加权向量组合安排最佳组队方案数学建模讲解
挑选队员的模型
挑选队员的策略模型摘要全国大学生建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,各大高校对这项比赛都很重视,那么如何挑选出优秀的队员和如何将队员进行合理的组队就至关重要了。
本文将提出的问题转化为数学的模型以及合理的假设分析给出了妥帖的解决方案。
1、对于问题一我们用多元统计分析中的层次分析法首先建立了模型1.1,给各项条件指标一个权重,来计算加权函数i i ij j i iii W P L W ∑=∑===7161,αα,再求每个队员的综合水平,用Excel 整理数据,最后淘汰8、9两名队员。
然后在模型1.1的基础上建立了模型 1.2,从理论上按照层次分析法的步骤算出权重,再按模型 1.1的加权函数计算每个队员的综合水平,得出的结果也是淘汰8、9两名队员,充分的验证了模型的合理性。
2、对于问题二我们用逐项选优法和均衡模型法,由于学校参赛的目的不同给出两种模型。
我们把这个问题转化成求竞赛水平函数i j ml k ji m l k jW a W af ∑==61,,,,),(,模型2.1目的是使学校尽可能拿更高的奖项,用逐项求优法挑选竞赛水平高的队伍,重复挑选选取最优。
模型2.2目的是使学校尽可能多的获奖,也就是期望六支队伍都获奖,用均衡模型法,先选出竞赛水平最高的一组保证能够获奖,将剩下的队员均衡分配,从而竞赛水平都达到某一高度,这样六支队伍都能获奖。
综合这两种模型我们在不同的情况下做了合理的分析,认为模型2.1优于模型2.2. 3、对于问题三我们用求价值函数和仿真的方法,模型3.1是使每个教练挑选的队员的价值函数i i k q p o i i kq p o i kW d W dg ∑==613),,(3),,(3),(达到最大,同时保证他们之间相差不大,这样才能使教练相对满意。
模型3.2是用仿真的方法,通过仿真模拟出能够满足各个教练所需求的“最优”,又能使得他们所得队员差距更小,以取得使教练都尽可能满意的结果。
数学建模排班问题讲解学习
数学建模排班问题值班人员安排问题摘要某部队后勤值班室准备聘请4名兼职值班员和2名兼职带班员值班两种职位,相应的报酬也不同。
为使部队的支出最少,现需合理的设计出一张人员的值班时间表,在安排兼职值班员的过程中,需要考虑多方面的的问题与因素.因此,一个合理有效的兼职值班时间表的安排是非常有实际意义的.本次设计在综合了解一定的数学模型、以及LINGO软件中一些知识的基础上,以线性规划理论为基础,对实际例子进行一定的分析后,建立合理的整数规划模型.然后,利用LINGO软件求得结果.给出一个最优化的值班计划,使后勤值班室总支付的报酬为最少.关键词:值班时间表,LINGO软件,模型,报酬一.问题重述某部队后勤值班室准备聘请4名兼职值班员(代号为1,2,3,4)和2名兼职带班员(代号5,6)值班,已知每人从周一到周日每天最多可以安排的值班时间及每人每小时值班的报酬如下表.每人每天可值班的时间和报酬该值班室每天需要值班的时间为早上8:00至晚上22:00,值班时间内须有一名值班员值班.要求兼职值班员每周值班不少于10h,兼职带班员每周值班不少于8h.每名值班员每周值班不超过4次,每次值班不少于2h,每天安排值班的值班员不超过3人,且其中必须有一名兼职带班员值班.试为该值班室安排一张值班人员表,使总支付的报酬为最少.二.模型的假设(1)兼职员在可安排的时间内无特殊情况发生均可按时值班;(2)值班室需要值班的时间稳定不变;(3)值班员的兼职工资稳定不变.三.符号的说明ijx表示第i个值班员在星期j是否值班,如果值班,则ijx=1,否则ijx=0。
