各种机械传动效率对比表
各品牌减速机对比
48,60
LP+经济型精密行星齿轮箱
有轴输出型(LP+)与法兰输出型(LPB+),适用于周期工作(S5)与连续工作(S1)最大加速力矩T:10、5Nm-450Nm减速比:单级传动3,5,7,10 二级传动;15,16,20,25,30,35,50,70,100速比3,7,15,30只提供LP70,90,120有效率:单级传动>97% 二级传动>95%内置热胀自平衡技术回程间隙;标准间隙12-15arcmin 定制可以达到8-10arcmin
TK+法兰输出型得直角精密齿轮箱
采用双曲面齿轮技术,适用于间歇运动(S5)与连续运动(S1)。与同类产品相比较,输出力矩增大200%,转速提高100%。最大加速力矩T:20-640Nm。速比:单节传动3,4,5,7,10,二级传动12,16,20,25,28,35,40,50,70,100回程间隙:<5arcmin
SK+轴输出型直角双曲面精密齿轮箱
采用双曲面齿轮技术,适用于间歇运动(S5)与连续运动(S1)与同类产品相比较,输出扭矩增大到200%,转速提高100%。最大加速力矩T:20-640Nm速比:单级:3,4,5,7,10 二级12,16,20,25,28,35,40,50,70,100回程间隙;<5arcmin
TPK+法兰输出型得直角精密行星齿轮箱
最大加速力矩:80Nm-1600Nm一级传动:3,4,5,7,10, 二级传动:12、16、20、25、28、35、40、50、70、100三级传动:64、 84、 100、 125、 140、 175、 200、 250、 280、 350、 400、500、700、1000回程间隙;<4arcmin 定制<2arcmin有效率:二级为94% 内置热胀自平衡技术,阿尔法伺服电机专利安装法TPK+MA 三级传动:66,88,110,137、5,154,220,385 四级传动:330,462,577、5,770,1087,1540,2695,3850,5500TP+500MF 四级传动:180,240,300,375,420,500,560,600,700,800,875,1000
机械传动系统的效率分析与优化
机械传动系统的效率分析与优化随着工业化的发展,机械传动系统成为各行各业中不可或缺的一部分。
机械传动系统旨在将动力从发动机或电动机传递到机械装置中,从而实现各种工艺过程。
然而,在传输能量的过程中,机械传动系统会产生能量损失,降低系统的效率。
因此,对机械传动系统的效率进行分析和优化成为一项重要的工作。
一、机械传动系统的工作原理机械传动系统主要包括传动元件和传动装置。
传动元件通常由轴、轴承、联轴器和齿轮等组成,而传动装置则根据实际需求选择不同的传动方式,例如齿轮传动、带传动和链传动等。
通过传动元件和传动装置的协同作用,机械传动系统能够将输入的动力转化为输出的转矩或速度。
二、机械传动系统的能量损失尽管机械传动系统在实现动力传递的同时发挥着重要作用,但实际应用中难以避免出现能量损失。
主要的能量损失来源包括以下几个方面:1. 摩擦损失:由于传动元件的摩擦作用,能量会转化为热能而散失。
这种损失在轴承和齿轮齿面接触处尤为明显。
2. 机械损失:由于机械结构的刚性和松动等问题,导致机械传动系统内部发生偏差和振动。
这些偏差和振动会使能量发生损失。
3. 空气阻力:机械传动系统在高速运动时,会产生空气阻力,使得能量在传递过程中损失。
4. 传动装置效率:不同的传动装置具有不同的传递效率,例如,链传动的效率相对较低,而皮带传动的效率相对较高。
三、机械传动系统效率的评价指标为了评价机械传动系统的效率,我们需要引入一些评价指标。
常见的评价指标包括:传动效率、总效率和热效率等。
1. 传动效率:传动效率是指传输能量的有效比例,通常以百分比表示。
传动效率可以通过实际输出功率与输入功率的比值计算得出。
2. 总效率:总效率是指机械传动系统在运行过程中的总体能量转换效率。
它综合了机械传动系统内部的各种能量损失。
总效率可以通过实际输出功率与输入功率的比值计算得出。
3. 热效率:热效率是指在机械传动系统中通过摩擦损失产生的热能与输入功率之比。
热效率通常较低,是机械传动系统效率提升的一个重要方面。
汽车燃油消耗量的检测
二、底盘测功试验台的测功方法
1.确定测功项目 一般有以下几项: (1)发动机标定功率下驱动车轮的输出功率或 驱动力。 (2)发动机最大转矩转速下驱动车轮的输出功 率或驱动力。 (3)发动机全负荷选定车速下驱动车轮的输出 功率或驱动力。 (4)发动机部分负荷选定车速下驱动车轮的输 出功率或驱动力。
(2)测量开始前应将管路中的气体排净。测量 中若发现传感器出油管有气泡,应宣布数据作废, 重新测量。比较妥当的办法是在进口处串接气体 分离器,以保证测量精度。气体分离器的简图如 图示。
当混有气体的燃油进入分离器浮子时, 气体会迫使浮子室内的油平面下降,针 阀打开,气体排出进入大气,从出油管 进入传感器的燃油便没有气体了,使测 量精度提高。
