北师大版七年级数学下册第四周周测试卷.doc
2013-2014北师大版七年级下数学周测卷
图1 A B C D 1 2 图2 图82013-2013北师大版七年级下数学周测卷(5.8)姓名 班级 成绩一、细心选一选 (30分)1、下列各组长度的线段为边,能构成三角形的是( )A 、7cm 、5cm 、12cmB 、6cm 、8 cm 、15cmC 、8cm 、4 cm 、3cmD 、4cm 、6 cm 、5cm2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BO=8,AD=10,AB=5,则CD 的长为( )A 、10B 、8C 、5D 、不能确定3、如图2,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条件中选一个,错误的选法是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、AD=AD D 、AB=AC4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A 、稳定性B 、全等性C 、灵活性D 、对称性 5、如图4所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )A 、8对B 、4对C 、2对D 、1对6、下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。
其中错误的说法有( )A 、4个B 、3个C 、2个D 、17、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、任意三角形8、根据下列条件作三角形,不能唯一确定三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角9.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )A .18B .15C .18或15D .无法确定10.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种A .3B .4C .5D .6二、仔细补一补 (16分)11、在△ABC 中,若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。
2020-2021学年七年级数学北师大版下册第四章 4.1认识三角形 同步练习题
4.【知识点】1 由____________________的三条线段____________相接所组成的图形叫做三角形,三角形有____________条边、____________个内角和____________个顶点. “三角形”用符号“____________”表示,顶点是A,B,C的三角形,可记作“____________”.2 三角形按内角大小分类,可分为________________、____________________、________________________.3 三角形任意两边之和____________第三边;三角形任意两边之差____________第三边.4 从三角形的一个顶点向它的对边所在的直线作____________,顶点和____________之间的线段叫做三角形的高线,简称三角形的高.三角形三条高所在的直线____________.5 在三角形中,连接一个顶点与它对边____________的线段,叫做这个三角形的中线,三角形的三条中线____________,这一点称为三角形的____________.6 在三角形中,一个内角的________________与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的三条角平分线__________________.【例题讲解】1如图4-1-2,图中有几个三角形?把它们表示出来,并写出∠B的对边.2 如图4-1-4所示的图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.3 在△ABC中,∠A=21°,∠B=34°,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角三角形或钝角三角形4 一个三角形的两边b=4,c=7,试确定第三边a的范围. 当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?5 下列四个图形中,线段BE是△ABC的高的是()6 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能7 如图4-1-15,已知△ABC 的周长为24 cm ,AD 是BC 边上的中线,AD=85AB ,AD=5 cm ,△ABD 的周长是18 cm ,求AC 的长.8 如图4-1-17,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5 cm ,AB 与AC 的和为13 cm ,求AC 的长.9 如图4-1-19,在△ABC 中,∠B=60°,∠C=30°,AD 和AE 分别是△ABC 的高和角平分线,求∠DAE 的度数.10 如图4-1-21,△ABC 中,AD,AE 分别是△ABC 的高和角平分线,BF 是∠ABC 的平分线,BF 与AE 交于点O ,若∠ABC=40°,∠C=60°,求∠AEC ,∠BOE 的度数.【举一反三】1 如图4-1-3所示的图形中共有三角形( )A. 4个B. 5个C. 6个D. 8个2 如图4-1-5,三角形共有()A.3个B.4个C.5个D.6个3 下列说法正确的是()A. 一个钝角三角形一定不是等腰三角形,也不是等边三角形B. 一个等腰三角形一定是锐角三角形,或直角三角形C. 一个直角三角形一定不是等腰三角形,也不是等边三角形D. 一个等边三角形一定不是钝角三角形,也不是直角三角形4 三角形按边分类,可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形5 若三角形中的两边长分别为9和2,第三边长为偶数,求三角形的周长.6 下列各图中,正确画出AC边上的高的是()7 如图4-1-14,△ABC中BC边上的高是()A.BDB.AEC.BED.CF8 如图4-1-16,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.9 如图4-1-18,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长多3 cm,BC=8 cm,求边AC的长.10 如图4-1-20,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.11如图4-1-22,在△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD,AC于点F,E,试说明:∠CFE=∠CEF.【知识操练】1 在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC 内,连接DE,EF,FD.以下图形符合上述描述的是()2 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形3 下列说法正确的是()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4 以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,3 cmB.2 cm,5 cm,8 cmC.3 cm,4 cm,5 cmD.4 cm,5 cm,10 cm5 如图4-1-23,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定6 如图4-1-24,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F.下列关于高的说法错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高7 如图4-1-25,AD是△ABC的中线,△ABC的面积为10 cm2,则△ABD的面积是()A. 5 cm2B. 6 cm2C. 7 cm2D. 8 cm28 如图4-1-26,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC边上的中线,则下列线段中,最短的是()A.AB B.AE C.AD D.AF9 如图4-1-27,已知∠1=∠2,∠3=∠4,则下列正确的结论有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个10 如图4-1-28,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC11 如图4-1-29,在△ABC中,AD,CE分别为BC,AB边上的高,若BC=6,AD=5,CE=4,则AB的长为____________.12 一个三角形的两边长分别是3和8,周长是偶数,那么第三边的边长是___________.13 一副三角尺如图4-1-9所示叠放在一起,则图中∠α的度数是____________.14 如图4-1-30,已知AE是△ABC的边BC上的高,AD是∠EAC的平分线,交BC于点D.若∠ACB=40°,则∠DAE=__________.15 已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.16 如图4-1-10,点O是△ABC内的一点,试说明:OA+OB+OC>(AB+BC+CA).17 如图4-1-31,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.。
北师大版七年级数学下册第四章学情评估附答案
北师大版七年级数学下册第四章学情评估一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四组图形中,是全等图形的是()2.如图,在△ABC中,过点A作AD⊥BC于点D,则下列说法正确的是() A.CD是△ABC的高B.BD是△ABC的高C.AD只是△ABC的高D.AD是图中三个三角形的高(第2题)(第3题)(第4题)3.如图所示,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠BAD的度数为()A.40°B.45°C.50°D.55°4.如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD 的周长之差为()A.2 B.3 C.4 D.55.如图,要测量河中礁石A离岸边点B的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA′=∠CBA,∠BCA′=∠BCA,可得△A′BC ≌△ABC,所以A′B=AB,所以测量A′B的长即可得到AB的长.判定图中两个三角形全等的依据是()A.SAS B.ASA C.SSS D.AAS(第5题)(第7题)6.已知a,b,c分别为△ABC的三边长,并满足|a-4|+(c-3)2=0.若b为奇数,则△ABC的周长为()A.10 B.8或10C.10或12 D.8或10或127.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于() A.90°B.135°C.270°D.315°8.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC ≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠AC B.其中结论正确的个数是()A.1 B.2 C.3 D.4(第8题)(第9题)二、填空题(共5小题,每小题3分,计15分)9.如图,把手机放在一个支架上面,可以使它稳固起来,这是利用了三角形的____________.10.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是______________.(第10题)(第12题)(第13题)11.一张三角形纸片上,小明只能折叠出它的一条高,可以推断,这个三角形纸片的形状是__________三角形.12.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为________.13.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连接AE,DE,DC.若∠CAE=30°,则∠BDC=________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)图中有几个三角形?用符号表示这些三角形.(第14题)15.(5分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.求c边的长并判断△ABC的形状.16.(5分)如图,已知△ABC,求作△A′B′C′,使A′B′=AB,∠B′=∠B,B′C′=BC.(尺规作图,不写作法,保留作图痕迹,作在右侧方框内)(第16题)17.(5分)如图,∠ACD=140°,∠A=60°,求∠B,∠ACB的度数.(第17题)18.(5分)如图,AD是△ABC的边BC上的中线,已知AB=6 cm,AC=5 cm.△ABD 的周长为14 cm,求△ACD的周长.(第18题) 19.(5分)如图,△ABC≌△ADE,点E在边BC上,试说明∠BED=∠BAD.(第19题)20.(5分)如图,点A,B,C,D在同一直线上,AM=CN,BM=DN,AC=BD.试说明BM∥DN.(第20题)21.(6分)如图,在△ABC中,∠A=90°,CD∥BA交BD于点D,已知∠1=32°,∠D=29°,试说明BD平分∠ABC.(第21题)22.(7分)如图,树AB与树CD之间相距13 m,小华从点B沿BC走向点C,行走一段时间后,他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5 m,小华行走的速度为1 m/s,求小华行走到点E的时间.