ija表示第i个值班员在星期j的值班时间。
ik表示第i个值班员值班一个小时所能够获取的报酬,ijA表示第i个值班员在星期j的值班时间的上限。
四.问题设计本题是在通过安排不同人员的值班时间来是部队支付的报酬最少,在给定的约束条件和每人每天的工作时间和报酬来设计。
由于知道员工每天的工作时间和报酬,这样就可确定目标函数,再通过给定的约束条件来解答,从而得出最优的值班时间表。
数学建模竞赛队员的选拔和组队问题
2011级信计《数学模型》课程论文题目:出版社的资源配置问题姓名:学号:摘要数学建模竞赛队员的选拔和组队问题该模型解决了选拔数学建模参赛队员及确定最佳组队的问题。
本文主要采用了层次分析法,并用计算机编程计算,在综合考虑15名队员个人的各项指标后,从中选出了9名优秀队员,又考虑到整队的技术水平,最终将挑出的9名队员分成三队,并建立了最佳组队的方案。
具体在针对问题二选拔队员时,要全面考察了队员的六项指标,并用层次分析法计算出权重得到15名队员的综合排名,最后淘汰掉排名靠后的6 名队员。
为了组成3个队,使得这三个队整体技术水平最高,我加入了权重,并依次选出了数学成绩较好、计算机成绩较好及综合成绩较好的三名同学,而且在考虑组队的过程中,尽量让问题简化,按成绩优劣均分队员,使三组的总体技术水平相当。
针对问题二,只要考虑计算机能力而不再考察其它情况,设置添加了一名队员S16。
比较分析综合排名,S13的综合能力排第九,而S16的综合能力排在S13之后。
如果直接选拔S16,队伍的总体水平下降。
可见这种选拔方式,有可能影响队伍的总体水平,所以不可取。
针对问题三,提出了建模队员选拔机制建议,帮助教练组提高建模队员选拔的效率和质量。
一、问题重述一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
参加数学建模需要的学生应具有较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件的能力、较强的语言表达能力和写作能力、良好的团队合作精神,同时还要求思维敏捷,对建立数学模型有较好的悟性。
目前大多数高校选拔队员主要考虑以下几个环节:校内竞赛获奖情况,数学建模暑假培训班考勤记录,培训课程的考试成绩,学生个人简介,面试,老师和学生的推荐等,通过这种方式选拔出队员。
大学生数学建模竞赛组队问题
(2),
4
利用 Matlab 公式:V , D eig( A) -----------------------(3)
计算出该矩阵的特征向量 V 和特征根 D,依据计算出的结果显示,成对比较 阵的最大特征根 7.0000 ,然后对最大特征根对应的特征向量作归一化处理,
得到了 7 个指标的权向量
其它特 长 6 7 9 8 8 6 5 6 6 7 8 9 9 6 5 5 4 5 6
加权成绩
9.05 8.95 8.9464 8.9286 8.7714 8.7321 8.7036 8.6857 8.6429 8.6071 8.5321 8.5179 8.4321 8.425 8.3714 8.3357 8.0571 7.9821 7.9393
n=7 时,对应的 RI =1.32,所以一致性比率 CR CI =0<0.01,通过一致性检验。因 RI
此依据加权综合成绩模型,利用 Maxcel 对综合成绩进行排序,如表 2:
队员编 号 L M G D R P O F T Q C E S A K N J I H
0.2500 0.2143 0.1786 0.1429 0.1071 0.0714 0.0357 -----(4)
其次,对权向量进行一致性检验,根据公式,一致性指标: CI n -----------------(5) n 1
