动,到点B停止.过点P作PD丄AB,垂足为D,PD 的长y (cm)与点P的运动时间x (秒)的函数图象如图2所示.当点P运动15. (3分)如图,在菱形ABCD中,ABV3,/ B=120°,点E是AD边上的一个动点(不与A,D重合),EF// AB交BC于点F,点G在CD上, DG=DE若厶EFG是等腰三角形,则DE的长为 _______B三、解答题(本大题共8小题,满分75分)16. (8 分)先化简,再求值:(x+2y) 2-(2y+x) (2y - x)- 2,其中x= -;+2,- 2.17. (9分)全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式 A B C D E人数12 30 m 54 9请你根据以上信息,回答下列问题:(1) ________________________ 接受问卷调查的共有__ 人,图表中的m= ,n= __________________________ ;(2) _____________________________________________ 统计图中,A类所对应的扇形圆心角的度数为_______________________________ ;(3) _____________________________________________ 根据调查结果,我市市民最喜爱的运动方式是_______________________________ ,不运动的市民所占的百分比是 _______ ;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有暴走团”活动, 若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗暴走团”的大约有多少人?第4页(共26页)18. (9分)如图,AB是。
河南省新乡市2018届数学中考模试试卷有解析
河南省新乡市2018届数学中考模试试卷一、选择题(每小题3分;共30分)1.一个数的绝对值等于它的相反数的数一定是()A. 负数B. 正数C. 负数或零D. 正数或零2.尽管受到国际金融危机的影响,但义乌市经济依然保持了平稳增长.据统计,截止到今年4月底,我市金融机构存款余额约为1 193亿元,用科学记数法应记为()A. 1.193×1010元B. 1.193×1011元C. 1.193×1012元D. 1.193×1013元3.一个不透明立方体的6个面上分别写有数字1、2、3、4、5、6,任意两对面上所写的两个数字之和为7.将这样的几个立方体按照相接触两个面上的数字之和为8,摆放成一个几何体,这个几何体的三视图如图所示,图中所标注的是部分面上所见的数字,则★所代表的数是()A. 1B. 2C. 3D. 44.函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是( )A. x<2B. x>2C. x<3D. x>35.下列说法中,错误的有().①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l的众数是2;③如果数据,,…,的平均数为,那么;④数据0,-1,l,-2,1的中位数是l.A. 4个B. 3个C. 2个D. 1个6.如图,AB是半圆O的直径,∠BAC=20°,D是弧AC上的点,则∠D是( )A. 120°B. 110°C. 100°D. 90°7.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是()A. ①②B. ①③C. ②③D. ①②③8.如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC的长为()A. 10B. 8C. 6D. 59.将抛物线先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A. B. C. D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有()A. 4个B. 3个C. 2个D. 1个二、填空题(每小题3分;共15分)11.计算:(1﹣)0﹣(﹣)﹣2=________.12.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是________ .13.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是________.14.当0≤x≤6时,二次函数y=x2﹣4x+3的最大值是________,最小值是________.15.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为 ________.三、解答题(共8小题;共55分)16.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.17.在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有________名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.18.问题背景如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,,于是.迁移应用(1)如图2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三点在同一直线上,连接BD.(ⅰ)求证:△ADB≌△AEC;(ⅱ)请直接写出线段AD,BD,CD之间的等量关系式.(2)如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE 并延长交BM于点F,连接CE,CF.(ⅰ)证明:△CEF是等边三角形;(ⅱ)若AE=5,CE=2,求BF的长.19.综合题(1)操作发现:如图①,在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD=________°;当∠BAP=α°(0<α<45°)时,则∠AFD=________;猜想线段DF,EF,AF之间的数量关系:DF﹣EF=________AF(填系数);(2)数学思考:如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD=________;线段DF,EF,AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;(3)类比探究:如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD=________°;请直接写出线段DF,EF,AF之间的数量关系:________.20.