(第22题)23.(7分)如图,点A,B,D,E在同一直线上,AD=EB,∠A=∠E.请你添加一个条件,使得AC=EF.(第23题)(1)你添加的条件是____________________;(2)请你写出说明过程.24.(8分)如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向以相同的步子走了30步到达一棵树C处,接着再向前走了30步到达D处,然后向正南方向直行,当小刚看到电线塔、树与自己现处的位置E在一条直线上时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约是50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.(第24题)25.(8分)如图,已知AB∥DE,点B,C,D在一条直线上,AC⊥CE,∠B=90°,AB=CD.(1)△ABC与△CDE全等吗?为什么?(2)你还能得到哪些线段的相等关系?为什么?(第25题)26.(10分)[问题情景]如图①:在四边形ABCD中,AB=AD,∠BAD=120°,E,F分别是BC,CD上的点,且∠EAF=60°,试探究图中线段BE,EF,DF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,再判定△AEF≌△AGF,可得出结论:________________.【探索延伸】如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图③,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.(第26题)答案一、1.C 2.D 3.A 4.A 5.B 6.C 7.C 8.C 提示:设AB 与CD 交于点F .因为∠DAB =∠CAE ,所以∠DAB +∠BAC =∠CAE +∠BAC , 所以∠DAC =∠BAE .在△ADC 和△ABE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,所以△ADC ≌△ABE (SAS), 所以CD =BE ,∠ADC =∠ABE . 因为∠AFD =∠BFO , 所以∠BOD =∠BAD =50°, 故①②③正确, 故选C.二、9.稳定性 10.ASA 11.直角或钝角 12.65°13.75° 提示:延长AE 交DC 边于点F ,如图.(第13题)因为∠ABC =90°,所以∠CBD =90°.在△ABE 与△CBD 中,⎩⎨⎧BE =BD ,∠ABE =∠CBD =90°,AB =CB ,所以△ABE ≌△CBD ,所以∠AEB =∠BDC . 易知∠BAC =∠ACB =45°, 又因为∠CAE =30°,所以∠AEB=180°-∠AEC=∠ACB+∠CAE=45°+30°=75°,所以∠BDC=75°.三、14.解:图中有6个三角形,分别是△ABD,△ABE,△ACB,△ADE,△ADC,△AEC.15.解:因为a,b,c是△ABC的三边,a=4,b=6,所以2<c<10.因为三角形的周长是小于18的偶数,所以2<c<8,且c边的长为偶数,所以c=4或6.当c=4或6时,△ABC的形状都是等腰三角形.16.解:如图,△A′B′C′即为所求.(第16题)17.解:因为∠ACD=140°,所以∠ACB=180°-∠ACD=40°,又因为∠A=60°,所以∠B=180°-∠A-∠ACB=180°-60°-40°=80°.18.解:因为AD是△ABC的中线,所以BD=CD,所以△ABD与△ACD的周长之差为(AB+BD+AD)-(AC+CD+AD)=AB+BD+AD-AC-CD-AD=AB-AC =6-5=1(cm).因为△ABD的周长为14 cm,所以△ACD的周长为14-1=13(cm).19.解:因为△ABC≌△ADE,所以∠C=∠AED,∠BAC=∠DAE,所以∠BAC-∠BAE=∠DAE-∠BAE,即∠CAE =∠BAD .因为∠AEB =∠AED +∠BED =180°-∠AEC =∠CAE +∠C ,所以∠CAE =∠BED ,所以∠BED =∠BAD .20.解:因为AC =BD ,所以AC +BC =BD +BC ,即AB =CD .在△ABM 和△CDN 中,⎩⎨⎧AB =CD ,BM =DN ,AM =CN ,所以△ABM ≌△CDN ,所以∠MBA =∠D ,所以BM ∥DN .21.解:因为CD ∥BA ,所以∠ABD =∠D =29°.因为∠A =90°,∠1=32°,所以∠ABC =90°-32°=58°,所以∠DBC =∠ABC -∠ABD =58°-29°=29°,所以∠ABD =∠DBC ,所以BD 平分∠ABC .22.解:由题意,得AB ⊥BC ,CD ⊥BC ,∠AED =90°,BC =13 m ,AB =5 m ,所以∠B =∠C =90°,∠A +∠AEB =∠CED +∠AEB =90°,所以∠A =∠CED .在△ABE 和△ECD 中,⎩⎨⎧∠B =∠C =90°,∠A =∠CED ,AE =ED ,所以△ABE ≌△ECD (AAS),所以AB =CE =5 m ,所以BE =BC -CE =8 m ,则小华行走到点E 的时间为8÷1=8(s).23.解:(1)∠C =∠F (答案不唯一)(2)因为AD =EB ,AB +BD =DE +BD ,所以AB =DE .在△ABC 和△EDF 中,⎩⎨⎧∠A =∠E ,∠C =∠F ,AB =DE ,所以△ABC ≌△EDF ,所以AC =EF .24.解:(1)如图所示.(第24题)(2)小刚在点A 处时他与电线塔的距离约为40米.理由如下:由题意得,DE =140-30-30=80(步).在△DEC 和△ABC 中,⎩⎨⎧∠D =∠A =90°,DC =AC ,∠DCE =∠ACB ,所以△DEC ≌△ABC (ASA),所以DE =AB .因为DE ≈80×50÷100=40(米),所以AB ≈40米.答:小刚在点A 处时他与电线塔的距离约为40米.25.解:(1)△ABC ≌△CDE ,理由如下:因为AB ∥DE ,所以∠B +∠D =180°,因为∠B =90°,所以∠D =90°=∠B .因为AC ⊥CE ,所以∠ACB +∠DCE =90°.因为∠ACB +∠A =90°,所以∠A =∠DCE .在△ABC 与△CDE 中,⎩⎨⎧∠A =∠DCE ,AB =CD ,∠B =∠D ,所以△ABC ≌△CDE .(2)BC =DE ,AC =CE ,理由如下:由(1)知△ABC ≌△CDE ,所以BC =DE ,AC =CE .26.解:【问题情景】EF =BE +DF【探索延伸】结论EF =BE +DF 仍然成立.理由:如图,延长FD 到点G ,使DG =BE ,连接AG .因为∠B +∠ADF =180°,∠ADF +∠ADG =180°,所以∠B =∠ADG .在△ABE 和△ADG 中,⎩⎨⎧DG =BE ,∠B =∠ADG ,AB =AD ,所以△ABE ≌△ADG ,所以AE =AG ,∠BAE =∠DAG ,因为∠EAF =12∠BAD ,所以∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF , 所以∠EAF =∠GAF .在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,所以△AEF ≌△AGF ,所以EF =FG ,因为FG =DG +DF =BE +DF ,所以EF =BE +DF .【学以致用】△DEF 的周长为10.(第26题)。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2020-2021学年北师大版七年级数学下册第四章4.1认识三角形 同步测试
北师大版七年级数学下册第四章4.1认识三角形同步测试(原卷版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.113.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC 6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm28.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△二.填空题11.如图,AB△CD,CE与AB交于点A,BE△CE,垂足为E.若△C=37°,则△B= .12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.13.在三角形的三条高中,位于三角形外的可能条数是条.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有个.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.北师大版七年级数学下册第四章4.1认识三角形同步测试(解析版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【点评】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时.也考查了学生对待学习的态度,是一道好题.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.11【分析】设第三边的长为x,再由三角形的三边关系即可得出结论.【解答】解:设第三边的长为x,△三角形两边的长分别是3和5,△5﹣3<x<5+3,即2<x<8.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.【点评】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.【点评】本题主要考查了三角形的角平分线、中线和高,注意不同形状的三角形的高的位置.5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC【分析】根据三角形的中线的定义即可判断.【解答】解:△AD是△ABC的中线,△BD=DC,故选:B.【点评】本题考查三角形的中线的定义,解题的关键是熟练掌握基本知识,属于中考基础题.6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm【分析】先设第三根木棒的长为lcm,再根据三角形的三边关系求出l的取值范围,找出符合条件的l的值即可.【解答】解:设第三根木棒的长为lcm,△两根笔直的木棍,它们的长度分别是20cm和30cm,△30cm﹣20cm<l<30cm+20cm,即10cm<l<50cm.△四个选项中只有B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm2【分析】根据三角形的中线把三角形分成面积相等的两部分,进而解答即可.【解答】解:△AD是△ABC的边BC上的中线,△ABD的面积为16cm2,△△ADC的面积为16cm2,△CE是△ADC的边AD上的中线,△△CDE的面积为8cm2,故选:C.【点评】本题主要考查了三角形面积的求法和三角形的中线,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.8.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:△△BAC=105°,△△2+△3=75°△,△△1=△2,△3=△4,△△4=△3=△1+△2=2△2△,把△代入△得:3△2=75°,△△2=25°,△△DAC=105°﹣25°=80°.故选:A.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理是解题的关键.9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得△1=△2,△2=△3,△CDB=△C′DB=74°,则△1=△2=△3,即△ABC=3△3,根据三角形内角和定理得△3+△C=106°,在△ABC 中,利用三角形内角和定理得△A+△ABC+△C=180°,则20°+2△3+106°=180°,可计算出△3=27°,即可得出结果.【解答】解如图,△△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,△△1=△2,△2=△3,△CDB=△C′DB=74°,△△1=△2=△3,△△ABC=3△3,在△BCD中,△3+△C+△CDB=180°,△△3+△C=180°﹣74°=106°,在△ABC中,△△A+△ABC+△C=180°,△20°+2△3+(△3+△C)=180°,即20°+2△3+106°=180°,△△3=27°,△△ABC=3△3=81°,△C=106°﹣27°=79°,故选:D.【点评】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出△ABC和△CBD的倍数关系是解决问题的关键.10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△【分析】△正确.利用平行线的性质证明即可.△正确.首先证明△ECG=△ABC,再利用三角形的外角的性质解决问题即可.△错误.假设结论成立,推出不符合题意即可.△正确.证明△DFB=45°即可解决问题.【解答】解:△EG△BC,△△CEG=△BCA,△CD平分△ACB,△△BCA=2△DCB,△△CEG=2△DCB,故△正确,△CG△EG,△△G=90°,△△GCE+△CEG=90°,△△A=90°,△△BCA+△ABC=90°,△△CEG=△ACB,△△ECG=△ABC,△△ADC=△ABC+△DCB,△GCD=△ECG+△ACD,△ACD=△DCB,△△ADC=△GCD,故△正确,假设AC平分△BCG,则△ECG=△ECB=△CEG,△△ECG=△CEG=45°,显然不符合题意,故△错误,△△DFB=△FCB+△FBC=(△ACB+△ABC)=45°,△CGE=45°,△△DFB=△CGE,故△正确,故选:B.【点评】本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题11.