可计算出 CI =0,再通过查看随机一致性指标表:
表1 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 1.59
值为 0 或 1,为 1 时表示第 i 个队员满足要求被选到最强的队伍里,为 0 时则表
示没有被选中。
数学建模竞赛参赛的队员选拔与组队问题
数学建模竞赛参赛的队员选拔与组队问题数学建模竞赛参赛的队员选拔与组队问题【摘要】本⽂根据竞赛队员的选拔和组队问题的基本要求,制定合理假设并求解。
依据各种能⼒的权重,建⽴能⼒加权值图表,由能⼒加权值排名进⾏参赛队员的选拔。
在确定最佳组队的问题上,⾸先以综合加权能⼒为依据选择,再根据相对优势制定调整⽅案。
为参赛队员组队的⽅案参照了最佳组队的⽅法并进⾏了推⼴,使所有队伍之间能⼒相差降低。
最后,建⽴与最⼤值及差值相关的⽬标函数,将队员组队,并将模型进⾏推⼴和改进。
关键词:加权相对优势差值⼀、问题描述问题描述:在参加数学建模竞赛活动中,各院校都会遇到如何选拔最优秀的队员和科学合理的组队问题。
今假设有20名队员准备参赛,根据队员的能⼒和⽔平要选出18名优秀队员分别组成6个队,选拔和评价队员主要考虑的条件依次为有关的学科成绩(平均成绩)、智⼒⽔平(反映思维能⼒、分析和解决问题的能⼒等)、动⼿能⼒(计算机的使⽤及其他⽅⾯的实际操作能⼒)、写作能⼒、外语⽔平、协作能⼒(组织、协调)和其它特长,每个队员的基本条件量化后如下表(略):(1)在20名队员中选择18名优秀的队员参加竞赛;(2)确定⼀个最佳的组队使得竞赛技术⽔平最⾼;(3)给出由18名队员组成6个队的组队⽅案,使整体竞赛技术⽔平最⾼;并给出每个队的竞技⽔平。
⼆、问题分析:队员选择上,关于队员的选取,要从20名队员中淘汰两⼈。
可采取排名然后去除后两名的⽅法。
根据原表格的数据,队员的评估指标分为了7项。
这7项指标的平均值、波动程度都不同。
因此,每种能⼒的权重不⼀致,因此采⽤表⽰差距的⽅差和原始指标的积来表⽰该队员在这项能⼒上的加权指标。
组队原则上:为了组成⼀个最强的组队⽅案,⾸先从综合加权能⼒的排名⼊⼿,再让每位队员的劣势得以补充。
综合所有的18名队员进⾏分组,可以根据以下原则进⾏分组强弱队员结合,综合实⼒较差的队员要有加权能⼒较强的队员给予补充;强弱能⼒结合,某⼀项能⼒较差的队员要有在该项能⼒较强的队员给予补充;不可以存在弱项,表现在模型⾥即为,各指标的最⼤值均⾮负。
(大学生数学建模竞赛组队方案)
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):成都纺织高等专科学校参赛队员(打印并签名) :1. XXX(机电XXX)2. XXX国贸XXX)3. XXX(电商XXX)指导教师或指导教师组负责人(打印并签名):日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):目录一、问题的重述 (1)1.1 背景资料与条件 (1)1.2 需要解决的问题 (1)二、问题的分析 (2)2.1 问题的重要性分析 (2)2.2问题的思路分析 (3)三、模型的假设 (4)四、符号及变量说明 (4)五、模型的建立与求解 (4)5.1建立层次结构模型 (4)5.2构造成对比较矩阵 (5)5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6)5.4一致性检验 (7)5.5层次分析模型的求解与分析 (8)5.5.1 构造成对比较矩阵 (8)5.5.2计算25优秀大学生的综合得 (9)六、模型的应用与推广 (11)七、模型的评价与改进 (12)7.1模型的优点分析 (12)7.2模型的缺点分析 (12)7.3模型的进一步改进 (12)八、参考文献 (13)附件一 (14)附件二 (16)XXXX第六届校级数学建模竞赛B题优秀大学毕业生的评选摘要成都纺织大学2011级管理学院有会计电算化、物流管理、国际贸易、酒店管理、旅游管理和连锁经营等6个专业11班共计470多名毕业生。