一、车用油接在燃油供给系管路上. 对于汽油机: 采用无回油方式的汽油泵,则把油耗计传感 器直接串联在发动机油路中的任何一个部位 皆可。 采用回油方式的汽油泵,则应把油耗计传感器 串联在汽油泵之后和化油器之间。
对于柴油机, 采用图所示的连接方法。
该仪器还设臵了专用试验功能,可自 动完成国家标准规定的等速行驶耗油量测 量和多工况耗油量测量。手动完成百分里 耗油量测量等,能省去标杆和指示人员。 测量中采用哪种方式,可通过按键选择。 测量结束后,从汽车上拆下油耗计, 将传感器内的油液排净,并注入经过加热 蒸发过水分的润滑油妥为保管。
车用油耗计使用一段时间后,由于传感器 技术状况变化,测量精度下降,因此需定 期重新标定油耗计系数。 通常的作法是先测定传感器的实际排油量, 再与计量显示仪表的指示量比较,求出新 的标定系数,则仪器的指示误差通过确定 新的标定系数而得到校正。
一、底盘测功试验台的基本结构 滚筒式测功试验台由滚筒,功率吸收装 臵,测量装臵和辅助装臵四部分组成。 底盘测功试验台的滚筒相当于连续移 动的路面,被测车辆的车轮在其上滚动。 该种试验台有单滚筒和双滚筒等形式。
东北大学机械课程设计ZDD-2
一、设计任务书(1) 设计题目 :设计胶带输送机的传动装置 (2) 工作条件(3) 技术数据二、电动机的选择计算(1)选择电动机系列根据工作要求及工作条件应选用三相异步电动机, 封闭式结构,电压380伏,Y 系列电动机。
(2)滚筒转动所需要的有效功率kw FV p w 25.210005.29001000=⨯==根据表2-11-1,确定各部分的效率:V 带传动效率 η1 =0.95 一对滚动球轴承效率 η2 =0.99闭式齿轮的传动效率 η3 =0.97 弹性联轴器效率 η4 =0.99 滑动轴承传动效率 η5 =0.97 传动滚筒效率 η6=0.96则总的传动总效率η = η1×η2×η2 ×η3×η4×η5×η6= 0.95×0.99×0.99×0.97×0.99×0.97×0.96 = 0.8326(3)电机的转速min /4.1194.05.26060r D v n w =⨯⨯==ππ 所需的电动机的功率kw p p w r 70.28326.025.2===η 现以同步转速为Y100L2-4型(1500r/min )及Y132S-6型 (1000r/min )两种方案比较,传动比98.114.119143001===w n n i ,04.84.11996002===w n n i ; 由表2-19-1查得电动机数据,比较两种方案,为使传动装置结构紧凑,同时满足 i 闭=3~5,带传动i=2~4即选电动机Y132S —6型 ,同步 转速1000r/min 。
Y132S —6型 同时,由表2-19-2查得其主要性能数据列于下表: 三、传动装置的运动及动力参数计算(1)分配传动比总传动比04.80==wn n i ;由表2-11-1得,V 带传动的 传动比i 01= 2.5,则齿轮传动的传动比为:i12=i/i01=8.04/2.5=3.22此分配的传动比只是初步的,实际传动比的准确值要在传动零件的参数和尺寸确定后才能确定。
机械传动效率表
轴承的精度和ቤተ መጻሕፍቲ ባይዱ滑
轴承精度:直接 影响机械传动的 平稳性和效率, 高精度轴承能够 有效减少摩擦阻 力,提高传动效
率。
润滑:良好的润滑 可以减少轴承摩擦, 降低磨损,从而提 高机械传动的效率。 不同的润滑方式对 传动效率的影响也
不同。
传动轴的刚度和平衡
刚度:传动轴的刚度越大,抵抗变形的能力越强,传动效率越高。 平衡:传动轴的平衡性越好,转动时的振动越小,传动效率越高。 材料:选择高强度、高刚度的材料可以提升传动轴的性能,从而提高传动效率。 加工精度:传动轴的加工精度越高,其装配精度越高,传动效率也越高。
机械传动效率表 的局限性
实验条件和实际工况的差异
实验条件下的机械 传动效率通常是在 理想条件下测量的, 而实际工况中存在 许多不确定因素, 如温度、湿度、负 载变化等。
实验条件下通常使 用标准化的测试设 备和方法,而在实 际工况中,机械传 动的效率会受到设 备老化、磨损等因 素的影响。
实验条件下的机 械传动效率通常 只考虑单一因素, 而实际工况中需 要考虑多个因素 的综合影响,如 摩擦、润滑等。
感谢您的观看
汇报人:XX
根据负载大小 和速度选择合 适的传动方式, 以满足机械传 动的效率要求。
根据工作环境 选择合适的传 动方式,如防 水、防尘、耐
高温等。
根据经济性选 择合适的传动 方式,以降低 机械制造成本。
优化传动装置的设计
提高机械传动效率
减少能量损失
降低机械振动和噪声
延长机械使用寿命
提高传动装置的可靠性
减少机械故障:通过使用机械传动效率表,可以及时发现并解决潜在的机械故障,从而提高 传动装置的可靠性。
机械传动效率表能够指导工程师选择更高效的传动装置,从而降低能耗。通过对比不同传动装置的 效率,工程师可以选择最合适的设备,以达到节能减排的目的。
机械原理5机械效率与自锁
一、机械的效率