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车辆,B型车辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.21.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;22.已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD于点M、N(如图1).(1)求证:BM=DN;(2)如图2,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;(3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1:3,求的值.23如图,抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标.(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN⊥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt△COB相似时点P 的坐标.参考答案一、选择题1.C2. B3. C4. A5. B6. B7. D8. A9.B 10. B二、填空题11. -3 12.a>且a≠013.4:3 14.15;-1 15.或三、解答题16.解:原式= ÷ = • = ,由m 是方程x2+3x﹣1=0的根,得到m2+3m﹣1=0,即m2+3m=m(m+3)=1,则原式= .17.(1)50(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:(3)解:参加文明劝导的学生人数=900×0.2=180人.18.(1)证明:(ⅰ)如图,∵, ≌.∴ ,在和中,∵∴≌.(ⅱ)解:≌.拓展延伸(2)证明:(ⅰ)连接BE.如图3,∵E、C关于BM对称,∴设,则,.∵∴∴,又∵∴△CEF是等边三角形(ⅱ)解:如图3,过点B作BH⊥AF于H∵AE=5,EF=EC=2,∴FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴ ,∴.19.(1)45;;45(2)30(3)解:(90﹣);DF﹣EF=2sin α•AF20.(1)解:设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨则解得答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨(2)解:由题意可得3a+4b=31,b=∵a,b均为整数,∴有或或三种情况,故共有三种租车方案分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆21. (1)解:设二次函数的解析式为:,二次函数经过,,解得,(2)解:,D(-2,3),则一次函数图象在抛物线上方所对应的取值范围为或22.(1)证明:连接BD,则BD过点O.∵AD∥BC,∴∠OBM=∠ODN.又OB=OD,∠BOM=∠DON,∴△OBM≌△ODN.∴BM=DN(2)证明:∵矩形ABCD,∴AD∥BC,AD=BC.又BM=DN,∴AN=CM.∴四边形AMCN是平行四边形.由翻折得,AM=CM,∴四边形AMCN是菱形(3)解:∵又:=1:3∴DN︰CM=1︰3设DN=k,则CN=CM=3k.过N作NG⊥MC于点G,则CG=DN=k,MG=CM-CG=2k.NG=∴MN=∴23. (1)解:∵点A、B、C在二次函数图象上∴把x=0代入,得y=2把y=0代入,得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),C(0,2);(2)解:设直线BC的解析式为y=kx+b(k≠0),把B(4,0),C(0,2)代入,得,∴直线BC的解析式为∵OP=t∴P(t,0),M(t,﹣t+2),N(t,﹣ t2+ t+2),如图,∴S1=N1P1﹣M1P1=﹣ t2+ t+2﹣(﹣ t+2)=﹣ t2+2t(0<t<4),S2=M2P2﹣N2P2=﹣ t+2﹣(﹣ t2+ t+2)= t2﹣2t(﹣1<t<0),(3)解:如图,①若△OPN∽△OCB,当OP与OC是对应边时,则,即化简得:t2+t﹣4=0,解得:,(不合题意,舍去)②若△OPN∽△OBC,当OP与OB是对应边时,则,即化简得:t2﹣2t﹣4=0解得:t3=1+ ,t4=1﹣(不合题意,舍去)∴符合题意的点P的坐标为(,0)和(1+ ,0).。
2018年河南省新乡市中考一模数学试卷和答案PDF
D.
3. (3 分)由 6 个小正方体搭成的几何体如图①所示,它的主视图是图②,则 )
A.
B.
C.
D.
4. (3 分)移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支 付金额达 3.79 亿元,将数据 3.79 亿用科学记数法表示为( A.3.79×108 B.37.9×107 C.3.79×106 )
8. (3 分)抛物线 y=(x﹣1)2+3 的顶点坐标是( A. (1,3) B. (﹣1,3)
C. (﹣1,﹣3)
9. (3 分)有 4 张全新的扑克牌,其中黑桃、红桃各 2 张,它们的背面都一样, 将它们洗匀后,背面朝上放到桌面上,从中任意摸出 2 张牌,摸出的花色不 一样的概率是( A. ) B. C. D.
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**
2018 年河南省新乡市中考数学一模试卷
一、选择题(每小题 3 分,共 30 分) 1. (3 分)﹣3 相反数是( A. B.﹣3 ) C.﹣ ) D.3
2. (3 分)下列四个图案中,是中心对称图形的是(
A.
B.
C. 它的②俯视图为(
(2)把图①中的△ABC 绕点 A 旋转一定的角度,得到如图②所示的图形,① 求证:BD=CE;②BD 与 CE 所在直线的夹角与∠DAE 的数量关系是什么? 说明你理由; (3)若 AD=10,AB=6,把图①中的△ABC 绕点 A 顺时针旋转 α 度(0°<α ≤360°) ,直接写出 BD 长度的取值范围.
