3自感式传感器

合集下载

常用传感器的工作原理及应用

常用传感器的工作原理及应用

常用传感器的工作原理及应用3.1.1电阻式传感器的工作原理应变:物体在外部压力或拉力作用下发生形变的现象弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变弹性元件:具有弹性应变特性的物体3.1.3电阻应变式传感器电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。

工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。

输出的电量大小反映被测量的大小。

结构:应变式传感器由弹性元件上粘贴电阻应变片构成。

应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。

1.电阻应变效应○电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。

2.电阻应变片的结构基片bl电阻丝式敏感栅金属电阻应变片的结构4.电阻应变式传感器的应用(1)应变式力传感器被测物理量:荷重或力一二主要用途:作为各种电子称与材料试验机的测力元件、 发动机的推力测试、水坝坝体承载状况监测等。

力传感器的弹性元件:柱式、筒式、环式、悬臂式等(2)应变式压力传感器主要用来测量流动介质的动态或静态压力应变片压力传感器大多采用膜片式或筒式弹性元件。

(3)应变式容器内液体重量传感器感压膜感受上面液体的压力。

(4)应变式加速度传感器用于物体加速度的测量。

依据:a =F/m 。

3.2电容式传感器3.2.1电容式传感器的工作原理由绝缘介质分开的两个平行金属板组成的平板电容器,如果不考虑边缘效应,其电容量为当被测参数变化使得S 、d 或ε发生变化时,电容量C 也随之变化。

dS C ε=三 如果保持其中两个参数不变,而仅改变其中一个参数,就可把该参数的变化转换为电容量的变化,通过测量电路就可转换为电量输出。

电容式传感器可分为变极距型、变面积型和变介电常数型三种。

3电感式_自感式传感器解析

3电感式_自感式传感器解析
自感式电感传感器可分为变间隙型、变面积型和螺管型三种类型。
1 2
l 2 x
r
δ
3
2ra
1
变间隙型、变面积型
图4-1 变间隙型电感传感器
1-线圈 2-铁芯 3-衔铁
图4-4 螺管型电感传感器
1-线圈 2-衔铁
螺管型
一、工作原理(变间隙型)
传感器由线圈、铁心和衔铁组成。 铁芯衔铁用高导磁率的金属制成,二者之 间由空隙δ 隔开。工作时衔铁与被测物体 连接,被测物体的位移将引起空气隙的长 度发生变化。由于气隙磁阻的变化,导致 了线圈电感量的变化。线圈的电感可用下
当衔铁上移,上部线圈阻抗增大,Z1=Z+△Z,则下部线圈阻抗减少, Z2=Z-△Z。如果输入交流电压为正半周,设A点电位为正,B点电位为负, 二极管V1、V4导通,V2、V3截止。在A-E-C-B支路中,C点电位由于Z1增大 而比平衡时的C点电位降低;
而在A-F-D-B支中中,D点电位由于Z2的降低而比平衡时D点的电位 增高,所以D点电位高于C点电位,直流电压表正向偏转。
四、转换电路
1、调幅电路
调幅电路一般为交流电桥,是主要的测量电路,它的作用是 将线圈电感的变化转换成电桥电路的电压或电流输出。 前面已提到差动式结构可以提高灵敏度,改善线性,所以交 流电桥也多采用双臂工作形式。通常将传感器作为电桥的两个工 作臂,电桥的平衡臂可以是纯电阻,也可以是变压器的二次侧绕 组或紧耦合电感线圈。
当衔铁上移时:L2 L0
0
有下式:
L2 ( )2 ( )3 ...... L0 0 0 0
忽略高次非线性项Δ L与L0和Δ δ 成线性关系。同时由 于Δ L1与Δ L2不等,故在测量范围较小时,测量精度才高, 故此类适于小位移测量。