(完整word版)数学建模最佳阵容问题附程序代码
最佳阵容问题摘要本文针对女子体操团体赛中最佳出场阵容的问题.我们通过对赛程规定和已知数据的分析,合理的列出了目标函数和约束条件,特别对第二问的目标函数使用中心极限定理使目标函数简化.建立了以0—1整数规划为核心的数学模型,针对第一问分别使用贪心算法和0-1规划确定全能运动员。
使用lingo对模型进行求解.最后很好的给出了不同情况下出场阵容的最佳方案,由概率知识可容易的求出夺冠概率(0)和得分期望(224。
6),有90%的把握可战胜平均成绩为222。
7249的对手。
得出下面的具体结果.关键词贪心算法 0-1规划中心极限法一、问题分析每个队至多允许10名运动员参赛,每个项目可以有6名选手参加,每个运动员只能四项全参加或只参加单项比赛这两类中的一类,参加单项比赛的每个运动员至多只能参加三个单项.每个队应有4人参加全能比赛,其余运动员可参加单项比赛。
问题一:1. 每个选手的各单项得分按最悲观估算,排出一个出场阵容,使该队团体总分尽可能高。
2. 每个选手的各单项得分按均值估算,排出一个出场阵容,使该队团体总分尽可能高。
需要先确定4个全能运动员,考虑使用贪心算法确定,然后再使用1个0—1变量进行0-1整型规划,使用lingo求解确定剩余6个人的出场阵容。
但贪心算法只能找到局部最优解,于是考虑使用2个0-1变量也可用lingo进行求解,可以使结果更加优化。
问题二:1.求出一个出场阵容使该队总分不少于236.2分的概率最大,以该阵容出战,其夺冠的前景如何,得分期望值又如何。
2。
按以上阵容出战,它有90%的把握战胜得分为多少的对手。
要使一个出场阵容夺冠的概率最大,也可使用问题一的0—1整型规划,但此时发现目标函数过于复杂,使用lingo无法实现.于是考虑对目标函数进行合理的化简,由于各场比赛之间可以看作是相互独立的事件服从正态分布,因此我们选择使用中心极限定理对目标函数进行简化,之后再使用lingo进行求解即可。
最new数学建模队员选拔组队问题PPT
问题二
队员编号
5 11 13 6 21 25 16 8 14 4
建模水平
0.032219 0.029622 0.027367 0.024771 0.024771 0.013769 0.030921 0.026069 0.023472 Max 0.0033517
编程水平
Max 0.009821 0.009821 0.009821 0.009821 0.009821 0.009821 0.005456 0.007639 0.005456 0.007639
⑶ 得特征向量并一致性检验
特征向量 0 [0.1095,0.3090,0.5815] 3.0037 最大特征值 一致性检验 CR CI 0.00185 0.0032 0.1
RI 0.58
通过一致性检
问题一
⑷ 对各项指标进行量化
① 将校赛名次一等奖,二等奖,三等奖,参赛 奖用7,5,3,1来代替 ②等级评分A,B,C,D用4.5,3.5,2.5,1.5来代替
第一组 第二组 第三组 第四组 第五组 最优 4 5 16 1 11 7 25 3 21 6 13 18 14 8 12 13 9 2 0.08856 0.08856 0.08856 0.080274 0.078721 0.076102 AAAA AAAA AAAA AAAB AABB ABBB
谢谢大家!