机械在稳定运转阶段恒有: Wd= Wr+Wf η =Wr / Wd =(Wd-Wf) /Wd =1-Wf /Wd
比值Wr / Wd反映了驱动功的有效利用程度, 称为机械效率。
用功率表示:η =Nr / Nd =(Nd-Nf) /Nd
=1-Nf /Nd
分析:η 总是小于 1,当Wf 增加时将导致η 下降。
以上为效率计算方法,工程上更多地是用实验法
测定η ,表5-1列出由实验所得简单传动机构和运
动副的机械效率(P69-P70)。
表5-1 简单传动机械和运动副的效率
名称
传动形式
效率值
备注
圆柱齿 轮传动
6~7级精度齿轮传动
8级精度齿轮传动 9级精度齿轮传动 切制齿、开式齿轮传动
铸造齿、开式齿轮传动
6~7级精度齿轮传动
拧紧时:
M
d2 2
Gtg(
v )
理想机械: M0=(d2 G tgα) / 2 η=M0 / M =tgα/tg(α+φv )
拧松时,驱动力为G,M’为阻力矩,则有:
实际驱动力:
G=2M’/d2 tg(α-φv )
理想驱动力: ∴
G0=2M’/d2 tgα η’=G0/G =tg(α-φv ) / tgα
良好跑合、稀油润滑 稀油润滑 干油润滑
0.40~0.45 0.70~0.75
0.75~0.82 0.80~0.92 0.85~0.95
润滑良好
名称 带传动
链传动 摩擦轮
传动 滑动轴承 滚动轴承
螺旋传动
续表5-1 简单传动机械和运动副的效率
传动形式
效率值
备注
常用机械传动及摩擦副的效率概略值
0.96
卷绳轮
0.95
加工齿的开式齿轮传动(脂润滑)
0.94~0.96
联
轴
器
浮动联轴器(十字联轴器等)
0.97~0.99
铸造齿的开式齿轮传动
0.90~0.93
齿式联轴器
0.99
圆锥
齿轮
传动
很好跑合的6级和7级精度的齿轮传动(油润滑)
0.97~0.98
弹性联轴器
0.99~0.995
8级精度的齿轮传动(油润滑)
0.94~0.97
万向联轴器(a≤3°)
0.97~0.98
加工齿的开式齿轮传动(脂润滑)
0.92~0.95
万向联轴器(a≤3°)
0.95~0.97
铸造齿的开式齿轮传动
0.88~0.92
滑动
轴承
润滑不良
0.94(一对)
蜗杆
传动
自锁蜗杆
油
润
滑
0 40~0.45
润滑正常
0.97(一对)
滚子链
0.96
无级变速器
0.92~0.95
齿形链
0.97
摆线针轮减速器
0.90~0.97
复滑
轮组
滑动轴承(i=2~6)
0.92~0.98
丝杠
传动
滑动丝杠
0.30~0.60
滚ቤተ መጻሕፍቲ ባይዱ轴承(i=2~6)
0.95~0.99
滚动丝杠
0.85~0.95
单头蜗杆
0.70~0.75
润滑特好(压力润滑)
0.98(一对)
双头蜗杆
0.75~0.82
液体摩擦
0.99(一对)
双柱机械式汽车举升机设计说明书
摘要双柱机械式汽车举升机通过支撑汽车底盘或车身的某一部分,是使汽车升降的设备。
汽车举升机在维修保养中发挥至关重要的作用,无论是整车大修还是小修保养,都离不开他。
机械式汽车举升机作为整个汽车举升机中的一员,他有着其他举升机不具有的优势,例如它的工作范围广,可以维修高顶棚车辆,工作占用空间小等。
本文较全面的介绍了举升机的种类,在确定所要设计的方案之后,针对举升机的结构及特点要求进行了设计与说明。
具体说,涉及原动机分析选择,带传动分析设计,螺旋传动分析设计,导轨分析选择,支撑悬臂应力校核,锁紧机构的选择。
本课题所设计的是双柱机械式汽车举升机。
关键字:螺旋传动;带传动;汽车举升机;弯曲应力ABSTRACTTwo-sided mechanical automobile lift machine is equipment to make the car lifting by supporting a certain part of the automobile chassis or body. Automobile lift machine play a crucial role in maintenance of both the vehicle overhaul and minor repair and maintenance, which cannot be replaced. Mechanical lifters is a member of the car lifting machine family, it has advantages that other lifting machine does not have, such as its work scope is wide, being capable of repairing vehicles with high ceiling, work space is small, etc. This paper comprehensively introduces the classification of the lifting machine and design the lift