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B= .11.答案:53°解析:【解答】△AB△CD,△△C=△BAE=37°,△BE△CE,△△BAE=90°,△△B=90°-△BAE=90°-37°=53°.【点评】先根据平行线的性质得出∠BAE的度数,再由直角三角形的性质即可得出结论.12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形21个.【分析】根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,即第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21.注意规律:后面的图形比前面的多4个.【解答】解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n =6时,原式=21,故答案为:21.【点评】注意正确发现规律,根据规律进行计算.13.在三角形的三条高中,位于三角形外的可能条数是0或2条.【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.由此即可确定三角形的三条高中,在三角形外部的最多有多少条.【解答】解:△当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.△三角形的三条高中,在三角形外部的最多有2条.故答案为:0或2.【点评】此题主要考查了三角形的高,关键是掌握三角形高的定义和画法.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是4cm2.【分析】根据三角形的面积=底×高÷2,求出△BOC的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD、△ACE的面积均是△ABC的面积的一半,据此判断出四边形ADOE的面积等于△BOC的面积,据此解答即可.【解答】解:△BD、CE均是△ABC的中线,△S△BCD=S△ACE=S△ABC,△S四边形ADOE+S△COD=S△BOC+S△COD,△S四边形ADOE=S△BOC=4×2÷2=4cm2.故答案为:4cm2.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有5个.【分析】根据三角形的三边关系求得第三边的取值范围,再根据三角形的周长是偶数,且已知的两边和是奇数,则三角形的第三边应该是奇数,从而求解.【解答】解:根据三角形的三边关系,得三角形的第三边大于2013而小于2025.根据题意,得三角形的第三边应该是奇数,则三角形的第三边可以为:2015,2017,2019,2021,2023共5个.故答案为:5.【点评】此题考查了三角形的三边关系,同时能够根据周长和已知的边判断第三边应满足的条件.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.【分析】利用角平分线的性质、三角形外角性质,易证△A1=△A,进而可求△A1,由于△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018即可求得.【解答】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018=△A=()°,故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出△A1=△A,并能找出规律.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)△三角形BDE与四边形ACDE的周长相等,△BD+DE+BE=AC+AE+CD+DE,△BD=DC,△BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,△AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,△2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,△BC+DE=(cm).【点评】本题考查的是三角形的周长、四边形的周长,正确作出图中所有线段是解题的关键.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.【分析】先利用三角形内角和定理可求△ABC,在直角三角形ACD中,易求△DAC;再根据角平分线定义可求△CBF、△EAF,可得△DAE的度数;然后利用三角形外角性质,可先求△AFB,再次利用三角形外角性质,容易求出△BOA.【解答】解:△△CAB=50°,△C=60°△△ABC=180°﹣50°﹣60°=70°,又△AD是高,△△ADC=90°,△△DAC=180°﹣90°﹣△C=30°,△AE、BF是角平分线,△△CBF=△ABF=35°,△EAF=25°,△△DAE=△DAC﹣△EAF=5°,△AFB=△C+△CBF=60°+35°=95°,△△BOA=△EAF+△AFB=25°+95°=120°,△△DAC=30°,△BOA=120°.故△DAE=5°,△BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出△EAF、△CBF,再运用三角形外角性质求出△AFB.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【分析】利用三角形三边关系定理,先确定第三边的范围,进而解答即可.【解答】解:△在△ABC中,AB=3,AC=7,△第三边BC的取值范围是:4<BC<10,△符合条件的偶数是6或8,△当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.△△ABC的周长为16或18.【点评】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|20.答案:见解答过程.解析:【解答】根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.△|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b +c+a-b=3c+a-b.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算.21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.21.答案:100°.【解答】△AD是△ABC的角平分线,△BAC=60°,△△DAC=△BAD=30°.△CE 解析:是△ABC的高,△BCE=40°,△△B=50°,△△ADB=180°-△B-△BAD=180°-30°-50°=100°.【分析】根据AD是△ABC的角平分线,△BAC=60°,得出△BAD=30°.再利用CE是△ABC 的高,△BCE=40°,得出△B的度数,进而得出△ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得△BAP=△DAP,△BCP=△DCP,结合(1)的结论可得2△P=△B+△D,再代入计算可求解;(3)根据角平分线的定义可得△ECP=△PCB,△F AG=△GAD,结合三角形的内角和定理可得△P+△GAD=△B+△PCB,△P+(180°﹣△GAD)=△D+(180°﹣△ECP),进而可求解.【解答】解:(1)△△AOB+△A+△B=△COD+△C+△D=180°,△AOB=△COD,△△A+△B=△C+△D,故答案为△A+△B=△C+△D;(2)△AP、CP分别平分△BAD、△BCD,△△BAP=△DAP,△BCP=△DCP,由(1)可得:△BAP+△B=△BCP+△P,△DAP+△P=△DCP+△D,△△B﹣△P=△P﹣△D,即2△P=△B+△D,△△B=36°,△D=14°,△△P=25°;(3)2△P=△B+△D.理由:△CP、AG分别平分△BCE、△F AD,△△ECP=△PCB,△F AG=△GAD,△△P AB=△F AG,△△GAD=△P AB,△△P+△P AB=△B+△PCB,△△P+△GAD=△B+△PCB,△△P+△P AD=△D+△PCD,△△P+(180°﹣△GAD)=△D+(180°﹣△ECP),△2△P=△B+△D.【点评】本题主要考查三角形的内角和定理,角平分线的定义,及角的计算,灵活运用等式的性质进行角的计算是解题的关键.。
北师大版七年级数学下册第四章三角形同步测试题
北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。
北师大版七年级数学下册第四章专题复习试题及答案全套.doc
最新北师大版七年级数学下册第四章专题复习试题及答案全套专训1三角形三边关系的巧用名师点金:三角形的三边关系应用广泛,利用三边关系可以判断三条线段能否组成三角形、已知两边求第三边的长或取值范围、证明线段不等关系、化简绝对值、求解等腰三角形的边长及周长等问题.1类戈丄判断三条线段能否组成三角形1•下列长度的三条线段能组成三角形的是()A・ 1, 2, 3 B• 1, 7T, 5C. 3, 4, 8D. 4, 5, 62.下列长度的三条线段,不能组成三角形的是()A. 3, 8, 4B. 4, 9, 6C. 15, 20, 9D. 9, 15, 83.已知下列三条线段的长度比,则能组成三角形的是()&・ 1 : 2 : 3 B・ 1 : 1 : 2C・ 1 : 3 : 4 D・ 2 : 3 : 4•奏更2求三角形第三边的长或取值范围4.若a, b, c为三角形的三边,且a, b满足|a2—9| +(b—2)2=0,则第三边c的取值范围是_________ -5.如果三角形的两边长分别为3和5,则周长I的取值范围是()4・ 6<l<15 B. 6<1<16C. 1KK13 D・ 10<1<166.一个三角形的两边长分别为5 cm和3 cm,第三边的长是整数,且周长是偶数,则第三边的长是()A. 2 cm 或 4 cmB. 4 cm 或 6 cmC・ 4 cm D・ 2 cm 6 cmD解答等腰三角形相关问题7.(2015-宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()9 B. 12C・7或9 D. 9或128.(2015-衡阳)己知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()4・ 11 B. 16C. 17 D・ 16 或179.已知在AABC中,AB = 5, BC = 2,且AC的长为奇数.⑴求AABC的周长;⑵判断AABC的形状.选勲:三角形的三边关系在代数中的应用10.已知a, b, c是AABC的三边长,b, c满足(b —2)2+ |c —3| =0,且a为方程|x—4| =2的解,求AABC 的周长.巻甕5利用三角形的三边关系说明边的不等关系11.如图,已知D, E为Z\ABC内两点,试说明:AB + AOBD + DE + CE.专训2三角形的三种重要线段的应用名师点金:三角形的高、中线和角平分线是三角形中三种重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起到了很大的帮助作用,因此我们需要从不同的角度认识这三种线段.应用!三角形的高的应用类型1找三角形的高1・如图,已知AB丄BD于点B, AC丄CD于点C, AC与BD交于点E.AADE的边DE上的高为,边AE上的高为・类型2作三角形的高 2.(动手操作题)画出图中AABC 的三条高.(要标明字母,不写画法)类型3求与高相关线段的问题3.如图,在AABC 中,BC = 4, AC = 5,若BC 边上的高AD = 4・ 求⑴AABC 的面积及AC 边上的高BE 的长;(2)AD : BE 的值.类型4说明与高相关线段和的问题4・女口图,在AABC 中,AB = AC, DE1AB, DF1AC, BG1AC,垂足分别为点 E, F, G.(第4题)试说明:DE + DF = BG.(第2题)AD(第3题)1应用么三角形的中线的应用类型1求与中线相关线段问题5.如图,己知AE是AABC的中线,EC = 4, DE = 2,则BD的长为()A・ 2 B. 3 C. 4 D. 66・如图,已知BE = CE, ED为AEBC的中线,BD = 8, AAEC的周长为24,则Z^ABC的周长为()A・ 40 B. 46 C. 50 D. 567.在等腰三角形ABC中,AB = AC, —腰上的中线BD将这个三角形的周长分成15 cm和6 cm两部分,求这个等腰三角形的三边长.(第9题)类型2求与中线相关的面积问题8. (2015•广东)如图,AABC的三边的中线AD, BE, CF的公共点为G,且AG : GD = 2 : 1,若S AABC~ 12,则图中阴影部分的面积是____________ ・⑴如图①,延长AABC的边BC到点D,使CD = BC,连接DA,若AACD的面积为Si,则_______ (用含a的代数式表示);(2)如图②,延长AABC的边BC到点D,延长边CA到点E,使CD = BC, AE = CA,连接DE,若ADEC的面积为S2,则S2= _____________ (用含a的代数式表示),请说明理由;⑶如图③,在图②的基础上延长AB到点F,使BF = AB,连接FD, FE,得到ADEF,若阴影部分的面积为S3,则S3= ____________ 佣含a的代数式表示).:燙月工三角形的角平分线的应用类型1三角形角平分线定义的直接应用10.⑴如图,在AABC中,D, E, F是边BC ±的三点,且Z1=Z2=Z3=Z4,以AE为角平分线的三角形有__________ :(2)如图,已知AE平分ZBAC,且Z1=Z2=Z4 = 15。
(完整word版)北师大版七年级数学下册第四章测试卷