11
0.011786
12
0.006987
9
0.029002
1
0.032499
21
0.011786
13
0.006987
13
0.029002
16
0.032499
6
0.011786
数学建模最佳组队方案资料
数学建模最佳组队方案资料
大学生数学建模大赛可以组队参赛。
在大学生数学建模比赛中,通常允许两人或三人组队参赛。
这样进行团队合作可以充分发挥个人优势,互相取长补短,共同完成困难的建模题目。
在组队之前,可以通过学校或组织等渠道发布个人信息,征集同样有意参加比赛的队员,也可以通过与学院同系的同学或者是同兴趣的同学进行推荐,确定自己的队员。
同时,在队员之间要协作密切,并且要制定详细的时间安排和分工,以充分利用各自的时间和发挥团队最大的效能。
最佳组队问题
最佳组队问题的求解与分析摘要参加重大比赛前,院校如何选拔最优秀的队员并科学合理地组队是各院校取得优秀名次的关键。
本文就此通过层次分析法建立层次结构模型(模型一),结合模型比较得出参赛的18名队员。
根据所得18名成员建立优化模型(模型二)求解最佳竞赛技术队。
接着,使用非线性规划模型(模型三)求解整体竞赛技术水平最高问题,最后,通过误差分析得到模型四推翻模型一,同时重解模型二、三,得出优化后的组队分配。
针对问题一,本文通过建立成对比较矩阵确定各项权重及其一致性,并通过权重计算得出淘汰队员应为I,H。
针对问题二,本文通过问题一的权重以及优化模型求解,得出G,L,S组成的队伍是竞赛技术水平最高的最佳组队。
针对问题三,本文通过非线性规划模型,得出以下组队方案:经过模型的误差分析,重新建立模型四,得:1.应淘汰A、O队员。
2.最强队组合人员应为G,H,L3.最佳组队方案应如下所示:关键词层次分析法权重优化模型非线性规划模型一、问题重述1.1问题背景在一年一度的我国和美国大学生数学建模竞赛活动中, 任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题,因此现假设有20名队员准备参加竞赛,请根据问题及所给参数进行相关选拔及组合。
1.2题目所给信息及参数根据队员的能力和水平选出18名优秀队员分别组成6个队, 每个队3名队员去参加比赛。
其中选拔队员主要考虑的条件按重要度依次为有关学科成绩(平均成绩)、智力水平(反映思维能力、分析问题和解决问题的能力等)、动手能力(计算机的使用和其它方面实际操行能力)、写作能力、外语能力、协作能力(团结协作能力)和其它特长,相关数据如下表所示。
表 1-队员各项能力汇总表1.3所需解决问题(1)在20名队员中选择18名优秀队员参加竞赛。
(2)确定一个最佳的组队使竞赛技术水平最高。
(3)给出由18名队员组成6个队的组队方案, 使整体竞赛技术水平最高, 并给出每个队的竞赛技术水平。
数学建模方法详解--三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
数学建模竞赛参赛队员的选拔与组队
数学建模竞赛参赛队员的选拔与组队摘要如何选拔最优秀的队员并科学合理的组队,是一个非常具有实际意义的数学模型问题。
本篇文章根据实际数据,综合考虑各方面因素的影响,给出了可以判断队员组队情况好坏的一般规律,并联系实际,运用所得规律进行科学的预测。
为了给出可以判断队员组队情况好坏的一般规律,本文综合考虑队员的性别、所属学院类型、在校期间的成绩。
为了分析前两者的影响,本文对三类(获国家奖、获省奖、没获奖)队伍的性别分布及所属学院类型分布进行了对比。
发现:规律1:队员不同的性别组合对数学建模成绩没有显著影响。
规律2:三个队员中至少有两个来自理工类学院时,组队效果好。
三个队员都来自文科类学院,组队效果不好。
在分析成绩的影响时,首先,联合使用计算机筛选(以课程开设学院为筛选依据,仅筛选出统计与数学学院、计算机与信息工程学院、人文学院、马克思学院开设的课程)与人工筛选,选出每个人学过的能反映数学建模能力的所有课程。