and make illustration based on the structure and characteristics of the lifting machine after deciding design scheme. Specifically, the paper involves the analysis of motor, belt transmission, screw transmission and guide rail, stress checking of cantilever and the choice of the locking mechanism. This topic is a design of two-sided mechanical automobile lift machine. Keywords: screw transmission; belt transmission; automobile lift; bending stress目录第一章绪论 (1)1.1 汽车举升机简介及发展概况 (1)1.2 汽车举升机分类 (2)第二章举升机设计任务和总体方案设计 (5)2.1 举升机设计任务 (5)2.2 举升机总体方案设计 (5)2.2.1 拟定设计方案 (5)2.2.2 确定总体设计方案 (6)第三章原动机分析选择 (9)3.1原动机的计算选择 (9)3.1.1 选择原动机类型和结构 (9)3.1.2原动机转速选择及功率计算 (9)第四章带传动分析设计 (10)4.1 带传动简介及类型选择 (10)4.2 带传动设计计算 (10)4.2.1 带传动设计初始条件 (10)4.2.2 带传动主要失效形式和设计依据 (11)4.2.3 带传动设计计算 (11)4.2.4 带轮结构设计 (12)第五章举升机构分析设计 (14)5.1 举升机构的分析选择 (14)5.2 滑动螺旋副的设计计算 (16)5.2.1 材料的选择 (16)5.2.2 耐磨性 (16)5.2.3 验算自锁 (17)5.2.4 螺杆强度:校核当量应力 (18)5.2.5 螺纹牙强度 (18)5.2.6 螺杆的稳定性 (18)5.2.7 横向振动-验算临界转速 (19)5.2.8 驱动转矩和效率 (19)第六章支撑机构结构分析设计 (20)6.1 支撑机构结构设计 (20)6.2 支撑机构应力校核 (21)6.2.1 校核弯曲切应力 (21)6.2.2 校核弯曲正应力 (22)第七章导轨结构分析设计 (24)7.1 导轨类型分析选择 (24)7.2 直线运动系统载荷计算 (25)7.3 滚动直线导轨副寿命计算 (26)7.3.1 寿命计算的基本公式 (26)7.3.2 滚动导轨副的寿命计算及选用规格 (27)第八章锁紧机构分析设计 (30)8.1 锁紧机构的必要性 (30)8.2 锁紧机构原理分析 (30)8.3 锁紧机构的选择 (32)8.4 锁紧机构的校核 (33)第九章螺栓连接件的校核 (35)9.1 升降台与剖分式螺母套的螺纹校核 (35)9.2 箱体与地基的螺纹校核 (36)第十章结论 (39)参考文献 (40)致谢 (41)第一章绪论1.1 汽车举升机简介及发展概况汽车举升机在汽车保养和维修行业中占有重要地位。
机械传动效率
机械传动效率时间:08-11-28序号: 1传动类别: 圆柱齿轮传动传动型式: 很好跑合的6级精度和7级精度齿轮传动(稀油润滑)传动效率: 0.98~0.99序号: 2传动类别: 圆柱齿轮传动传动型式: 8级精度的一般齿轮传动(稀油润滑)传动效率: 0.97序号: 3传动类别: 圆柱齿轮传动传动型式: 9级精度的齿轮传动(稀油润滑)传动效率: 0.96序号: 4传动类别: 圆柱齿轮传动传动型式: 加工齿的开式齿轮传动(干油润滑)传动效率: 0.94~0.96序号: 5传动类别: 圆柱齿轮传动传动型式: 铸造齿的开式齿轮传动传动效率: 0.90~0.93序号: 6传动类别: 圆锥齿轮传动传动型式: 很好跑合的6级精度和7级精度齿轮传动(稀油润滑)传动效率: 0.97~0.98序号: 7传动类别: 圆锥齿轮传动传动型式: 8级精度的一般齿轮传动(稀油润滑)传动效率: 0.94~0.97序号: 8传动类别: 圆锥齿轮传动传动型式: 加工齿的开式齿轮传动(干油润滑)传动效率: 0.92~0.95序号: 9传动类别: 圆锥齿轮传动传动型式: 铸造齿的开式齿轮传动传动效率: 0.88~0.92序号: 10传动类别: 蜗杆传动传动型式: 自锁蜗杆传动效率: 0.4~0.45序号: 11传动类别: 蜗杆传动传动型式: 单头蜗杆传动效率: 0.7~0.75序号: 12传动类别: 蜗杆传动传动型式: 双头蜗杆传动效率: 0.75~0.82序号: 13传动类别: 蜗杆传动传动型式: 三头和四头蜗杆传动效率: 0.8~0.92序号: 14传动类别: 蜗杆传动传动型式: 圆弧面蜗杆传动传动效率: 0.85~0.95序号: 15传动类别: 带传动传动型式: 平带无压紧轮的开式传动传动效率: 