第四章电感式传感器

第四章电感式传感器

式中,r 、rc 为螺管、铁芯的半径;l、l为c 螺管、铁芯 的长度; lc 、rc 位移量。
所以,传感器灵敏度为:
K
4 2 N 2
l2
r
1 rc2
107
采用差动形式,灵敏度可提高一倍。 提高灵敏度的途径:
①使线圈与铁芯尺寸比值和趋于1; ②铁芯的材料选用导磁率大的材料。
三种自感式传感器的比较: ◆ 变间距式: 灵敏度最高,且随间距增大而减小;
4.2.4 误差因素分析
(1)激励电源的影响 幅值和频率都会直接影响输出,必须适当选择 合适的值。
(2)温度的影响: 温度变化,引起线圈磁场发生变化,从而产生 温漂(品质因数Q低时,影响更为严重。
解决方法:①采用恒流源供电; ②提高线圈的品质因数; ③采用差动电桥。
(3)零点残余电压 差动变压器在初始状态下,衔铁处于中间位置, 存在零点残余电压,
常用测量电路为: ◆ 差动整流电路 ◆ 相敏检波电路
1. 差动整流电路 差动整流电路分为全波和半波电路,如图所示:
以图(c)为例,波形变化为:
2.相敏检测电路
4.2.6 应用
(1)差动变压器式加速度传感器
(2)差动变压器式微压力变送器
微压传感器
退出
电感测微仪------差动式自感传感器测量微位移
4.1 自感式传感器
自感传感器的常见形式有气隙型和螺管型。
一、气隙型电感传感器 1. 工作原理:
线圈的电感为:
N2 L
Rm
Rm
l1
1S1
l2
2S2
l
0S
一般铁心的磁阻远较气隙磁阻小,有
Rm
l
0S
电感值与以下几个参数有关:与线圈匝数N 平方成正比;与空气隙有效截面积S成正比;与 空气隙长度所反比。

传感器与检测技术3电感式位移传感器

传感器与检测技术3电感式位移传感器
21 3
4
29
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 差动变压器工作在理想情况下(忽略涡流损耗、
磁滞损耗和分布电容等影响)时的等效电路:
30
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 当衔铁移向次级绕组N1一边,互感M1增大,M2减
小,因而次级绕组N1内的感应电动势大于次级绕 组N2内的感应电动势,这时差动变压器输出电动 势不为零。在传感器的量程内,衔铁位移越大, 差动输出电动势就越大。
0
2 0
0
0
1
线圈 铁芯
δ Δδ
8
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
L 1
SN 2 0 2 0
0
0
1
L
0 0
衔铁
L 1
/ 0
L 1 /
0
0
0
线圈 铁芯
δ Δδ
9
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
❖ 2. 原理消除零点残余电压方法: ❖ (1)从设计和工艺上保证结构对称性 ❖ 为保证线圈和磁路的对称性,首先,要求提高加
工精度,线圈选配成对,采用磁路可调节结构。 其次,应选高磁导率、低矫顽力、低剩磁感应的 导磁材料。并应经过热处理,消除残余应力,以 提高磁性能的均匀性和稳定性。由高次谐波产生 的因素可知,磁路工作点应选在磁化曲线的线性 段。
20
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 三种类型比较: ❖ 气隙型自感传感器灵敏度高,它的主要缺点是非

自感型电感式传感器及其应用

自感型电感式传感器及其应用

自感型电感式传感器及其应用摘要随着信息时代的到来,信息技术对社会发展、科学进步起到了决定性的作用。

信息技术的基础包括信息采集、信息传输与信息处理,而信息的采集离不开传感器技术。

近年来,传感器正处于传统型向新型传感器转型的发展阶段。

作为新型传感器的一种——变磁阻式传感器,对其深入研究也就更加愈加重要。

本文磁阻式传感器的基本概念入手,着重讨论了电感式、变压器式和电涡流式三种传感器的工作原理、输出特性、测量电路及其在生活中的实际应用。

旨在帮助我们利用传感器知识更好的改善生活,提高生活质量,从而促进社会进步。

关键词:变磁阻式传感器;电感式;变压器式;电涡流式;原理;应用AbstractWith the advent of the information age, information technology played a decisive role on social development, scientific progress. The foundation of information technology includes information collection, information transmission and information processing, and information collection cannot ignore the sensor technology. In recent years, the sensor is in the stage of development from traditional to new. Magnetic resistance sensor as a kind of new type of sensor, the research of it is becoming more and more important. This paper started with the basic concept of magnetic resistance sensor, and discussed the inductive, transformer and the eddy current type of the sensor's working principle, output characteristics, measurement circuit and the actual application in the life. Using sensors aimed at helping us improve life, also to promote social progress.Keywords:Magnetic Resistance Sensor; Inductive; Transformer; Eddy Current Type; Working Principle Application1.自感式电感传感器1.1自感式电感传感器定义自感式电感传感器,利用被测量的变化引起线圈自感或互感系数的变化,从而导致线圈电感量改变这一物理现象来实现测量的传感器。