(完整word版)北师⼤版七年级数学下册第四章测试卷北师⼤版七年级数学下册第四章三⾓形测试卷制作:杨天学姓名:___________⼀、选择题(每题3分,共30分)1、有下列长度的三条线段,能组成三⾓形的是()A、1cm,2cm,3cmB、1cm,4cm,2cmC、2cm,3cm,4cmD、6cm,2cm,3cm 2、两根⽊条的长分别是10cm和20cm,要钉成⼀个三⾓形的⽊架,则第三根⽊条的长度可以是()A、10cmB、5cmC、25cmD、35cm3、⼩明不慎将⼀块三⾓形的玻璃摔碎成如图所⽰的四块你认为将其中的哪⼀些块带去,就能配⼀块与原来⼀样⼤⼩的三⾓形.应该带().A .第1块B .第2块C .第3块D .第4块4、如果⼀个三⾓形的三条⾼的交点恰是三⾓形的⼀个顶点,那么这个三⾓形是()A.锐⾓三⾓形B .钝⾓三⾓形C .直⾓三⾓形D .⽆法确定5、已知等腰三⾓形的两边长是5cm和6cm,则此三⾓形的周长是()A . 16cm B. 17cm C. 11cm D. 16cm或17cm6、下列说法:①两个⾯积相等的三⾓形全等;②⼀条边对应相等的两个等边三⾓形全等;③全等图形的⾯积相等;④所有的正⽅形都全等中,正确的有()A、1个B、2个C、3个D、4个7、如图,已知/ 1 = 7 2,则下列条件中,不能使⼛ABC◎△ DBC成⽴的是(A、AB = CDB、AC = BDC、7 A = 7 DD、/ ABC = 7 DBC&在下列条件中:①7 A+ 7 B= 7 C,②7 A :7 B :7 C=1 : 5 : 6,1③7 A=90°—7 B,④7 A= 7 B=2 7 C中,能确定⼛ABC是直⾓三⾓形的条件有()9、如图,△ AOB^A COD,A和C,B 和D 是对应顶点,若BO = 6, AO = 3, AB = 5,则CD的长为().A. 10B. 8C. 5 D .不能确定⼀10、如图,在△ ABC中, D E分别为BC上两点,且BD= DE= EC,则图中⾯积相的三⾓形有()A. 4对B . 5对C . 6对D . 7对⼆、填空题:(每题2分,共24分)11、在△ ABC中,若7 A :7 B :7 C = 1 : 3 : 5,这个三⾓形为__________ ⾓形。
北师大版七年级数学下册第四章《三角形》质量检测试卷(解析版)
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
北师大版数学七年级下周周练(4.2~4.3).docx
初中数学试卷桑水出品周周练(4.2~4.3)(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.下列说法错误的是(B)A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.全等三角形的对应边相等D.全等三角形的对应角相等2.如图,OA=OB,OC=OD,∠D=35°,则∠C等于(C)A.60°B.50°C.35°D.条件不够,无法求出3.如图,若△ABC≌△DEF,BE=22,BF=5,则FC的长度是(B)A.10 B.12 C.8 D.164.如图,AC=DC,BC=EC,∠ACD=∠BCE.则下列结论错误的是(D)A.∠A=∠D B.∠B=∠EC.AB=DE D.CD=CE5.(仙桃中考)如图,AB=AD,BE=DE,BC=DC,则图中全等三角形有(C)A.1对B.2对C.3对D.4对6.如图1是玩具拼图模板的一部分,已知△ABC的六个元素,则图2中甲、乙、丙三个三角形中能和△ABC 完全重合的是(A)A .甲和丙B .丙和乙C .只有甲D .只有丙 7.(海南中考)下列条件中不能说明△ABC ≌△DCB 的是(D ) A .AB =DC ,AC =DBB .AB =DC ,∠ABC =∠DCB C .BO =CO ,∠A =∠D D .AB =DC ,∠A =∠D8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AC ⊥BD ;③四边形ABCD 的面积=12AC ·BD.其中正确的结论有(D )A .0个B .1个C .2个D .3个二、填空题(每小题4分,共20分)9.在广大农村,为了防止大风吹坏玻璃,大多数人都安装风钩来固定它,这种风钩使用的数学道理是三角形的稳定性.10.请观察图中的5组图案,其中是全等形的是(1)(4)(5)(填序号).11.(湖州中考)如图,若△ABC ≌△DEF ,则∠E 为80°.12.如图,若AB =AD ,∠BAC =∠DAC ,则△ABC ≌△ADC ,全等的依据是SAS .13.(钦州中考)在△ABC 和△BAD 中,BC =AD ,请你补充一个条件,使△ABC ≌△BAD ,你补充的条件是答案不唯一,如:AC =BD (只填一个).三、解答题(共56分)14.(8分)如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC是怎样的位置关系?为什么?解:AD⊥BC.理由:因为△ABD≌△ACD,所以∠ADB与∠ADC是对应角.又因为∠ADB+∠ADC=180 °,所以∠ADB=∠ADC=90 °.所以AD⊥BC.15.(10分)(铜仁中考)如图所示,已知∠1=∠2,请你添加一个条件,试说明:AB=AC.(1)你添加的条件是∠B=∠C;(2)请写出说明过程.解:在△ABD和△ACD中,∠B=∠C,∠1=∠2,AD=AD,所以△ABD≌△ACD(AAS).所以AB=AC.16.(12分)(阜新中考改编)如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE =DF.△ADE与△CBF全等吗?请说明理由.解:△ADE≌△CBF.理由:因为AE∥CF,所以∠AED=∠CFB.因为DF=BE,所以DF+EF=BE+EF,即DE=BF.在△ADE和△CBF中,AE=CF,∠AED=∠CFB,DE=BF,所以△ADE≌△CBF(SAS).17.(12分)(吉林中考)如图,在△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,△ABD与△AEC全等吗?请说明理由.解:△ABD≌△AEC,理由:因为∠BAC=∠DAE,所以∠BAC-∠BAE=∠DAE-∠BAE,即∠CAE=∠BAD.在△ABD和△AEC中,AD=AC,∠BAD=∠EAC,AB=AE,所以△ABD≌△AEC(SAS).18.(14分)如图,在四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE≌△CDF;(2)AB+DF=AF.解:(1)因为AC平分∠BAD,CE⊥AB,CF⊥AD,AC=AC,所以△ACE≌△ACF(AAS).所以CE=CF.因为∠ABC+∠D=180 °,∠ABC+∠EBC=180 °,所以∠EBC=∠D.又因为∠CEB=∠CFD=90 °,所以△CBE≌△CDF(AAS).(2)因为△ACE≌△ACF,所以AE=AF.因为△CBE≌△CDF,所以BE=DF.所以AB+DF=AB+BE=AE=AF.。
北师大版七年级数学下册 第四章 三角形 达标检测卷(含详细解答)
北师大版七年级数学下册第四章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( )2.若三角形有两个内角的和是85°,那么这个三角形是 ( )A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( ) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( ) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( )A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( ) A.BD是△ABC的高 B.CD是△BCD的高C.EG是△ABD的高 D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( )A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是()①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有 km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为 cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B,C为直线l上两点,点A在直线l外,且∠ABC=45°.若P是l上一点,且△ABP是“准直角三角形”,则∠APB 的所有可能的度数为.三、解答题(共66分)19.(6分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,试说明:AB∥DE.20.(8分)如图,已知线段a,b,∠α,求作三角形ABC,使AC=b,BC=2a,∠C=180°-α.(不写作法,保留作图痕迹)21.(8分)如图,AM平分∠CAD,CN平分∠ACB,△ACB≌△CAD,请你判断AM和CN的位置关系,并说明理由.22.(8分)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C =70°,求∠AEC和∠DAE的度数.23.(10分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)试说明:△ABE≌△CBD;(2)试说明:∠1=∠3.24.(12分)(南岗区校级期中)已知AD是△ABC的角平分线(∠ACB>∠B),P是射线AD上一点,过点P作EF⊥AD,交射线AB于点E,交直线BC于点M.(1)如图①,∠ACB=90°,试说明:∠M=∠BAD;(2)如图②,∠ACB为钝角,P在AD延长线上,连接BP,CP,BP平分∠EBC,CP 平分∠BCF,∠BPD=50°,∠CPD=21°,求∠M的度数.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( B)2.若三角形有两个内角的和是85°,那么这个三角形是 ( A)A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( D) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( D) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( C)A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( C)A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( C) A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A)A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( C)A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是( D)①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是__三角形的稳定性__.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为__4__.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为__10__.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有__1.1__km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__75°__.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为__0.7___cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__60°.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B ,C 为直线l 上两点,点A 在直线l 外,且∠ABC =45°.若P 是l 上一点,且△ABP 是“准直角三角形”,则∠APB 的所有可能的度数为__15°或22.5°或120°__.三、解答题(共66分)19.(6分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,试说明:AB ∥DE.解:∵BE =CF ,∴BC =EF ,在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC = DF ,BC=EF ,∴△ABC ≌△DEF(SSS),∴∠ABC =∠DEF ,∴AB ∥DE.20.(8分)如图,已知线段a ,b ,∠α,求作三角形ABC ,使AC =b ,BC =2a ,∠C =180°-α.(不写作法,保留作图痕迹)解:如图,△ABC 即为所求.21.(8分)如图,AM 平分∠CAD ,CN 平分∠ACB ,△ACB ≌△CAD ,请你判断AM 和CN 的位置关系,并说明理由.解:AM ∥CN.理由:∵△ACB ≌△CAD ,∴∠ACB =∠CAD.∵AM 和CN 分别平分∠CAD 和∠ACB ,∴∠ACN =12 ∠ACB ,∠CAM =12 ∠CAD ,∴∠ACN =∠CAM ,∴AM ∥CN.22.(8分)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C=70°,求∠AEC 和∠DAE 的度数.解:∵∠B =42°,∠C =70°,∴∠BAC =180°-∠B -∠C =68°.∵AE 平分∠BAC ,∴∠EAC =12 ∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°-∠C =20°,∴∠DAE =∠EAC -∠DAC =34°-20°=14°,∴∠AEC =90°-∠DAE =76°.23.(10分)如图,点E 在CD 上,BC 与AE 交于点F ,AB =CB ,BE =BD ,∠1=∠2.(1)试说明:△ABE ≌△CBD ;(2)试说明:∠1=∠3.解:(1)∵∠1=∠2,∴∠1+∠CBE =∠2+∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS);(2)∵△ABE ≌△CBD ,∴∠A =∠C ,∵∠AFB =∠CFE ,∴∠1=∠3.24.(12分)(南岗区校级期中)已知AD 是△ABC 的角平分线(∠ACB >∠B),P 是射线AD 上一点,过点P 作EF ⊥AD ,交射线AB 于点E ,交直线BC 于点M.(1)如图①,∠ACB =90°,试说明:∠M =∠BAD ;(2)如图②,∠ACB 为钝角,P 在AD 延长线上,连接BP ,CP ,BP 平分∠EBC ,CP 平分∠BCF ,∠BPD =50°,∠CPD =21°,求∠M 的度数.解:(1)∵EF ⊥AD ,∴∠APF =∠MCF =90°.∵∠AFP =∠MFC ,∴∠M =∠PAF.∵∠BAD =∠CAD ,∴∠M=∠BAD.(2)∵∠BPD=50°,∠CPD=21°,∴∠BPC=71°,∴∠PBC+∠PCB=109°.∵∠BCF=2∠PCB,∠EBC=2∠PBC,∴∠EBC+∠BCF=218°,∴∠ABC+∠ACB=360°-218°=142°,∴∠BAC=180°-142°=38°,∴∠DCP=∠FCP=∠CPD+∠CAD=40°,∴∠MDP=∠DPC+∠DCP=61°.∵EF⊥AP,∴∠MPD=90°,∴∠M=90°-61=29°.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③解:(1)∵△PAB和△PMN是等边三角形,∴∠BPA =∠MPN =60°, AB =BP =AP ,PM =PN =MN ,∴∠BPA -∠MPB =∠MPN -∠MPB , ∴∠APM =∠BPN.在△APM 和△BPN 中,⎩⎪⎨⎪⎧AP =BP ,∠APM =∠BPN ,PM =PN ,∴△APM ≌△BPN(SAS), ∴AM =BN.(2)图②中,BN =AB +BM ; 图③中,BN =BM -AB.。