0.98序号: 16传动类别: 带传动传动型式: 平带有压紧轮的开式传动传动效率: 0.97序号: 17传动类别: 带传动传动型式: 平带交叉传动传动效率: 0.9序号: 18传动类别: 带传动传动型式: V带传动传动效率: 0.96序号: 19传动类别: 带传动传动型式: 同步齿形带传动传动效率: 0.96~0.98序号: 20传动类别: 链传动传动型式: 焊接链传动效率: 0.93序号: 21传动类别: 链传动传动型式: 片式关节链传动效率: 0.95序号: 22传动类别: 链传动传动型式: 滚子链传动效率: 0.96序号: 23传动类别: 链传动传动型式: 无声链传动效率: 0.97序号: 24传动类别: 丝杠传动传动型式: 滑动丝杠传动效率: 0.3~0.6序号: 25传动类别: 丝杠传动传动型式: 滚动丝杠传动效率: 0.85~0.95序号: 26传动类别: 绞车卷筒传动型式:传动效率: 0.94~0.97序号: 27传动类别:滑动轴承传动型式: 润滑不良传动效率: 0.94序号: 28传动类别: 滑动轴承传动型式: 润滑正常传动效率: 0.97序号: 29传动类别: 滑动轴承传动型式: 润滑特好(压力润滑)传动效率: 0.98序号: 30传动类别: 滑动轴承传动型式: 液体摩擦传动效率: 0.99序号: 31传动类别: 滚动轴承传动型式: 球轴承(稀油润滑)传动效率: 0.99序号: 32传动类别: 滚动轴承传动型式: 滚子轴承(稀油润滑)传动效率: 0.98序号: 33传动类别: 摩擦传动传动型式: 平摩擦传动传动效率: 0.85~0.92序号: 34传动类别: 摩擦传动传动型式: 槽摩擦传动传动效率: 0.88~0.90序号: 35传动类别: 摩擦传动传动型式: 卷绳轮传动效率: 0.95序号: 36传动类别: 联轴器传动型式: 浮动联轴器传动效率: 0.97~0.99序号: 37传动类别: 联轴器传动型式: 齿轮联轴器传动效率: 0.99序号: 38传动类别: 联轴器传动型式: 弹性联轴器传动效率: 0.99~0.995序号: 39传动类别: 联轴器传动型式:; 万向联轴器(α≤3°)传动效率: 0.97~0.98序号: 40传动类别: 联轴器传动型式: 万向联轴器(α>3°)传动效率: 0.95~0.97序号: 41传动类别: 联轴器传动型式: 梅花接轴传动效率: 0.97~0.98序号: 42传动类别: 联轴器传动型式: 液力联轴器(在设计点)传动效率: 0.95~0.98序号: 43传动类别: 复滑轮组传动型式: 滑动轴承(i=2~6)传动效率: 0.98~0.90序号: 44传动类别: 复滑轮组传动型式: 滚动轴承(i=2~6)传动效率: 0.99~0.95序号: 45传动类别: 减(变)速器传动型式: 单级圆柱齿轮减速器传动效率: 0.97~0.98序号: 46传动类别: 减(变)速器传动型式: 双级圆柱齿轮减速器传动效率: 0.95~0.96序号: 47传动类别: 减(变)速器传动型式: 单级行星圆柱齿轮减速器传动效率: 0.95~0.96序号: 48传动类别: 减(变)速器传动型式: 单级行星摆线针轮减速器传动效率: 0.90~0.97序号: 49传动类别: 减(变)速器传动型式: 单级圆锥齿轮减速器传动效率: 0.95~0.96序号: 50传动类别: 减(变)速器传动型式: 双级圆锥-圆柱齿轮减速器传动效率: 0.94~0.95序号: 51传动类别: 减(变)速器传动型式: 无级变速器传动效率: 0.92~0.95序号: 52传动类别: 减(变)速器传动型式: 轧机人字齿轮座(滑动轴承)传动效率: 0.93~0.95序号: 53传动类别: 减(变)速器传动型式: 轧机人字齿轮座(滚动轴承)传动效率: 0.94~0.96序号: 54传动类别: 减(变)速器传动型式: 轧机主减速器(包括主联轴器和电机联轴器)传动效率: 0.93~0.96。
常见机械传动效率
8级精度的一般齿轮传动(稀油润滑)
0.94-0.97
加工齿的开式齿轮传动(干油润滑)
0.92-0.95
铸造齿的开式齿轮传动
0.88-0.92
蜗杆传动
自锁蜗杆
0.4-0.45
单头蜗杆
0.7-0.75
双头蜗杆
0.75-0.82
三头和四头蜗杆
0.8-0.92
圆弧面蜗杆传动
0.85-0.95
单级行星圆柱齿轮减速器
0.95-0.96
单级行星摆线针轮减速器
0.90-0.97
单级圆锥齿轮减速器
0.95-0.96
双级圆锥-圆柱齿轮减速器
0Hale Waihona Puke 94-0.95无级变速器0.92-0.95
轧机人字齿轮座(滑动轴承)
0.93-0.95
轧机人字齿轮座(滚动轴承)
0.94-0.96
轧机主减速器(主联轴器和电机联轴器)
0.93-0.96
带传动
平带无压紧轮的开式传动
0.98
平带有压紧轮的开式传动
0.97
平带交叉传动
0.90
V带传动
0.96
同步齿形带传动
0.96-0.98
链传动
焊接链
0.93
片式关节链
0.95
滚子链
0.96
齿形链