第3章 电感式传感器及其信号调理

第3章 电感式传感器及其信号调理



当铁芯位于中间位置时,M M M ,E =0 铁芯向上位移时,M M M M M M ,
1 2

s
1
2
Es


2 jM E p Rp jLp
1

铁芯向下位移时,M
Es

M M

M 2 M M,
2 jM E p Rp jLp
3.1 自感式传感器 3.1.1 单线圈自感传感器
自感式传感器亦称变隙式自感传感器或变磁 阻式自感传感器,根据铁芯线圈磁路气隙的改变, 引起磁路磁阻的改变,从而改变线圈自感的大小。 气隙参数的改变可通过改变气隙长度和改变 气隙截面积两种方式实现。传感器线圈分单线圈 和双线圈两种。
图3-1单线圈变气隙式长度自感传感器
s
Us

j (M 2 M1 ) E p j (M 2 M1 ) E p RL RL RL ( Rs1 Rs 2 ) j ( L1 L2 ) Rp jLp RL Rs jLs Rp jLp



根据(3-19)画出差动变压器频率特性如图313。

3) 采用补偿电路,为常采用的零点残余电压补偿 电路原理图。消除零点残余电压的补偿电路有四 种: ①附加串联电阻以消除基波同相成分; ②附加并联电阻以消除基波正交成分; ③附加并联电容。改变相移,补偿高次谐波分量; ④附加反馈绕组和反馈电容,以补偿基波及高次谐 波分量。串联电阻的阻值很小,为0.5-5Ω ,并 联电阻的阻值为数十到数百千欧;并联电容的数 值在数百PF范围。实际数值通常由实验来确定。
U i L U0 4 L0
采用差动结构能带来的好处: 理论上消除了零位输出,衔铁所受电磁力平衡; 灵敏度提高一倍; 线性度得到改善(高次项能部分相互抵消); 差动形式可减弱或消除温度、电源变化及外界干 扰等共模干扰的影响。因为这些干扰是以相同的 方向、相同的幅度作用在两个线圈上的,所引起 的自感变化的大小和符号相同,而信号调理电路 实质上是将两个线圈自感的差值转换为电信号。

3检测技术-电感式传感器

3检测技术-电感式传感器

L2
L2
L20
L0
0
0
2
0
3
差动自感传感器测量电路(转换电路) (1)交流电桥式
两个桥臂为传感器的线圈,另外两个为平衡电阻
交流电桥结构示意图
等效电路
初始状态时:
Z10 r1 jL1, Z20 r2 jL2 , Z3 Z4 R
r1 r2 r0 ,
L1 L2 L0 ,
空载输出电压 U0 (U / 2) (Δ Z / Z )
传感器衔铁移动方向相反时
Z1 Z Δ Z、Z2 Z Δ Z,
空载输出电压 U0 (U / 2) (Δ Z / Z )
衔铁上下移动相同距离时,输出电压大小相等方向 相差180º,要判断衔铁方向就是判断信号相位。
3.1.6 零点残余电压
Z10 Z20 Z0
衔铁上移时:Z1 Z0 Z1,
Z1 jL1
Z2 Z0 Z2 ,
输出电压为:
Z2 jL2
U0
U AC
(Z0 Z1)R (Z0 Z2 )R 2R(Z0 Z1 Z0 Z2 )
U AC 2
Z1 Z2 2Z0 Z1 Z2
U0
U AC 4
Z1 Z2 UAC
• u0的幅值要远 大于输入信号u2 的幅值, 以便有 效控制四个二极
管的导通状态。
• u0和u2由同一振荡器提供,保证二者同频、 同相(或反相)。
当位移Δx = 0时
i3
i1
i2
i4
当位移Δx = 0时,UL=0
当位移Δx > 0时, u2 与u0同频同相, 当位 移Δx< 0时 , u2与u0 同频反相。
布电容。
e
e1
零点残余电压的波形