难点解析:北师大版七年级数学下册第四章三角形专题测试试题(无超纲)
北师大版七年级数学下册第四章三角形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图, BD 是△ABC 的中线,AB =6,BC =4,△ABD 和△BCD 的周长差为( )A .2B .4C .6D .102、尺规作图:作A O B '''∠角等于已知角AOB ∠.示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS3、将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD 的度数是( )A .10°B .15°C .20°D .25°4、如图,ABC DEC ≌△△,A D ∠=∠,AC DC =,则下列结论:①BC CE =;②AB DE =;③ACE DCA ∠=∠;④DCA ECB ∠=∠.成立的是( )A .①②③B .①②④C .②③④D .①②③④5、如图,在△ABC 和△DEF 中,∠A =∠D ,AF =DC ,添加下列条件中的一个仍无法证明△ABC ≌△DEF 的是( )A .BC =EFB .AB =DEC .∠B =∠ED .∠ACB =∠DFE6、下列各组线段中,能构成三角形的是( )A .2、4、7B .4、5、9C .5、8、10D .1、3、67、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为( )A.6 B.8 C.6或8 D.4或68、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm9、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米10、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD是BC边上的中线,AB=5 cm,AD=4 cm,△ABD的周长是12 cm,则BC的长是____cm.2、如图,∠1=∠2,加上条件 _____,可以得到△ADB≌△ADC(SAS).3、已知a ,b ,c 是ABC 的三边长,满足()2720a b -+-=,c 为奇数,则c =______.4、如图,正三角形△ABC 和△CDE ,A ,C ,E 在同一直线上,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°.成立的结论有 _____.(填序号)5、如图,AC 平分∠DAB ,要使△ABC ≌△ADC ,需要增加的一个条件是____.三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,已知ABC 中,BAC ∠=90°,AB AC =,直线m 经过点,A BD ⊥直线m ,CE ⊥直线m ,垂足分别为点,D E .求证:DE BD CE =+.证明:(2)如图2,将(1)中的条件改为:在ABC 中,,,,AB AC D A E =三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.请写出,,DE BD CE 三条线段的数量关系,并说明理由.2、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.3、在四边形ABCD中,AB BC=.∥,点E在直线AB上,且DE CE(1)如图1,若90BC=,2∠=∠=︒,3DEC AAD=,求AB的长;(2)如图2,若DE交BC于点F,DFC AEC=+.∠=∠,求证:BC AB ADBC CA边上,且4、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边ABC的,BM CN =,AM ,BN 交于点Q .求证:60BQM ∠=︒.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“BM CN =”与“60BQM ∠=︒”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M ,N 分别移动到,BC CA 的延长线上,是否仍能得到60BQM ∠=︒?请你画出图形,给出答案并说明理由.5、如图,在ABC 中,8AB cm =,6BC cm =,5AC cm =,BD 是ABC 的角平分线,点E 在AB 边上,2AE cm =.求AED 的周长.-参考答案-一、单选题1、A【分析】根据题意可得,AD CD =,△ABD 和△BCD 的周长差为线段AB BC 、的差,即可求解.【详解】解:根据题意可得,AD CD =△ABD 的周长为AB AD BD ++,△BCD 的周长为BC BD CD ++△ABD 和△BCD 的周长差为()2AB AD BD BC BD CD AB BC ++-++=-=故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键.2、A【分析】利用基本作图得到OD =OC =OD ′=OC ′,CD =C ′D ′,则根据全等三角形的判定方法可根据“SSS ”可判断△OCD ≌△O ′C ′D ′,然后根据全等三角形的性质得到∠A ′OB ′=∠AOB .【详解】解:由作法可得OD =OC =OD ′=OC ′,CD =C ′D ′,所以根据“SSS ”可判断△OCD ≌△O ′C ′D ′,所以∠A ′OB ′=∠AOB .故选:A .【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.3、B【分析】根据三角板各角度数和三角形的外角性质可求得∠BFE ,再根据对顶角相等求解即可.【详解】解:由题意,∠ABC =60°,∠E =45°,∵∠ABC =∠E +∠BFE ,∴∠BFE =∠ABC -∠E =60°-45°=15°,∴∠AFD =∠BFE =15°,故选:B .【点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键.4、B【分析】根据全等三角形的性质直接判定①②,则有DCE ACB ∠=∠,然后根据角的和差关系可判定③④.【详解】解:∵ABC DEC ≌△△,∴,,BC EC AB DE ACB DCE ==∠=∠,故①②正确;∵,DCA DCE ACE BCE ACB ACE ∠=∠-∠∠=∠-∠,∴DCA ECB ∠=∠,故③错误,④正确,综上所述:正确的有①②④;故选B .【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.5、A【分析】根据AF =DC 求出AC =DF ,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF =DC ,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6、C【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、247+<,不能构成三角形,此项不符题意;B、459+=,不能构成三角形,此项不符题意;C、5810+>,能构成三角形,此项符合题意;D、136+<,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.7、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.9、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.10、A利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.二、填空题1、6【分析】根据AD 是BC 边上的中线,得出D 为BC 的中点,可得2BC BD =,根据条件可求出3BD =.【详解】 解:AD 是BC 边上的中线,D ∴为BC 的中点,BD CD ∴=,5,4AB AD ==,△ABD 的周长是12cm ,12543BD ∴=--=,2236BC BD ∴==⨯=,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出D 为BC 的中点.2、AB =AC (答案不唯一)【分析】根据全等三角形的判定定理SAS 证得△ADB ≌△ADC .【详解】解:加上条件,AB =AC ,可以得到△ADB ≌△ADC (SAS ).在△ADB 与△ADC 中,12AB AC AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ADB ≌△ADC (SAS ),故答案为:AB =AC (答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、7【分析】绝对值与平方的取值均≥0,可知70a-=,20b-=,可得a、b的值,根据三角形三边关系a b ca b c+>⎧⎨-<⎩求出c的取值范围,进而得到c的值.【详解】解:()2720a b-+-=70a∴-=,20b-=72a b∴==,由三角形三边关系a b ca b c+>⎧⎨-<⎩可得95cc>⎧⎨<⎩59c∴<<c为奇数7c∴=故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.4、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,可知∠DQE ≠∠CDE ,可知④错误; ⑤利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE =∠DEO ,于是∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,可知⑤正确.【详解】解:①∵等边△ABC 和等边△DCE ,∴BC =AC ,DE =DC =CE ,∠DEC =∠BCA =∠DCE =60°,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE DC CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴AD =BE ;故①正确;③∵△ACD ≌△BCE (已证),∴∠CAD =∠CBE ,∵∠ACB =∠ECD =60°(已证),∴∠BCQ =180°﹣60°×2=60°,∴∠ACB =∠BCQ =60°,在△ACP 与△BCQ 中,60CAD CBE AC BC ACB BCO ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.5、AB=AD(答案不唯一)【分析】根据SAS即可证明△ABC≌△ADC.【详解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案为:AB=AD(答案不唯一).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.三、解答题1、(1)证明见解析;(2)DE BD CE =+,证明见解析【分析】(1)利用已知得出∠CAE =∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出DE =BD +CE ;(2)根据∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,在△ADB 和△CEA 中,根据AAS 证出△ADB ≌△CEA ,从而得出AE =BD ,AD =CE ,即可证出DE =BD +CE ;【详解】(1)DE =BD +CE .