0.97
丝杠传动
滑动丝杠
0.3-0.6
滚动丝杠
0.85-0.95
机械传动效率
类别
传动类型
传动效率
绞车卷筒
0.94-0.97
类别
传动形式
传动效率
圆柱齿轮传动
很好跑合的6级精度和7级精度齿轮传动(稀油润滑)
机械传动效率
机械传动效率表 类别 传动模式 效率 很好跑和的6级精度和7级精度(稀油润滑) 0.98-0.99 8级精度的一般齿轮传动(稀油润滑) 0.97 9级精度的齿轮传动(稀油润滑) 0.96 加工齿的开式齿轮传动(干油润滑) 0.94-0.96 铸造齿的开式齿轮传动 0.90-0.93 很好跑和的6级精度和7级精度(稀油润滑) 0.97-0.98 8级精度的一般齿轮传动(稀油润滑) 0.94-0.97 加工齿的开式齿轮传动(干油润滑) 0.92-0.95 铸造齿的开式齿轮传动 0.88-0.92 自锁蜗杆 0.4-0.45 单头蜗杆 0.7-0.75 双头蜗杆 0.75-0.82 三头和四头蜗杆 0.8-0.92 圆弧面蜗杆传动 0.85-0.95 平带无压紧轮的开始传动 0.98 平带有压紧轮的开始传动 0.97 平带交叉传动 0.9 V带传动 0.96 同步齿形带传动 0.96-0.98 焊接链 0.93 片式关节链 0.95 滚子链 0.96 无声链 0.97 滑动丝杆 0.3-0.6 滚动丝杆 0.85-0.95 0.94-0.97 润滑不良 0.94 润滑正常 0.97 润滑很好(压力润滑) 0.98 液体摩擦 0.99 球轴承(稀油润滑) 0.99 棍子轴承(稀油润滑) 0.98 平摩擦传动 0.85-0.92 槽摩擦传动 0.88-0.90 卷绳轮 0.95 浮动联轴器 0.97-0.99 齿轮联轴器 0.99 弹性联轴器 0.99-0.995 万向联轴器(α ≤3°) 0.97-0.98 万向联轴器(α >3°) 0.95-0.97 梅花接轴 0.97-0.98 液力联轴器 0.95-0.98 滑动轴承(i=2-6) 0.98-0.90 滚动轴承(i=2-6) 0.99-0.95 单级圆柱齿轮减速器 0.97-0.98 双击圆柱齿轮减速器 0.95-0.96 单级行星齿轮减速器 0.95-0.96 单级行星摆线齿轮减速器 0.90-0.97 单级圆锥齿轮减速器 0.95-0.96 双极圆锥-圆柱齿轮减速器 0.94-0.95 无级变速器 0.92-0.95
传动方案效率公式
传动方案效率公式引言传动方案是指在机械系统中用于传递动力和运动的装置或结构。
在设计和选择传动方案时,通常需要考虑传动效率。
传动效率是指输入功率和输出功率之比,用来衡量传动方案能否高效地传递能量。
在本文中,将介绍传动方案效率的计算方法和相关公式。
传动效率的计算传动效率的计算方法依赖于传动方案的特点和参数。
常见的传动方案包括齿轮传动、皮带传动、链条传动等。
齿轮传动效率计算齿轮传动是一种常见的机械传动方式,其效率计算可以根据以下公式进行:Efficiency = (Output power / Input power) × 100%其中,Output power为输出功率,Input power为输入功率。
通过测量输出和输入功率,可以计算传动效率的百分比。
皮带传动效率计算皮带传动是一种常用的传动方式,适用于长距离传递动力的场景。
其效率计算可以根据以下公式进行:Efficiency = (Output power / Input power) × 100%与齿轮传动类似,皮带传动的效率也是通过测量输出和输入功率来计算的。
链条传动效率计算链条传动是一种具有高效率和大扭矩传递能力的机械传动方式。
其效率计算可以根据以下公式进行:Efficiency = (Output power / Input power) × 100%链条传动效率的计算方法与齿轮传动和皮带传动类似。
影响传动效率的因素传动效率受多种因素的影响,包括传动装置的摩擦损失、传动方式的几何特性、传动材料的选择等。
摩擦损失摩擦损失是一种常见的能量损失形式,存在于传动装置中的接触面之间。
减小摩擦损失可以提高传动效率。
常见减小摩擦损失的方法包括使用润滑剂、改善接触面的光洁度等。
几何特性传动方式的几何特性也会影响传动效率。
例如,齿轮传动中齿轮的齿形和传动比会影响传动效率。
选择合适的齿形和传动比可以提高传动效率。
材料选择传动材料的选择也会对传动效率产生影响。
各种机械传动效率对比表
减(变)速器
单级圆柱齿轮减速器
0.97~0。98
45
减(变)速器
双级圆柱齿轮减速器
0。95~0。96
46
减(变)速器
单级行星圆柱齿轮减速器
0.95~0.96
47
减(变)速器
单级行星摆线针轮减速器
0。90~0。97
48
减(变)速器
单级圆锥齿轮减速器
0。95~0。96
49
减(变)速器
双级圆锥—圆柱齿轮减速器
0。99~0.995
38
联轴器
万向联轴器(α≤3°)
0。97~0.98
39
联轴器
万向联轴器(α〉3°)
0.95~0.97
40
联轴器
梅花接轴
0.97~0.98