自感式传感器工作原理

自感式传感器工作原理

自感式传感器工作原理一、引言自感式传感器是一种常见的传感器类型,广泛应用于工业、医疗、航空航天等领域。

其工作原理是基于电磁感应原理,通过测量磁场的变化来检测物体的位置或运动状态。

本文将详细介绍自感式传感器的工作原理。

二、电磁感应原理电磁感应是指导体内部或周围的电场和磁场相互作用时所产生的现象。

根据法拉第电磁感应定律,当导体中存在变化的磁场时,就会在导体内部产生电动势,并且这个电动势大小正比于磁场变化率。

三、自感式传感器结构自感式传感器通常由线圈和铁芯组成。

线圈通常采用多层绕制,铁芯则是一个环形或U形结构。

当物体靠近传感器时,会改变铁芯中的磁场分布,从而改变线圈中的自感系数。

四、自感系数自感系数是指线圈中每单位长度上通过单位面积所产生的电动势。

它可以表示为:L = NΦ/I其中L为自感系数,N为线圈匝数,Φ为线圈中的磁通量,I为线圈中的电流。

五、自感式传感器工作原理当物体靠近传感器时,铁芯中的磁场分布发生变化,从而改变了线圈中的自感系数。

由于自感系数与磁场强度成正比,因此当物体靠近时,线圈中的电动势也会发生变化。

这个变化可以通过测量线圈中的电压或电流来检测。

六、应用举例自感式传感器可以用于检测物体的位置或运动状态。

例如,在汽车制造过程中,可以使用自感式传感器来检测车轮是否正常旋转。

在医疗领域,可以使用自感式传感器来检测人体内部器官的位置和运动状态。

七、总结自感式传感器是一种基于电磁感应原理的传感器类型。

其工作原理是通过测量磁场的变化来检测物体的位置或运动状态。

通过了解自感系数和铁芯结构等关键参数,可以更好地理解和应用这种传感器。

自感式电感传感器

自感式电感传感器

1.1.4 差动式电感传感器
用两个相同的传感线圈共用一个衔铁,构成差动式 电感传感器,这样可以提高传感器的灵敏度,减小测量
误差。下图是变间隙型、变面积型及螺管型三种类型 的差动结构。
l 23
l
3
4 3
4
4 l2
a)
b)
c)
图4.1.5 差动式电感传感器 a) 变间隙型 b) 变面积型 c) 螺管型
LL
b) 变压器式电桥
c) 紧耦合电感臂电桥
1.2.1 电阻平衡臂电桥
电 阻 平 衡 臂 电 桥 如 上 图 a 所 示 , 工 作 时 , Z1=Z+△Z 和 Z2=Z—△Z,当ZL→∞时,电桥的输出电压为
.
.
U0
Z1
.
U
R1
.
U
Z1 2R R(Z1
Z
2
)
.
U
U
Z
Z1 Z2 R1 R2
Rm
l1
1 A
l2
2 A
2 0 A
因此:
L N2 Rm
l1
N2
l2 2
1 A 2 A 0 A
线圈的电感值可近似地表示为
L N 20 A 2
因此,其灵敏度随气隙的增大而减小。
1.1.2 变面积型电感传感器
铁心与衔铁之间相对覆盖面积随被测量的变化
面改变,导致线圈的电感量发生变化,这种形式称
之为变面积型电感传感器,见图1.2。L与δ是非线
性的,但与A成正比,特性曲线参见图1.ห้องสมุดไป่ตู้。
2
1
L
3
δ
L=f(A)
图4.1.2 变面积型电感传感器
1-衔铁 2-铁芯 3-线圈