21. (10 分)某校计划购买篮球、排球共 20 个.购买 2 个篮球,3 个排球,共需 花费 190 元;购买 3 个篮球的费用与购买 5 个排球的费用相同. (1)篮球和排球的单价各是多少元? (2)若购买篮球不少于 8 个,所需费用总额不超过 800 元.请你求出满足要求 的所有购买方案,并直接写出其中最省钱的购买方案. 22. (10 分)如图①,在△ABC 与△ADE 中,AB=AC,AD=AE,∠A 是公共 角. (1)BD 与 CE 的数量关系是:BD CE;
2018年河南省中考数学一模试卷及答案
2018年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最小的数是()A. -3B. -(-2)C. 0D. -2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A. 9.29×109B. 9.29×1010C. 92.9×1010D. 9.29×10113.如图所示的几何体的主视图是()A.B.C.D.4.小明解方程-=1的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1-(x-2)=1①去括号,得1-x+2=1②合并同类项,得-x+3=1③移项,得-x=-2④系数化为1,得x=2⑤A. ①B. ②C. ③D. ④5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A. 180个,160个B. 170个,160个C. 170个,180个 D. 160个,200个6.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BCC. AB=CD,AD=BCD. ∠DAB+∠BCD=180°8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.9.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (7,4)D. (8,3)二、填空题(本大题共5小题,共15.0分)11.=______.12.方程3x2-5x+2=0的一个根是a,则6a2-10a+2=______.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2-4x-1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1______y2.(用“>”、“<”、“=”填空)14.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P 作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为______.15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x+2y)2-(2y+x)(2y-x)-2x2,其中x=+2,y=-2.四、解答题(本大题共7小题,共67.0分)17.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.(1)接受问卷调查的共有______人,图表中的m=______,n=______;(2)统计图中,A类所对应的扇形圆心角的度数为______;(3)根据调查结果,我市市民最喜爱的运动方式是______,不运动的市民所占的百分比是______;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?18.如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.19.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.如图,反比例y=的图象与一次函数y=kx-3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P 为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是____,位置关系是____.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN 面积的最大值.23.如图,抛物线y=-x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ 恰好为正方形,直接写出m的值.答案和解析1.【答案】A【解析】解:因为在数轴上-3在其他数的左边,所以-3最小;故选:A.应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.此题考负数的大小比较,应理解数字大的负数反而小.2.【答案】B【解析】【分析】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=10.【解答】解:929亿=92 900 000000=9.29×1010.故选B.3.【答案】D【解析】解:由图可知,主视图由一个矩形和三角形组成.故选:D.先细心观察原立体图形和长方体的位置关系,结合四个选项选出答案.本题考查了简单组合体的三视图,培养了学生的思考能力和对几何体三种视图的空间想象能力.4.【答案】A【解析】解:-=1去分母,得1-(x-2)=x,故①错误,故选:A.根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.本题考查解分式方程,解答本题的关键是明确解分式方程的方法.5.【答案】B【解析】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选:B.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【答案】C【解析】解:∵关于x的一元二次方程x2-2x+k+2=0有实数根,∴△=(-2)2-4(k+2)≥0,解得:k≤-1.故选C.根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再将其表示在数轴上即可得出结论.本题考查了根的判别式以及在数轴上表示不等式的解集,牢记“当△≥0时,方程有实数根”是解题的关键.7.【答案】D【解析】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.8.【答案】C【解析】5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.10.【答案】C【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.11.【答案】2【解析】解:∵22=4,∴=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.12.【答案】-2【解析】解:∵方程3x2-5x+2=0的一个根是a,∴3a2-5a+2=0,∴3a2-5a=-2,∴6a2-10a+2=2(3a2-5a)+2=-2×2+2=-2.故答案是:-2.根据一元二次方程的解的定义,将x=a代入方程3x2-5x+2=0,列出关于a的一元二次方程,通过变形求得3a2-5a的值后,将其整体代入所求的代数式并求值即可.此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【答案】<【解析】解:由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.【答案】2.4cm【解析】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7-3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7-2×5=4cm,∴PD=4×si n∠B=4×=2.4cm,故答案为2.4cm.由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.15.【答案】1或【解析】解:∵四边形ABCD是菱形,∠B=120°∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四边形ABFE是平行四边形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG为等腰三角形时,①当EF=EG时,EG=,如图1,过点D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,②GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,③当EF=FG时,∴∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为:1或.由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.16.【答案】解:原式=x2+4xy+4y2-(4y2-x2)-2x2=x2+4xy+4y2-4y2+x2-2x2=4xy,当x=+2,y=-2时,原式=4×(+2)×(-2)=4×(3-4)=-4.【解析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y 的值代入进行计算即可得解.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【答案】150;45;36;28.8°;散步;6%【解析】(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)解:=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【答案】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【解析】(1)连接OC,如图所示,由CD⊥AB,AE⊥CF,利用垂直的定义得到一对直角相等,再由CF为圆的切线,利用切线的性质得到CO⊥EF,可得出AE与OC平行,利用两直线平行内错角相等,等边对等角得到一对角相等,利用AAS得到三角形全等,利用全等三角形的对应边相等即可得证;(2)连接BC,在直角三角形ACD中,利用勾股定理求出AC的长,在直角三角形AEC中,利用锐角三角函数定义求出所求即可.