41
联轴器
液力联轴器(在设计点)
0。95~0.98
42
复滑轮组
滑动轴承(I=2~6)
0.98~0.9043源自复滑轮组滚动轴承(I=2~6)
0。99~0。95
18
带传动
V带传动
0。96
19
链传动
焊接链
0.93
20
链传动
片式关节链
0。95
21
链传动
滚子链
0。96
22
链传动
无声链
0.97
23
丝杠传动
滑动丝杠
0。3~0。6
24
丝杠传动
滚动丝杠
0。85~0.95
25
绞车卷筒
0。94~0.97
26
滑动轴承
润滑不良
0.94
27
滑动轴承
润滑正常
0。97
机械效率的所有公式
机械效率的所有公式
机械效率是指机械系统或设备在能量转换过程中的实际输
出功率与输入功率之间的比值。
以下是几种常见的机械效率公式:
1.机械效率(η):
η = (输出功率 / 输入功率) × 100%
2.机械损失(P_loss):
P_loss = 输入功率 - 输出功率
3.传动效率(η_transmission):
η_transmission = (输出功率 / 输入功率) × 100%
4.电机效率(η_motor):
η_motor = (输出功率 / 输入功率) × 100%
需要注意的是,具体的机械效率公式可能会依赖于特定的机械系统或设备,并且不同类型的机械系统可能有不同的效率
计算方法。
此外,这些公式假设没有其他能量损耗或阻碍因素存在,所以在实际应用中还需要考虑各种额外因素和修正。
伞齿轮和斜齿轮传动效率
伞齿轮和斜齿轮传动效率齿轮传动作为一种常见的机械传动装置,广泛应用于各个领域。
其中,伞齿轮传动和斜齿轮传动是两种常见的传动形式。
它们在传递运动和力量方面都有其独特的特点和优势。
首先,我们来看一看伞齿轮传动。
伞齿轮是由斜齿轮演变而来的一种齿轮传动形式。
伞齿轮传动具有传动效率高、噪音小、运行平稳等特点。
其齿轮齿向与轴线呈一定的角度,能够充分利用传动时的侧隙,减小轮齿齿向力的大小,从而提高传动效率。
与伞齿轮传动相比,斜齿轮传动在传动效率方面稍逊一筹。
由于斜齿轮的齿轮齿向与轴线垂直,产生了较大的轮齿齿向力,从而导致了传动效率的下降。
但是,斜齿轮传动却有着自身的优势。
它能够传递大扭矩,具有较高的负荷能力。
此外,斜齿轮传动结构简单,制造成本低廉,易于维护和修理。
在实际应用中,我们应根据具体情况选择合适的传动形式。
如果需要追求高传动效率和低噪音,那么伞齿轮传动是一个不错的选择。
它适用于需要高速传动及精密度较高的设备,如工业机械、精密仪器等。
另一方面,如果需要传递大扭矩和较高负荷能力,那么斜齿轮传动是更为合适的选择。
它适用于需要承受大负载的机械设备,如重型机械、船舶等。
除了传动效率外,我们还应考虑传动精度、噪音、寿命等因素。
伞齿轮传动由于齿向角度的设计,使得齿轮之间的啮合更加精确,从而提高了传动精度。
而斜齿轮传动由于齿轮之间的齿向力的作用,可能会导致噪音的产生,因此在选择传动形式时需要注意噪音控制。
此外,合理的润滑和维护措施,能够延长齿轮传动的使用寿命。
总结起来,伞齿轮传动和斜齿轮传动都有各自的优势和特点。
在选择传动形式时,我们应根据实际需求,权衡各种因素,选择最合适的传动方式。
同时,在应用过程中,合理的润滑和维护,能够提高传动效率和延长使用寿命。
齿轮传动作为一种重要的机械传动形式,将在更广泛的领域中发挥作用,推动机械行业的发展。
课程设计传动效率表
课程设计传动效率表一、教学目标本节课的教学目标是让学生掌握传动效率的基本概念,了解影响传动效率的因素,能够运用传动效率表进行简单的分析和计算。
具体来说,知识目标包括:1.理解传动效率的定义和计算公式。
2.掌握影响传动效率的主要因素。
3.了解传动效率表的基本结构和用途。
技能目标包括:1.能够正确使用传动效率表进行分析和计算。
2.能够运用传动效率知识解决实际问题。
情感态度价值观目标包括:1.培养学生的动手能力和实践能力。
2.增强学生对机械传动系统的兴趣和好奇心。
二、教学内容本节课的教学内容主要包括传动效率的基本概念、影响传动效率的因素以及传动效率表的使用。
具体安排如下:1.传动效率的定义和计算公式(教材第34页)。
2.影响传动效率的主要因素(教材第35页)。
3.传动效率表的基本结构和用途(教材第36页)。
4.传动效率表的使用方法和注意事项(教材第37页)。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
具体安排如下:1.讲授法:用于讲解传动效率的基本概念和计算公式(10分钟)。
2.讨论法:用于分析影响传动效率的因素(10分钟)。
3.案例分析法:用于分析实际问题,运用传动效率表进行计算(10分钟)。
4.实验法:用于验证传动效率的计算结果,并进行实际操作(10分钟)。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:《机械传动系统》(第3版),作者:张三,出版社:机械工业出版社,出版日期:2018年。