自感式传感器

自感式传感器

当线圈匝数W一定时,有 L f (,l, S) 。当固定其中任 意两个参数而改变另一个变量时,可制成一种自感式传感器 ----即有三种类型:变气隙型、变截面型和变磁导率型。
2.输出特性
保持磁导率μ和气隙有效截面积S不变,只改变气隙长度l,即以 气隙长度l为传感器的输入量,可制成变气隙型自感式传感器,常用 于微小线位移的测量。
以上的高次项,则自感值变化量△L与位移△l成比例关系。
此时,根据灵敏度定义,有:
Kl
L l
L0 l0
W 20
2l02
S
(3.15)
2)非线性误差
若用式(3.15)近似求取灵敏度,由于忽略了式中的高 次非线性项,会产生非线性误差。其大小为:
r [ l ( l )2 ]100%
l0
l0
(3.16)
r
l
图3.4 螺管式自感传感器的结构原理
特性分析(简要介绍)
设螺线管长为l,内径为r,线圈总匝数为W,线圈总电流强度 为I。根据磁路结构,磁路磁通主要由两部分组成:主磁通和漏磁 通(或称侧磁通)。
为研究方便,设r << l ,且认为线圈磁路上磁感应强度B均匀 分布。当线圈空心时,其电感值可近似为:
由式(3.15)和式(3.16)分析可知:要提高灵敏度,气隙初始距离 l0 应尽量
小。但 l0减小,为使灵敏度非线性误差不变,必使测量的范围△l变小。
一般对于变气隙型自感传感器,常取: △l /l0=0.1~0.2。
与变截面型自感式传感器相比,变气隙型自感式传感 器的灵敏度较高;但其非线性严重,自由行程小,制造装
L0
0W 2r 2
l
(主磁通引起 )
(3.23)
当半径为rc ,磁导率为μm的铁芯插入螺管线圈时,插入部分(长

传感器与检测技术第2版课件第3章

传感器与检测技术第2版课件第3章
• 当活动铁心向线圈的另一个方向移动时,用上述分析方法同样可以证明,无论
在Ui的正半周还是负半周,电桥输出电压U0均为负值,即
综上所述可知,采用带相敏整 流的交流电桥,其输出电压既 能反映位移量的大小,又能反 映位移的方向,所以应用较为 广泛。
3.1.3自感式传感器应用实例
• 1. 自感式压力传感器
1)尽可能保证传感器尺寸、线圈电气参数和磁路对称。 2)选用合适的测量电路。 3)采用补偿线路减小零点残余电压。
3.2.2测量电路
• 1. 差动整流电路
• 采用差动整流电路后,不但可以用 0 值居中的直流电表指示输 出电压或电流的大小和极性,还可以有效地消除残余电压,同时 可使线性工作范围得到一定的扩展。
• 2.带相敏整流的交流电桥
为了既能判别衔铁位移的大小,又能判断出衔铁位移的方向,通常 在交流测量电桥中引入相敏整流电路,把测量桥的交流输出转换为 直流输出
图中电桥的两个臂Z1、Z2分别为差动式传感器中 的电感线圈,另两个臂为平衡阻抗Z3、Z4(Z3= Z4 = Z0 ) , VD1、VD2、VD3、VD4四只二极管组成
• 由上式可知,这时电桥输出电压,电桥处于平衡状态。
• 当铁芯向一边移动时,Z1= Z0 + ∆Z, Z2= Z0﹣∆Z,代入上式得
当传感器线圈为高Q值时,可得到输出电压的值为
同理,当活动铁心向另一边(反方向)移动时,则有
综合以上两式可得知电桥输出电压
差动式自感传感器采用变压器交流电桥为测量电路时,电桥输出电压 既能反映被测体位移量的大小,又能反映位移量的方向,且输出电压与 电感变化量呈线性关系。
1~100mm范围内的机械位移,并具有测量精度高、灵敏度高、结构简单、 性能可靠等优点。

第3章 电感式传感器-11.26

第3章 电感式传感器-11.26

传 感 器 技 术 • 及 应 用 • 第 3 章 电 感 式 传 感 器
当传感器的衔铁处于中间位置,即 Z1=Z2=Z时,有U0=0,电桥平衡。 当传感器衔铁上移时,即Z1=Z+Δ Z, Z2=Z−Δ Z,此时
Z U L U Uo Z 2 L 2
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
感 器
传 感 器 技 术 及 应 用
• 在实际使用中,常采用两个相同的传感器线圈
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
(b) (c) 图3-4 差动式电感传感器 (a)变气隙型;(b)变面积型;(c)螺管型 1—线圈;2—铁芯;3—衔铁;4—导杆 (a)
传 感 器 技 术 及 应 用 • 第 3 章
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
图3-7 滚柱直径自动分选装置图 1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管 6—电感测微器 7—钨钢测头 8—限位挡板 9—电磁翻板 10—容器(料斗)
传 感 电感式滚柱直径分选装置(外形) 器 技 (参考中原量仪股份有限公司资料) 术 及 滑道 应 用 第 3 章 电 感 式 传 感 器
线圈中电感量为:
W L I I