理由如下:如图1,∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠AEC =90°又∵∠BAC =90°,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,90ABD CAE ADB CEA AB AC ∠∠⎧⎪∠∠︒⎨⎪⎩====, ∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE ,∵DE =AD +AE ,∴DE =CE +BD ;(2)DE BD CE =+,理由如下:如图2,∵∠BDA =∠AEC =∠BAC ,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE ADB CEA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;【点睛】本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.2、(1)∠A +∠C =90°;(2)∠C ﹣∠A =90°,见解析;(3)45°【分析】(1)过点B 作BE ∥AM ,利用平行线的性质即可求得结论;(2)过点B 作BE ∥AM ,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B 作BE ∥AM ,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=12∠MAB,∵CH平分∠NCB,∴∠BCF=12∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=12∠MAB+90°﹣12∠BCN=90°﹣12(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.3、(1)5;(2)证明见解析【分析】(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.【详解】(1)解:∵∠DEC=∠A=90°,∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,∴∠ADE=∠BEC,∵AD BC∥,∠A=90°,∴∠B+∠A=180°,∴∠B=∠A=90°,在△AED和△CEB中A BADE BEC,DE EC∴△AED≌△BCE(AAS),∴AE=BC=3,BE=AD=2,∴AB=AE+BE=2+3=5.(2)证明:∵AD BC∥,∴∠A=∠EBC,∵∠DFC=∠AEC,∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,∴∠AED =∠BCE ,在△AED 和△BCE 中AEDBCE AEBC DE EC ,∴△AED ≌△BCE (AAS ),∴AD =BE ,AE =BC ,∵BC =AE =AB +BE =AB +AD ,即AB +AD =BC .【点睛】本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用AAS 证明两个三角形全等”是解本题的关键.4、(1)仍是真命题,证明见解析(2)仍能得到60BQM ∠=︒,作图和证明见解析【分析】(1)由角边角得出ABM 和BCN △全等,对应边相等即可.(2)由(1)问可知BM =CN ,故可由边角边得出BAN 和ACM △全等,对应角相等,即可得出60BQM ∠=︒.(1)∵60BQM ∠=︒∴60QBA BAM ∠+∠=︒∵60QBA CQN ∠+∠=︒∴BAQ CQN ∠=∠在ABM 和BCN △中有BAQ CQN AB BC ABM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABM BCN ASA ≅△()∴BM CN =故结论仍为真命题.(2)∵BM =CN∴CM =AN∵AB =AC ,18060120ACM BAN ∠=∠=︒-︒=︒,在BAN 和ACM △中有BA AC BAN ACM AN CM =⎧⎪∠=∠⎨⎪=⎩∴BAN ACM SAS ≅△()∴BNA CMA ∠=∠∴60BQM BNA NAQ CMA CAM ACB ∠=∠+∠=∠+∠=∠=︒故仍能得到60BQM ∠=︒,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.5、7cm【分析】由题意结合角平分线性质和全等三角形判定得出CBD EBD ≅,进而依据AED 的周长AE AD DE AE AD DC =++=++进行求解即可.【详解】解:∵8AB cm =,6BC cm =,2AE cm =,∴826,BE AB AE cm BE BC =-=-==,∵BD 是ABC 的角平分线,∴CBD EBD ∠=∠,在CBD 和EBD △中,BE BC CBD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴CBD EBD ≅,∴CD DE =,∵5AC AD DC cm =+=,∴AED 的周长257AE AD DE AE AD DC cm =++=++=+=.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.。
北师大版初中数学七下第四章综合测试试题试卷含答案
第四章综合测试一、选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .72.在ABC △中,作BC 边上的高,以下作图正确的是( )A .B .C .D .3.如图,已知BD CD =,则AD 一定是ABC △的( )A .角平分线B .高线C .中线D .无法确定4.如图,在ABC △中,点D 在BC 的延长线上,若60A ︒∠=,40B ︒∠=,则ACD ∠的度数是( )A .140︒B .120︒C .110︒D .100︒5.如图,在ABC △中,CD 平分ACB ∠,DE BC ∥.已知74A ︒∠=,46B ︒∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,AB AC =,若要使ABE ACD △≌△.则添加的一个条件不能是( )A .BC ∠=∠ B .ADC AEB ∠=∠ C .BD CE = D .BE CD =7.如图,A B 、两点分别位于一个池塘的两端,小明想用绳子测量A B 、间的距离,如图所示的这种方法,是利用了三角形全等中的( )A .SSSB .ASAC .AASD .SAS8.小明学习了全等三角形后总结了以下结论: ①全等三角形的形状相同、大小相等; ②全等三角形的对应边相等、对应角相等; ③面积相等的两个三角形是全等图形; ④全等三角形的周长相等. 其中正确的结论个数是( ) A .1B .2C .3D .49.如图,AD 是ABC △的高,BE 是ABC △的角平分线,BE AD ,相交于点F ,已知42BAD ︒∠=,则BFD ∠=( )A .45︒B .54︒C .56︒D .66︒10.如图,ABC △的三边长均为整数,且周长为22,AM 是边BC 上的中线,ABM △的周长比ACM △的周长大2,则BC 长的可能值有( )个.A .4B .5C .6D .7二、填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是________.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带________块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是________.13.如图,Rt ABC △中,90C ︒∠=,25B ︒∠=,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M N 、两点,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数是________.14.如图,在ABC △中,AC BC =,过点A B ,分别作过点C 的直线的垂线AE BF ,.若3AE CF ==,4.5BF =,则EF =________.15.边长为整数、周长为20的三角形的个数为________.16.如图,Rt ABC △中,90BAC ︒∠=,6AB =,3AC =,G 是ABC △重心,则AGC S =△________.三、解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.19.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ︒∠=),点C 在DE 上,点A 和B 分别与木墙的顶端重合. (1)求证:ADC CEB △≌△;(2)求两堵木墙之间的距离.20.如图,已知B D ,在线段AC 上,且AD CB =,BF DE =,90AED CFB ︒∠=∠= 求证:(1)AED CFB △≌△;(2)BE DF ∥.21.如图,已知锐角ABC △,AB BC >.(1)尺规作图:求作ABC △的角平分线BD ;(保留作图痕迹,不写作法) (2)点E 在AB 边上,当BE 满足什么条件时?BED C ∠=∠.并说明理由.22.如图,ABC △中,90ACB ︒∠=,D 为AB 上一点,过D 点作AB 垂线,交AC 于E ,交BC 的延长线于F .(1)1∠与B ∠有什么关系?说明理由.(2)若BC BD =,请你探索AB 与FB 的数量关系,并且说明理由.23.如图1,点A B 、分别在射线OM ON 、上运动(不与点O 重合),AC BC 、分别是BAO ∠和ABO ∠的角平分线,BC 延长线交OM 于点G .(1)若60MON ︒∠=,则ACG ∠=________︒;若90MON ︒∠=,则ACG ∠=________︒; (2)若MON n ︒∠=.请求出ACG ∠的度数;(用含n 的代数式表示)(3)如图2,若MON n ︒∠=,过C 作直线与AB 交F .若CF OA ∥时,求BGO ACF ∠−∠的度数.(用含n 的代数式表示)24.如图1所示,在Rt ABC △中,90C ︒∠=,点D 是线段CA 延长线上一点,且AD AB =,点F 是线段AB上一点,连接DF ,以DF 为斜边作等腰Rt DFE △,连接EA ,EA 满足条件EA AB ⊥.(1)若20AEF ︒∠=,50ADE ︒∠=,2BC =,求AB 的长度;(2)求证:AE AF BC =+;(3)如图2,点F 是线段BA 延长线上一点,探究AE AF BC 、、之间的数量关系,并证明你的结论.第四章综合测试答案解析一、 1.【答案】C【解析】解:设第三边的长为x , 由题意得:4242x −+<<,26x <<,故选:C. 2.【答案】D【解析】解:BC 边上的高应从点A 向BC 引垂线,只有选项D 符合条件,故选:D. 3.【答案】C【解析】解:由于BD CD =,则点D 是边BC 的中点,所以AD 一定是ABC △的一条中线.故选:C.4.【答案】D【解析】解:ACD ∠是ABC △的一个外角,100ACD A B ︒∴∠=∠+∠=,故选:D. 5.【答案】A【解析】解:74A ︒∠=,46B ︒∠=,60ACB ︒∴∠=,CD 平分ACB ∠,11603022BCD ACD ACB ︒︒∴∠=∠=∠=⨯=,180104BDC B BCD ︒︒∴∠=−∠−∠=,故选:A. 6.【答案】D【解析】解:A 、添加B C ∠=∠可利用ASA 定理判定ABE ACD △≌△,故此选项不合题意;B 、添加ADC AEB ∠=∠可利用AAS 定理判定ABE ACD △≌△,故此选项不合题意;C 、添加BD CE =可得AD AE =,可利用利用SAS 定理判定ABE ACD △≌△,故此选项不合题意;D 、添加BE CD =不能判定ABE ACD △≌△,故此选项符合题意;故选:D.7.【答案】D【解析】解:观察图形发现:AC DC BC BC ACB DCB ==∠=∠,,,所以利用了三角形全等中的SAS ,故选:D. 8.【答案】C【解析】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C. 9.【答案】D 【解析】解:AD 是ABC △的高,90ADB ︒∴∠=,42BAD ︒∠=,18048ABD ADB BAD ︒︒∴∠=−∠−∠=,BE 是ABC △的角平分线, 1242ABF ABD ︒∴∠=∠=,422466BFD BAD ABF ︒︒︒∴∠=∠+∠=+=,故选:D. 10.【答案】A【解析】解:ABC △的周长为22,ABM △的周长比ACM △的周长大2,222BC BC ∴−<<,解得211BC <<,又ABC △的三边长均为整数,ABM △的周长比ACM △的周长大2,2222BC AC −−∴=为整数, BC ∴边长为偶数, 46810BC ∴=,,,,故选:A. 二、11.【答案】①③【解析】解:根据全等三角形的判定(SAS )可知属于全等的2个图形是①③,故答案为:①③. 12.【答案】② ASA【解析】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带②去.故答案为:②,ASA . 13.【答案】40︒【解析】解:Rt ABC △中,90C ︒∠=,25B ︒∠=,90902565CAB B ︒︒︒︒∴∠=−∠=−=,由作图过程可知:MN 是AB 的垂直平分线,DA DB ∴=, 25DAB B ︒∴∠=∠=,652540CAD CAB DAB ︒︒︒∴∠=∠−∠=−=.答:CAD ∠的度数是40︒. 故答案为:40︒. 14.【答案】7.5【解析】解:过点A B ,分别作过点C 的直线的垂线AE BF ,,90AEC CFB ︒∴∠=∠=,在Rt AEC △和Rt CFB △中,AC BCAE CF =⎧⎨=⎩,Rt Rt AEC CFB HL ∴△≌△(), 4.5EC BF ∴==,4.537.5EF EC CF ∴=+=+=,故答案为:7.5. 15.【答案】8【解析】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8. 16.【答案】3【解析】解:延长AG 交BC 于E .90BAC ︒∠=,63AB AC ==,,192ABC S AB AC ∴==△, G 是ABC △的重心,2AG GE BE EC ∴==,,19 4.52AEC S ∴=⨯=△,233AGC AEC S S ∴=⨯=△△,故答案为3. 三、17.【答案】解:如图所示,图中三角形的个数有ABC △,ACD △,ADE △,AEF △,AFG △,ABD △,ABE △,ABF △,ABG △ACE △,ACF △,ACG △,ADF △,ADG △,AEG △.18.