根据实际经验,数学建模是数学能力、计算机能力和写作能力的综合运用,利用筛选出的成绩可以对每个人的各项能力进行量化。
而后,为了得到衡量数学建模综合能力的指标,本文利用层次分析法求解出数学能力、计算机能力、写作能力对数学建模综合能力的权重分别为0.5396、0.2969、0.1634。
文中使用了两种方法确定了两个综合能力指标,其一为队伍能发挥的最大综合能力,该指标下每个队伍的单项能力为三个队员该项能力的最大值;其二为平均综合能力,该指标下每个队伍的单项能力为三个队员该项能力的平均值。
经过对比,得到如下规律:规律3:队伍能发挥的最大综合能力越高,组队效果越好。
队伍能发挥的最大综合能力低于80.6时,组队效果不好,高于90.69时,组队效果非常好。
规律4:队伍能发挥的平均综合能力越高,组队效果越好。
队伍能发挥的平均综合能力低于75.32时,组队效果不好,高于88.48时,组队效果非常好。
根据以上规律对问题二的5支队伍进行预测,发现:这5支队伍都有很大的几率获奖(国家奖或省奖),X1很有可能获得国家奖,X5最好成绩应该为省奖。
数学建模中的多目标决策与多准则决策
数学建模中的多目标决策与多准则决策在数学建模中,决策问题一直是一个重要而复杂的研究领域。
在实际应用中,我们常常会面临多个目标和多个准则的抉择,这就需要采用多目标决策和多准则决策的方法来解决。
本文将讨论数学建模中的多目标决策与多准则决策的应用和方法。
一、多目标决策多目标决策是指在决策问题中,存在多个相互联系但又有所独立的目标,我们需要在这些目标之间进行权衡和取舍。
多目标决策的核心是建立一个评价指标体系,将多个目标统一地考虑在内,并找到一个最优化的结果。
在多目标决策中,我们可以采用多种方法来求解最优解。
其中比较常用的方法有以下几种:1.加权法:加权法是将每个指标的重要性进行加权后进行综合评价,得到一个加权和最大的方案作为最优解。
这种方法简单直观,但也存在一定的主观性。
2.约束法:约束法是在满足一定约束条件的前提下,使目标函数最小化或最大化。
通过对各个目标进行约束,可以有效避免因为某个目标过分追求而导致其他目标的损失。
3.非支配排序遗传算法:非支配排序遗传算法是一种基于进化计算的多目标优化算法。
通过对候选解进行非支配排序,并根据解的适应度进行遗传操作,最终得到一组非劣解。
二、多准则决策多准则决策是指在决策问题中,存在多个相互独立但又有一定重叠性的准则,我们需要在这些准则之间进行权衡和衡量,找到最优的方案。
多准则决策通常需要考虑到几个关键因素:准则权重、准则的计算方法和准则的分值范围等。
在多准则决策的过程中,我们可以采用以下几种方法:1.正交实验设计法:正交实验设计法是一种常用的多准则决策方法。
通过合理选择实验设计方案,对多个准则进行全面而又系统地评估,得到最终的决策结果。
2.层次分析法:层次分析法是一种定量分析问题的层次结构的方法。
通过构建层次结构模型,并通过对每个层次的准则进行权重赋值,最终得到一个最优方案。
3.模糊综合评判法:模糊综合评判法是一种基于模糊数学的多准则决策方法。
通过将准则的评价结果转化为模糊数,并进行模糊集的运算,最终得到一个最优的决策方案。
数学建模方法——带权重的TOPSIS法
数学建模方法——带权重的TOPSIS法带权重的TOPSIS法(Technique for Order Preference bySimilarity to Ideal Solution)是一种常用的数学建模方法,主要用于多属性决策问题的分析和排序。
该方法的核心思想是通过计算每个备选方案与理想解和负理想解之间的相似度,来评估备选方案的优劣程度,并进行排序。
带权重的TOPSIS法在传统的TOPSIS法基础上进行了改进,考虑了各属性的权重因素。
这是因为在实际决策问题中,不同属性对最终结果的影响程度是不同的,有些属性可能更加重要。
因此,在进行评估和排序时,导入权重因素可以更准确地反映各属性的重要性。
带权重的TOPSIS法需要以下步骤来进行建模:1.确定决策矩阵:将多个备选方案的各个属性指标进行归一化处理,并将结果组成一个决策矩阵。