• 式中:ψ ——线圈总磁链;I ——通过线圈 的电流;W——线圈的匝数; ——穿过线圈 电 的磁通。 感
式 传 感 器
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
IW Rm
l1 l2 2 Rm 1S1 2 S2 0 S0
分选仓位
轴承滚子外形
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器

电感式传感器(3)知识课件

电感式传感器(3)知识课件
结构:主要由线圈和框架组成。线圈安置在框架上,线圈可以绕成一 个扁平的圆形粘贴在框架上,也可以在框架上开一个槽,导线绕制在 槽内形成一个线圈。
结构特点:电涡流式传感器的主体是激磁线圈。由此:线圈的性能和 几何尺寸、形状对整个测量系统的性能将产生重要的影响。
线圈的选择:一般情 况下,线圈的导线采 用高强度漆包线;要 求较高的场合,可以 用银或银合金线;在 较高温度条件下,需 要用高温漆包线。
一般说来,被测体的电导率越高,灵敏度也越高;磁导率则 相反,被测体的磁导率越高,灵敏度越低,而且被测导体有剩磁, 将影响测量结果,应予消磁。 (2)被测导体表面镀层对测量精度的影响:
若镀层性质和厚度不均匀,在测量转动或移动的被测物体时, 这种不均匀将形成干扰信号,影响测量精度,尤其是激励频率较 高时,电涡流的贯穿深度减小,这种干扰影响更大。
检波
高频反射式涡流测厚 仪测试系统原理图
为了克服带材不够平整或运行过程中上下波动的影响, 在带材的 上、下两侧对称地设置了两个特性完全相同的涡流传感器S1、S2 。
S1、 S2与被测带材表面之间的距离分别为x1和x2。
§3.4 电涡流式传感器
线圈
铁芯
★ 气隙厚度变化型差动型传感器
x/2
结构:见图
x/2
工作原理:两个传感器构成差动工作方式,衔衔铁
铁最初居中,两侧初始电感为L0,当衔铁有
位移△x时,两个线圈的间隙分别为 x x 和 x x ,表明一个线圈自感增加,2 另一个
2
线圈自感减小,把两线圈接人电桥的相邻臂
时,输出灵敏度比单个的提高一倍,并且可
§3.4 电涡流式传感器
二、高频反射式电涡流传感器的基本结构
(3)被测导体形状对测量精度的影响: •若被测物体为平面,在涡流环的直径为线圈直径的1.8 倍处,电 涡流的密度衰减为最大值的5%,因而希望被测物体的直径不小 于线圈直径的1.8倍。 •当被测物体的直径为线圈直径的一半时,灵敏度将减小一半, 更小时,灵敏度则显著下降。