此题考查了切线的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.19.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x-4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE 可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.20.【答案】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx-3,得4k-3=1,∴k=1,∴一次函数的解析式为y=x-3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,如图.当x=0时,y=-3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴-1=1-(n-3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【解析】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC 于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.21.【答案】解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.【解析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数22.【答案】解:(1)PM=PN;PM⊥PN(2)如图②中,设AE交BC于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.可知△PMN是等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【解析】【分析】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD 的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D 共线时,BD的最大值=BC+CD=6,由此即可解决问题.【解答】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O.∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∠AEC=∠BDC,∵∠EAC+∠AEC=90°,∴∠EAC+∠BDC=90°,∴∠AOD=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.故答案为PM=PN,PM⊥PN;(2)见答案;(3)见答案.23.【答案】解:(1)把点B(3,0),C(0,3)代入y=-x2+bx+c,得到,解得,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x-1+1+3=-(x-1)2+4,∴顶点D坐标(1,4).(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,-m2+2m+3),∴MG=|-m2+2m+3|,BG=3-m,∴tan∠MBA==,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=-或3(舍弃),∴M(-,),当点M在x轴下方时,=,解得m=-或m=3(舍弃),∴点M(-,-),综上所述,满足条件的点M坐标(-,)或(-,-);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,当-m2+2m+3=1-m时,解得m=,当-m2+2m+3=m-1时,解得m=,∴满足条件的m的值为或;【解析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA==,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题;本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
新乡市中考数学模拟试卷
新乡市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)(2018·肇源模拟) 实数a,b在数轴上的位置如图所示,下列结论错误的是()A . <B . 1<-a<bC . 1<<bD . -b<a<-12. (3分) (2017七上·章贡期末) 移动互联网已经全面进入人们的日常生活,截至2016年4月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A . 1.62×104B . 162×106C . 1.62×108D . 0.162×1093. (3分)(2016·巴中) 在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A .B .C .D .4. (3分)(2019·上海模拟) 在一组数据中的每项数据后加10,则该组数据的哪个数值不会发生变化()A . 标准差B . 平均数C . 中位数D . 众数5. (3分) (2018八下·宁波期中) 下列计算正确的是()A .B .C .D .6. (3分)下列一元二次方程中有两个不相等的实数根的方程是()A . (x﹣1)2=0B . x2+2x﹣19=0C . x2+4=0D . x2+x+l=07. (3分)如图,在数轴上表示实数的点可能是()。
A . 点PB . 点QC . 点MD . 点N8. (3分)(2019·长春模拟) 边长相等的正方形与正六边形按如图方式拼接在一起,则的度数为()A .B .C .D .9. (3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y =的图象上。
若点A的坐标为(-2,-2),则k的值为()A . 1B . -3C . 4D . 1或-310. (3分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A . 135°B . 120°C . 112.5°D . 67.5°二、填空题 (共7题;共28分)11. (4分)写出一个只含字母x的分式,满足x的取值范围是x≠2,所写的分式是________12. (4分)(2017·宜兴模拟) 分解因式:x2﹣25=________.13. (4分)(2016·浙江模拟) 如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,CD=________cm.(2)当∠CED由60°变为120°时,点A向左移动了________cm(结果精确到0.1cm)(参考数据≈1.73).14. (4分) (2016七上·兴化期中) 小明的身份证号码是321281************,他出生日期是________年________月________日.15. (4分)如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于________16. (4分)已知AB为⊙O的直径AC、AD为⊙O的弦,若AB=2AC=AD,则∠DBC的度数为________17. (4分)(2019·崇川模拟) 如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC 的对称点分别为M,N,则线段MN长的取值范围是________.三、解答题(一) (共3题;共18分)18. (6分)计算:(﹣2017)0+3﹣+2sin60°.19. (6分)(2016·盐城) 先化简,再求( + )× 的值,其中x=3.20. (6分)如图,是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆心(用尺规作图,保留作图痕迹,写出作法,不用证明).四、解答题(二) (共3题;共24分)21. (8.0分)(2018·遵义模拟) 近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?22. (8分)(2016·泰州) 如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.23. (8分)为了更好治理西太湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:A型B型价格(万元/台)a b处理污水量(吨/月)240180经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买4台B型设备少4万元.(1)求a、b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过47万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若该月要求处理西太湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.五、解答题(三) (共2题;共20分)24. (10.0分)(2014·宁波) 木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.25. (10.0分) (2019七下·武汉月考) 如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一、选择题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共28分)11-1、12-1、13-1、13-2、14-1、15-1、16-1、17-1、三、解答题(一) (共3题;共18分)18-1、19-1、20-1、四、解答题(二) (共3题;共24分)21-1、21-2、22-1、22-2、23-1、23-2、23-3、五、解答题(三) (共2题;共20分)24-1、24-2、24-3、25-1、25-2、25-3、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省新乡市中考数学一模试卷
一、选择题(每小题3分,共30分)
1.(3分)﹣3相反数是()
A.B.﹣3C.﹣D.3
2.(3分)下列四个图案中,是中心对称图形的是()
A.B.