【答案】解:BE CF =,BE EC CF EC ∴+=+,即BC EF =,在ABC △和DEF △中,AB DE AC DFBC EF =⎧⎪=⎨⎪=⎩(已知)(已知)(已知), ABC DEF SSS ∴△≌△().19.【答案】(1)证明:由题意得:AC BC =,90ACB ︒∠=,AD DE BE DE ⊥⊥,,90ADC CEB ︒∴∠=∠=,9090ACD BCE ACD DAC ︒︒∴∠+∠=∠+∠=,, BCE DAC ∴∠=∠在ADC △和CEB △中ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB AAS ∴△≌△();(2)解:由题意得:236cm AD =⨯=,7214cm BE =⨯=,ADC CEB △≌△,6cm EC AD ∴==,14cm DC BE ==, 20cm DE DC CE ∴=+=(),答:两堵木墙之间的距离为20cm .20.【答案】证明(1)90AED CFB ︒∠=∠=, 在Rt AED △和Rt CFB △中AD BCDE BF =⎧⎨=⎩, Rt Rt AED CFB HL ∴△≌△().(2)AED CFB △≌△,BDE DBF ∴∠=∠,在DBE △和BDF △中DE BFBDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩,DBE BDF SAS ∴△≌△(),DBE BDF ∴∠=∠, BE DF ∴∥.21.【答案】解:(1)如图,线段BD 即为所求.(2)结论:BE BC =. 理由:BD 平分ABC ∠, EBD CBD ∴∠=∠, BE BC BD BD ==,,BDE BDC SAS ∴△≌△(), BED C ∴∠=∠.22.【答案】解:(1)1∠与B ∠相等,理由:ABC △中,90ACB ︒∠=,190F ︒∴∠+∠=,FD AB ⊥,90B F ︒∴∠+∠=,1B ∴∠=∠;(2)若BC BD =,AB 与FB 相等,理由:ABC △中,90ACB ︒∠=,DF AB ⊥,90ACB FDB ︒∴∠=∠=,在ACB △和FDB △中,B B ACB FDB BC BD ∠=∠∠=∠=⎧⎪⎨⎪⎩,ACB FDB AAS ∴△≌△(),AB FB ∴=.23.【答案】(1)60 45(2)在AOB △中,180180OBA OAB AOB n ︒︒︒∠+∠=−∠=−,OBA OAB ∠∠、的平分线交于点C ,1118022ABC BAC OBA OAB n ︒︒∴∠+∠=∠+∠=−()(), 即1902ABC BAC n ︒︒∠+∠=−, 11180180909022ACB ABC BAC n n ︒︒︒︒︒︒∴∠=−∠+∠=−−=+()(), 1809090ACG n n ︒︒︒︒︒∴∠=−+=−();(3)AC BC 、分别是BAO ∠和ABO ∠的角平分线,1122ABC ABO BAC OAC BAO ∴∠=∠∠=∠=∠,, CF AO ∥,ACF CAG ∴∠=∠,BGO BAG ABG ∠=∠+∠,°12902BGO ACF BAG ABG ACF BAC ABG BAC ABG BAC n ︒∴∠−∠=∠+∠−∠=∠+∠−∠=∠+∠=−. 【解析】解:(1)60MON ︒∠=,120OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,1120602ABC BAC ︒︒∴∠+∠=⨯=, 18060120ACB ︒︒︒∴∠=−=,60ACG ︒∴∠=;90MON ︒∠=,90OBA OAB ︒∴∠+∠=,OBA OAB ∠∠、的平分线交于点C ,195452ABC BAC ︒︒∴∠+∠=⨯=, 18045135ACB ︒︒︒∴∠=−=;45ACG ︒∴∠=;故答案为:60,45.24.【答案】解:(1)在等腰直角三角形DEF 中,°90DEF ∠=, 120︒∠=,2170DEF ︒∴∠∠−∠==,23180EDA ︒∠+∠+∠=,360︒∴∠=,EA AB ⊥,°90EAB ∴∠=,3180EAB A ︒∠+∠+∠=,430︒∴∠=,90C ︒∠=,24AB BC ∴==;(2)如图1,过D 作DM AE ⊥于M ,在DEM △中,2590︒∠+∠=, 2190︒∠+∠=,15∴∠=∠,DE FE =,在DEM △与EFA △中,51DME EAF DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, DEM EFA ∴△≌△,AF EM ∴=,490B ︒∠+∠=,34180EAB ︒∠+∠+∠=,3490︒∴∠+∠=,3B ∴∠=∠,在DAM △与ABC △中,3B DMA C AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,DAM ABC ∴△≌△,BC AM ∴=,AE EM AM AF BC ∴=+=+;(3)如图2,过D 作DM AE ⊥交AE 的延长线于M , 90C ︒∠=,190B ︒∴∠+∠=,°°2118090MAB MAB ∠+∠+∠=∠=,,21902B ︒∴∠+∠=∠=∠,,在ADM △与BAC △中,2M CB AD AB∠=∠∠=∠=⎧⎪⎨⎪⎩,ADM BAC ∴△≌△,BC AM ∴=,°90EF DE DEF =∠=,,34180DEF ︒∠+∠+∠=,°3490∴∠+∠=,°3590∠+∠=,45∴∠=∠,在MED △与AFE △中,54M EAFDE EF∠=∠∠=∠=⎧⎪⎨⎪⎩,MED AFE ∴△≌△,ME AF ∴=,AE AF AE ME AM BC ∴+=+==,即AE AF BC +=.。
2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题
2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题A 组(基础题)一、填空题1.已知∠A 和线段AB ,要作一个唯一的△ABC ,还需给出的一个条件是___________. 2.已知线段AB 和BC ,要作一个唯一的△ABC ,还需给出的一个条件是_______.3.(1)用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是_______. (2)已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是_______. 4.如图,已知线段a ,c 和∠α,求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠α,根据作图在下面空格填上适当的文字或字母.(1)如图①,作∠MBN =_______;(2)如图②,在射线BM 上截取BC =_______,在射线BN 上截取BA =_______; (3)连接AC ,如图③,△ABC 就是_______. 二、选择题 5.不能用尺规作出唯一三角形的是( ) A .已知两角和夹边 B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角6.已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m ,作法:①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m.合理的顺序依次为( ) A .③①②B .①②③C .②③①D .③②①三、解答题7.(1)已知线段a ,b ,c ,如图,求作△ABC ,使AB =c ,BC =a ,AC =b.(不写作法,保留作图痕迹)(2)如图,已知∠1,∠2 和线段m,求作△ABC,使得∠A=∠1,∠B=∠2,AB=2m.(要求:尺规作图,保留作图痕迹,不写作法)8.已知三角形的两个角分别是∠α和∠β,这两角所夹的边等于a,如图所示,求作△ABC,使∠A=∠α,∠B=∠β,AB=a.(不写作法,保留作图痕迹)9.(1)如图,△ABC是任意一个三角形.作△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.(2)如图所示,已知线段a,n,h,求作△ABC,使BC=a,BC边上的中线AD=n,高AE=h.B组(中档题)一、填空题10.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_______.11.根据下列要求,判断是否一定能作出图形:①过已知三点作一条直线;②作直线OP的垂直平分线MN;③过点A作线段MN的垂线AB;④过点A作线段MN的垂直平分线;⑤过已知线段外一点作其平行线;⑥作△ABC的边BC的高AD且平分BC;⑦以点O为圆心作弧;⑧以点O为圆心,任意长为半径作弧.能作出图形的是_______,不能作出图形的是_______.12.已知∠a和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为_______.(填序号即可)①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.二、解答题13.如图,在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过点C作CD⊥AB,垂足为D;(2)过点D作DE∥BC,交AC于点E;(3)说明∠EDC=∠GFB的理由.C组(综合题)14.如图,在△ABC中,D为BC的中点,E,F分别是AB,AC上的点,且DE⊥DF,求证: BE +CF>EF.参考答案2020-2021学年北师大版七年级数学下册第四章 4.4用尺规作三角形 同步练习题A 组(基础题)一、填空题1.已知∠A 和线段AB ,要作一个唯一的△ABC ,还需给出的一个条件是已知AC(或∠B). 2.已知线段AB 和BC ,要作一个唯一的△ABC ,还需给出的一个条件是已知AC(或∠B). 3.(1)用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是SAS . (2)已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是SSS . 4.如图,已知线段a ,c 和∠α,求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠α,根据作图在下面空格填上适当的文字或字母.(1)如图①,作∠MBN =∠α;(2)如图②,在射线BM 上截取BC =a ,在射线BN 上截取BA =c ; (3)连接AC ,如图③,△ABC 就是所求作的三角形. 二、选择题 5.不能用尺规作出唯一三角形的是(D) A .已知两角和夹边 B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角6.已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m ,作法:①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m.合理的顺序依次为(A) A .③①②B .①②③C .②③①D .③②①三、解答题7.(1)已知线段a,b,c,如图,求作△ABC,使AB=c,BC=a,AC=b.(不写作法,保留作图痕迹)解:如图所示:∴△ABC即为所求.(2)如图,已知∠1,∠2 和线段m,求作△ABC,使得∠A=∠1,∠B=∠2,AB=2m.(要求:尺规作图,保留作图痕迹,不写作法)解:如图,△ABC即为所求.8.已知三角形的两个角分别是∠α和∠β,这两角所夹的边等于a,如图所示,求作△ABC,使∠A=∠α,∠B=∠β,AB=a.(不写作法,保留作图痕迹)解:如图所示,△ABC即为所求.9.(1)如图,△ABC是任意一个三角形.作△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.(2)如图所示,已知线段a ,n ,h ,求作△ABC ,使BC =a ,BC 边上的中线AD =n ,高AE =h.解:(1)作法:①作线段A ′B ′=AB ;②在A ′B ′的同旁,分别以点A ′,B ′为顶点作∠DA ′B ′=∠A ,∠EB ′A ′=∠B ,A ′D ,B ′E 交于点C ;③连接B ′C ′,得△A ′B ′C ′.(图略)(2)作法:①作角∠MEN =90°;②在射线EN 上截取线段EA =h ;③以点A 为圆心,线段n 为半径画弧交射线EM 于点D ,连接AD ;④延长DE ,以点D 为圆心,线段a2为半径画弧,交直线DE 于点B ,C ;⑤连接AB ,AC ,则△ABC 就是所求作的三角形.(图略)B 组(中档题)一、填空题10.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°,以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为6.11.根据下列要求,判断是否一定能作出图形: ①过已知三点作一条直线; ②作直线OP 的垂直平分线MN ; ③过点A 作线段MN 的垂线AB ; ④过点A 作线段MN 的垂直平分线; ⑤过已知线段外一点作其平行线; ⑥作△ABC 的边BC 的高AD 且平分BC ;⑦以点O为圆心作弧;⑧以点O为圆心,任意长为半径作弧.能作出图形的是③⑤⑧,不能作出图形的是①②④⑥⑦.12.已知∠a和线段m,n,求作△ABC,使BC=m,AB=n,∠ABC=∠α,作法的合理顺序为②③①④.(填序号即可)①在射线BD上截取线段BA=n;②作一条线段BC=m;③以B为顶点,以BC为一边,作∠DBC=∠α;④连接AC,△ABC就是所求作的三角形.二、解答题13.如图,在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过点C作CD⊥AB,垂足为D;(2)过点D作DE∥BC,交AC于点E;(3)说明∠EDC=∠GFB的理由.解:(1)(2)图略.(3)∵DE∥BC,∴∠EDC=∠BCD.∵FG⊥AB,CD⊥AB,∴CD∥FG.∴∠BCD=∠GFB.∴∠EDC=∠GFB.C组(综合题)14.如图,在△ABC中,D为BC的中点,E,F分别是AB,AC上的点,且DE⊥DF,求证: BE +CF>EF.证明:延长ED至点M,使DM=ED,连接MC,MF,则点F在线段EM的垂直平分线上,∴EF=FM.又∵BD=CD,DE=DM,∠BDE=∠CDM,∴△BDE≌△CDM(SAS).∴BE=CM.在△CFM中,CF+CM>MF,∴BE+CF>EF.。