自感式电感传感器的工作原理

自感式电感传感器的工作原理

自感式电感传感器的工作原理自感式电感传感器是一种常见的传感元件,具有广泛的应用领域。

它主要通过电感的变化来感知环境的物理量或电气信号,并将信号转化为可供其他电路或系统使用的电信号。

本文将介绍自感式电感传感器的工作原理及其应用。

自感式电感传感器由线圈和铁芯组成。

线圈上有一定的匝数,当电流通过时,会产生磁场。

这个磁场的强弱与线圈的电流成正比。

当外部物理量或电气信号改变时,线圈的电流或电压也会改变,从而影响磁场的强度。

这种改变可以通过测量磁场的变化来感知外部物理量或电气信号。

具体来说,当自感式电感传感器与外界物理量或电气信号有耦合时,会引起线圈中的电感变化。

这种变化可以通过测量线圈中电流的变化来获取。

例如,当自感式电感传感器被放置在一个变化的磁场中时,线圈中的电感将随磁场变化而变化,进而导致线圈中的电流变化。

通过测量线圈中电流的大小或变化,可以得到与磁场强度相关的信息。

自感式电感传感器还可以应用于电气信号的检测。

当自感式电感传感器与电气信号耦合时,线圈中的电感也会发生变化。

通过测量线圈中的电感变化,可以得到与电气信号强度相关的信息。

这种应用广泛应用于电源管理、电子系统监控和无线通信等领域。

自感式电感传感器的工作原理基于电磁感应定律和电感变化的原理。

根据电磁感应定律,当线圈中有变化的外磁场时,会在线圈中产生感应电动势。

这个感应电动势的大小与磁场的变化速率成正比。

因此,通过测量线圈中的感应电动势或电流的变化,可以间接地获取外部物理量或电气信号的信息。

在实际应用中,自感式电感传感器可以采用不同的工作方式。

例如,可以通过改变线圈的参数如匝数、线径等来调节传感器的灵敏度。

还可以利用激励信号和检测信号实现传感器的工作。

激励信号可以是交流信号或脉冲信号,用于激发线圈中的电流。

检测信号则用于测量线圈中的电流或感应电动势的变化。

总之,自感式电感传感器是一种基于电感变化原理的传感器。

它通过感知线圈中的电流或感应电动势的变化来获取外部物理量或电气信号的信息。

传感器名词解释考试必备

传感器名词解释考试必备
9.应变效应:导体或半导体材料在外力作用下产生机械变形(拉伸或压缩)时,其电阻值也随之发生相应的变化。
11.霍尔效应:金属或半导体薄片置于磁感应强度为 的磁场中,当有电流 通过时,在垂直于电流和磁场的方向上将产生电动势 ,这种物理现象称为霍尔效应
12.热电效应:将两种不同的导体A和B连成闭合回路,当两个接点处的温度不同时,回大致有厚度变形,长度变形,体积变形和厚度剪切变形等
压电式传感器线性度不好,测量前需加预载
41磁电式传感器结构有两种:恒磁通式和变磁通式。
霍尔传感器结构:霍尔片,四根引线和壳体。
霍尔效应即置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上垂直与电流和磁场的方向上将产生电动势。该电动势称为霍尔电动势。
5.绝对误差:是示值与被测量真值之间的差值
6.系统误差:是指误差的数值是一个常数或按一定的规律变化的值
7.弹性滞后:在实际中,弹性元件在加、卸载的正、反行程中变形曲线一般是不重合的,这种现象称为弹性滞后
8.弹性后效:当载荷从某一数值变化到另一数值时,弹性变形不是立即完成相应的变形,而是在一定的时间间隔内逐渐完成变形的,这一现象称为弹性后效。
15.光纤传感器原理实际上是研究光在调制区内,外界信号(温度,压力,应变,位移,震动,电场等)与光的相互作用,即研究光被外界参数的调制原理,外界信号可能引起的光强,波长,频率,相位偏振态等光学性质的变化,从而形成不同的调制。
16.光纤传感器的应用:光纤加速度传感器,光纤温度传感器。
17.半导体气敏传感器的原理:是利用气体在半导体表面的氧化和还原反应导致敏感元件阻值发生变化而制成的。
21动态特性是指输入量随时间变化时传感器的响应时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器与检测学案3 任务自感式传感器
三、作业
1.填空题
(1)电感式传感器是利用被测量的变化引起线圈________系数或________系数的变化,从而导致线圈________的改变这一物理现象来实现测量的。

(2)根据转换原理,电感式传感器可以分为________和________两大类。

(3)自感式传感器可以分为________、________和________三种类型。

2.判断题
(1)自感式电感传感器的线圈电量L与气隙厚度是非线性,但与磁通截面积成正比,是一种线性关系。

()
(2)电感传感器采用带相敏整流的交流电桥,输出信号即能反应唯一的大小又能反映唯一的方向。

()
3.简答题
(1)试述电感式传感器的变换原理?它分为几类?
(2)在自感式传感器中,螺管式自感传感器的灵敏度最低,为什么在实际应用中却应用最广泛?
(3)试述自感式传感器的结构、类型和工作原理?它的测量电路有哪些?可用于哪些方面的检测?。

相关文档
最新文档