C.D.
3.(3分)由6个小正方体搭成的几何体如图①所示,它的主视图是图②,则它的②俯视图为()
A.B.
C.D.
4.(3分)移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为()
A.3.79×108B.37.9×107C.3.79×106D.379×106
5.(3分)如图,AB∥CD,点E在AB上,点F在CD上,EF⊥FH,FH与AB相交于点G,若∠CFE=40°,则∠EGF的度数为()
A.40°B.50°C.60°D.70°
6.(3分)下列计算正确的是()
A.a2•a3=a6B.(a2)4=a6
C.(2a2b)3=8a6b3D.4a3b6÷2ab2=2a2b3
7.(3分)在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()
A.平均数是87B.中位数是88C.众数是85D.方差是230 8.(3分)抛物线y=(x﹣1)2+3的顶点坐标是()
A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)9.(3分)有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是()A.B.C.D.
10.(3分)如图,▱ABCD中,AB=cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止.设运动时间为t(s),△ABP 的面积为S(cm2),则S与t的大致图象是()
A.B.
C.D.
二、填空题(每小题3分,共15分)
11.(3分)计算:﹣|2﹣|=
12.(3分)一次函数y=(k﹣2)x+3﹣k的图象经过第一、二、三象限,则k的取值范围是13.(3分)如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则=.
14.(3分)如图所示,半圆O的直径AB=4,以点B为圆心,2为半径作弧,交半圆O 于点C,交直径AB于点D,则图中阴影部分的面积是.
15.(3分)菱形ABCD的边长是4,∠DAB=60°,点M、N分别在边AD、AB上,且MN ⊥AC,垂足为P,把△AMN沿MN折叠得到△A'MN,若△A'DC恰为等腰三角形,则AP 的长为
三、解答题(本大题共8小题,满分75分)
16.(8分)先化简,再求值:()÷,其中a=+1,b=﹣1.
17.(9分)2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.
调查结果统计表
组别成绩分组(单位:分)频数频率A80≤x<85500.1
B85≤x<9075
C90≤x<95150c
D95≤x≤100a
合计b1
根据以上信息解答下列问题:
(1)统计表中,a=,b=,c=;
(2)扇形统计图中,m的值为,“C”所对应的圆心角的度数是;
(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?
18.(9分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.
(1)求证:四边形ADCE是矩形;
(2)①若AB=17,BC=16,则四边形ADCE的面积=.
②若AB=10,则BC=时,四边形ADCE是正方形.
19.(9分)如图,在平面直角坐标系中,原点O是矩形OABC的一个顶点,点A、C都在坐标轴上,点B的坐标是(4,2),反比例函数y=与AB,BC分别交于点D,E.(1)求直线DE的解析式;
(2)若点F为y轴上一点,△OEF和△ODE的面积相等,求点F的坐标.
20.(9分)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A处的俯角为50°.求此山的高度AB.(参考数据:tan31°≈0.6,tan50°≈1.2)
21.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
22.(10分)如图①,在△ABC与△ADE中,AB=AC,AD=AE,∠A是公共角.
(1)BD与CE的数量关系是:BD CE;
(2)把图①中的△ABC绕点A旋转一定的角度,得到如图②所示的图形,①求证:BD=CE;②BD与CE所在直线的夹角与∠DAE的数量关系是什么?说明你理由;
(3)若AD=10,AB=6,把图①中的△ABC绕点A顺时针旋转α度(0°<α≤360°),直接写出BD长度的取值范围.
23.(11分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c 过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
2018年河南省新乡市中考数学一模试卷
参考答案
一、选择题(每小题3分,共30分)
1.D;2.C;3.C;4.A;5.B;6.C;7.C;8.A;9.B;10.A;
二、填空题(每小题3分,共15分)
11.;12.2<k<3;13.;14.﹣;15.或;
三、解答题(本大题共8小题,满分75分)
16.;17.225;500;0.3;45;108°;18.120;10;19.;20.;
21.;22.=;23.;。