2.参考书:《传动效率原理与应用》,作者:李四,出版社:科学出版社,出版日期:2016年。
3.多媒体资料:包括PPT课件、视频教程等。
4.实验设备:传动效率测试仪、传动系统模型等。
以上教学资源将有助于实现本节课的教学目标,提高学生的学习效果。
五、教学评估本节课的评估方式将包括平时表现、作业和考试等,以全面反映学生的学习成果。
永磁同步变频调速一体机在带式输送机上的应用概述
永磁同步变频调速一体机在带式输送机上的应用概述摘要:煤矿带式输送机是保证煤矿高产高效的主要运输设备之一,其运行质量和效率决定了矿井安全生产的效率和企业效益。
传统的输送机驱动方式有:(1)电机+耦合器+减速机驱动,(2)电机+液黏软启动+减速机;(3)电机+CST减速箱等驱动方式。
上述的三种驱动方式都存在传动方式复杂、传动效率低、维护工作量大、智能化程度低的问题,不符合国家绿色、高效智慧矿山的发展战略。
随着永磁材料技术的进步,永磁同步变频直驱技术在带式输送机广泛应用,相较于传统的驱动方式,永磁直驱系统具有传动结构简单、传动效率高、免维护等优点,契合绿色环保、安全高效的智慧化矿山发展方向,值得推广应用。
1 带式输送机对驱动装置及控制系统的基本要求驱动装置是带式输送机的动力来源,电动机作为驱动装置的动力源通过联轴器与减速机连接,带动传统滚筒转动,使传送带运动。
为了减缓电动机启动阶段对输送机的冲击,通过耦合器、软启动器或CST减速机来缓冲冲击,此类传动方式单纯从传动的角度确实能够满足驱动需要,但是随着技术的发展进步,我们对传动的要求不再局限于物料的运输,更是赋予了新的时代特征,我们希望输送机的传动能满足以下的基本要求。
(1)传动装置具有优异的起动特性,既要实现平滑软启动减少对设备的冲击,同时还要满足重载起动需要,确保输送机再重载条件下的平滑起动。
(2)传动装置有良好的调速性能,根据不同负载工况实现自动调速功能,达到节能降耗,减少磨损的效果。
(3)传动装置有很好的多机功率平衡调节能力,实现多机传动的均衡出力。
(4)传动装置有较高的传动效率,实现高效节能。
(5)传动装置技术先进,有完善的数据监测和保护功能,满足智能化和自动化的监控需要。
(6)传动装置维护量小,满足减员增效的目的。
2 永磁变频一体机驱动系统的组成近年来,变频调速技术的发展很好的符合了前文中所说的输送机对传动装置的要求,像平滑软启动、重载起动、多机动态功率平衡调节,智能化监测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号
传动类别
传动型式
传动效率
1
圆柱齿轮传动
很好跑合的6级精度和7级精度齿轮传动(稀油润滑)
~
2
圆柱齿轮传动
8级精度的一般齿轮传动(稀油润滑)
3
圆柱齿轮传动
9级精度的齿轮传动(稀油润滑)
4
圆柱齿轮传动
加工齿的开式齿轮传动(干油润滑)
~
5பைடு நூலகம்
圆柱齿轮传动
铸造齿的开式齿轮传动
~
6
圆锥齿轮传动
很好跑合的6级精度和7级精度齿轮传动(稀油润滑)
~
7
圆锥齿轮传动
8级精度的一般齿轮传动(稀油润滑)
~
8
圆锥齿轮传动
加工齿的开式齿轮传动(干油润滑)
~
9
圆锥齿轮传动
铸造齿的开式齿轮传动
~
10
蜗杆传动
自锁蜗杆
~
11
蜗杆传动
单头蜗杆
~
12
蜗杆传动
双头蜗杆
~
13
蜗杆传动
三头和四头蜗杆
~
14
蜗杆传动
圆弧面蜗杆传动
~
15
带传动
平带无压紧轮的开式传动
16
带传动
减(变)速器
轧机人字齿轮座(滑动轴承)
~
52
减(变)速器
轧机人字齿轮座(滚动轴承)
~
53
减(变)速器
轧机主减速器(包括主联轴器和电机联轴器)
~
精心搜集整理,只为你的需要
~
43
复滑轮组
滚动轴承(I=2~6)
~
44
减(变)速器
单级圆柱齿轮减速器
~
45
减(变)速器
双级圆柱齿轮减速器
~
46
减(变)速器
单级行星圆柱齿轮减速器
~
47
减(变)速器
单级行星摆线针轮减速器
~
48
减(变)速器
单级圆锥齿轮减速器
~
49
减(变)速器
双级圆锥-圆柱齿轮减速器
~
50
减(变)速器
无级变速器
~
51
平带有压紧轮的开式传动
17
带传动
平带交叉传动
18
带传动
V带传动
19
链传动
焊接链
20
链传动
片式关节链
21
链传动
滚子链
22
链传动
无声链
23
丝杠传动
滑动丝杠
~
24
丝杠传动
滚动丝杠
~
25
绞车卷筒
~
26
滑动轴承
润滑不良
27
滑动轴承
润滑正常
28
滑动轴承
润滑特好(压力润滑)
29
滑动轴承
液体摩擦
30
滚动轴承
球轴承(稀油润滑)
31
滚动轴承
滚子轴承(稀油润滑)
32
摩擦传动
平摩擦传动
~
33
摩擦传动
槽摩擦传动
~
34
摩擦传动
卷绳轮
35
联轴器
浮动联轴器
~
36
联轴器
齿轮联轴器
37
联轴器
弹性联轴器
~
38
联轴器
万向联轴器(α≤3°)
~
39
联轴器
万向联轴器(α>3°)
~
40
联轴器
梅花接轴
~
41
联轴器
液力联轴器(在设计点)
~
42
复滑轮组
滑动轴承(I=2~6)