北师大版数学七年级下册第四章 三角形 单元测试题(附答案)
北师大版数学七年级下册第四章三角形单元测试题(含答案)一、选择题(每题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10C.5,5,11 D.5,6,112.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°3.如图,已知∠1=∠2,∠B=∠D,△ABC和△EAD全等,则下列表示正确的是()A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△DEAD.△ABC≌△ADE4.如图,△AOC≌△BOD,点A和点B、点C和点D是对应顶点,下列结论中错误的是()A.∠A与∠B是对应角B.∠AOC与∠BOD是对应角C.OC与OB是对应边D.OC与OD是对应边5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定...互补的是()8.如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为()A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是____________________.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为__________.14.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,这个条件可以是____________(不再添加辅助线和字母).15.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD 与△BDC的周长的差是2 cm,则AB=__________.16.设a,b,c是△ABC的三边长,化简|a+b-c|+|b-c-a|+|c-a-b|=__________.17.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿线段DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.18.如图,已知边长为1的正方形ABCD,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.19.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.20.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.试说明:AC=DF.22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出其他的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A 旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.B 2.B 3.D 4.C 5.A 6.A 7.D8.A9.C10.D二、11.三角形具有稳定性12.36°13.15或1714.CA=FD(答案不唯一)15.10 cm16.3a+b-c17.80°18.1 419.10°20.65°三、21.解:因为AB∥ED,AC∥FD,所以∠B=∠E,∠ACB=∠DFE.因为FB=CE,所以BF+FC=CE+FC,即BC=EF.所以△ABC≌△DEF(ASA).所以AC=DF.22.解:(1)因为∠B=54°,∠C=76°,所以∠BAC=180°-54°-76°=50°.因为AD平分∠BAC,所以∠BAD=∠CAD=25°.所以∠ADB=180°-54°-25°=101°,∠ADC=180°-101°=79°.(2)因为DE⊥AC,所以∠DEC=90°.所以∠EDC=180°-90°-76°=14°.23.解:(1)由题可知∠DAG,∠AFB,∠CDE与∠AED相等.(2)(答案不唯一)选择∠DAG=∠AED.说明如下:因为四边形ABCD是正方形,所以∠DAB=∠B=90°,AD=AB.在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD .在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS). 所以BD =AE .25.解:(1)全等三角形的对应边相等. (2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°.所以∠DBA +∠BAD =90°. 又因为∠BAC =90°,所以∠BAD +∠CAE =90°.所以∠DBA =∠CAE . 因为AB =AC ,∠ADB =∠CEA =90°,所以△ABD ≌△CAE (AAS).所以AD =CE ,BD =AE . 则AD +AE =BD +CE ,即DE =BD +CE . (2)(1)中结论不成立.DE =BD -CE .同(1)说明△ABD ≌△CAE , 所以BD =AE ,AD =CE .又因为AE-AD=DE,所以DE=BD-CE.。
北师大版七年级下册数学第四章三角形 测试题附答案
北师大版七年级数学下册第四章三角形测试题一、单选题1.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm2.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )个A.1个B.2个C.3个D.4个3.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ) A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:55.如图所示,在△ABC中,∠B=40°,∠A=50°,将其折叠,使点A落在CB边上A′处,折痕为CD,则∠A′DB的度数为( )A.40°B.30°C.20°D.10°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A.带①去B.带②去C.带③去D.①②③都带去9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时∆''的位置,其中A C'交直线AD于点E,A B''分别交直线AD、AC于针方向旋转到A CB点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为().A.126°B.110°C.108°D.90°二、填空题11.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对13.三角形的三边长分别为5,1+2x,8,则x的取值范围是.14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.15.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC=_______.16.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.17.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题19.在△ABC中,AB=2BC,AD、CE分别是BC、AB 边上的高,试判断AD和CE的大小关系,并说明理由.20.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.21.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而(1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案1.C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.2.B【解析】【分析】根据三角形中任意两条边之和大于第三边,任意两条边之差小于第三边即可求解.【详解】解:①设三条线段分别为x,3x,4x,则有x+3x=4x,不符合三角形任意两边大于第三边,故不可构成三角形;②设三条线段分别为x,2x,3x,则有x+2x=3x,不符合三角形任意两边大于第三边,故不可构成三角形;③设三条线段分别为x ,4x ,6x ,则有x +4x <6x ,不符合三角形任意两边大于第三边,故不可构成三角形;④设三条线段分别为3x ,3x ,6x ,则有3x +3x =6x ,不符合三角形任意两边大于第三边,故不可构成三角形;能构成三角形的是⑤⑥.故本题答案选B.【点睛】本题利用了三角形三边的关系求解,掌握该知识点是解答本题的关键.3.B【解析】【分析】设大小处于中间的边长是xcm ,则最大的边是(x+1)cm ,最小的边长是(x-1)cm ,根据三角形的周长即可求得x ,进而求解.【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.【点睛】本题考查了三角形的周长,适当的设三边长是关键.4.C【解析】【分析】根据三角形外角和为0360,三角形内角和为0180,即可求解.【详解】解:设三个外角分别为2x ,3x ,4x ,三角形外角和为360°,所以2x +3x +4x =360°,所以x=40°,所以三个外角是80°,120°,160°,所以对应内角比为5:3:1,故选C.【点睛】本题考查了三角形外角和和内角和的相关知识,掌握该知识点是解答本题的关键.5.D【解析】∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选D.6.B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.7.C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.C【解析】【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.9.B【解析】试题分析:根据旋转的性质和全等三角形的判定,有∆'≌△ACE,A EF∆'≌△FDC,A CA∆''≌△ACD,GB CA CB∆'≌△AGF.共4对.故选B.10.C【解析】【分析】根据题意可设∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性质得到∠EAC=108°,最后根据三角形的内角和定理计算即可.【详解】∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别是关于AB,AC边所在直线的轴对称图形,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴∠α=∠EAC=108°.故选C.【点睛】此题考查轴对称的性质,三角形内角和定理和三角形外角的性质,解题关键在于掌握内角和定理.11.5<c<9 6或8 6【解析】【分析】(1).根据三角形的三边关系即可求出c的取值范围. (2).根据“偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数”即可解答. (3).用含有c的式子表示出周长为5的倍数,结合第三边c的取值范围,进而求出c的值.【详解】解:根据三角形的三边关系,可得7-2<c<7+2,即5<c<9,由于2+7=9是奇数,故当c为偶数时周长为奇数,即c的取值为6,8,当周长是5的倍数是,则有2+7+c=5n,且第三边取值范围为5<c<9,故周长的取值范围为14~18,故n=3,解得c=6.【点睛】本题主要考查了三角形的三边关系,偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数,掌握这两个知识点是解答本题的关键.12.3【解析】图中以BC为公共边的”共边三角形”有△ABC,△DBC,△EBC,共3对.故选B.13.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.14.20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.(1)观察:4×6=24 14×16=224
24×26=624 34×36=1224
······
你发现其中的规律吗?你能用代数式表示这一规律吗?
(2)利用(1)中的规律计算124×126。(5分)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】
A. B. C. D.
二、填空题(每小题3分,共15分)
Байду номын сангаас11.把 写成小数是.
12.计算: .
13.计算: =.
14.计算: =.
15.如果 ,那么 .
三、解答题
16.计算下列各题(每小题4分,共40分)
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
17.先化简,再求值: ,其中 (5分)
A. B. C. D.
5.计算: 的结果正确的是( )
A. B. C. D.
6.下列运算正确的是( )
A. B. C. D.
7.化简 ,结果正确的是( )
A. B. C. D.
8. ( )
A. B. C. D.
9.( )的计算结果是
A. B. C. D.
10.将n个边长都为1cm的正方形按如图所示的方法摆放点A1,A2,…,An分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为( )
七年级数学下第四周周测试卷
一、选择题(每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
1.计算 的结果是( )
A.-9 B.9 C.-6 D.6
2.某种原子的直径为0.000 000 0002米,用科学记数法表示为( )
A. B. C. D.
3.下列运算正确的是( )
A. B. C. D.
4.下列运算中 ,不正确的是( )