通常对于每个属性指标,将其归一化到[0,1]的范围内。
2.确定权重向量:根据决策者的主观判断,确定各属性指标的权重。
一种常见的确定方法是通过专家问卷调查或层次分析法等方法,但也可以根据具体情况进行判断。
3.构建归一化加权决策矩阵:将决策矩阵中的每个元素乘以对应属性指标的权重,得到归一化加权决策矩阵。
4.计算理想解和负理想解:对归一化加权决策矩阵中的每个属性指标,分别计算出最大值和最小值,得到理想解和负理想解。
5.计算每个备选方案与理想解和负理想解之间的相似度:对于每个备选方案,分别计算其与理想解的相似度和与负理想解的相似度。
相似度可以使用欧氏距离或其他相似性度量方法来计算。
6.计算综合评价指数:综合评价指数可以使用相似度的比值或几何平均来计算。
综合评价指数越大,表示备选方案与理想解越接近,优劣程度越好。
7.进行排序:根据综合评价指数进行排序,评价指数越大的备选方案排名越靠前。
带权重的TOPSIS法在实际应用中,可以灵活地适应不同的决策问题,并考虑到各属性指标的权重因素。
它不仅能够对备选方案进行评估和排序,还可以帮助决策者更好地理解备选方案在各个属性上的表现,从而做出更合理的决策。
数学建模-最优生产计划安排
最优生产计划安排关键词:最优解有效解弱有效解线性加权摘要:企业内部的生产计划有各种不同情况,从空间层次来看,在工厂级要根据外部需求和内部设备,人力,原料,等条件,以最大利润为目标制定生产计划,在车间级则要根据产品的生产计划,工艺流程,资源约束及费用参数等,以最小成本为目标制定生产批量计划。
从空间层次来看,若在短时间内认为外部需求和内部资源等随时间变化,可以制定但阶段的生产计划,否则就要制定多阶段深产计划。
本模型则仅考虑设备,工艺流程以及费用参数的情况下,通过线性规划来为企业求解最有生产方案。
I问题的提出:某厂生产三种产品I∏I I I每种产品要经过A、B两道工序加工。
设该厂有两种规格的设备能完成A工序,他们以A1、A2表示;有三种规格的设备能完成B工序,它们以B1、B2、B3表示,产品I可以在A、B任何一种规格设备上加工;产品∏可在任何一种规格的A设备上加工,但完成B工序时只能在B1设备上加工;产品I I I只能在A2与B2设备上加工。
已知各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床的设备费用,如下表所示,要求安排最优的生产计划,使厂方利润最大。
II问题分析:这个问题的目标是获利最大,有两个方面的因素,一是产品销售收入能否最大,二是设备费用能否最小。
我们要做的决策是生产计划,决策受到的限制有:原材料费,产品价格,各种设备有效台时以及满负荷操作时机床的设备费用。
显然这是一个多目标线性规划问题。
III问题假设1不允许出现半成品,即每件产品都必须经过两道工序。
2不考虑加工过程中的损失。
符号设定:设Z为净利润,Z1为产品销售纯收入,Z2为设备费用,iλ为权植,(i=1,2)且121=+λλ设经过工序A1、A2、B1、B2、B3加工的产品I 的数量依次为Xi1(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品∏的数量依次为Xi2(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品I I I 的数量依次为Xi3(i=1--5)。
组合模型最优加权法的公式
组合模型最优加权法的公式在咱们学习数学的这个大旅程中,有一个挺有意思的概念叫做组合模型最优加权法的公式。
这玩意儿听起来好像有点复杂,其实仔细琢磨琢磨,也没那么难理解。
就拿我之前教过的一个学生小明来说吧。
小明这孩子脑子挺灵,就是遇到稍微复杂点的数学问题就容易犯迷糊。
有一次,我们讲到组合模型最优加权法的公式,他那一脸迷茫的样子,让我印象特别深刻。
咱们先来说说这个组合模型最优加权法的公式到底是啥。
简单来讲,它就是一种通过对不同因素进行合理加权,从而得出最优结果的方法。
比如说,在一个投资问题中,我们要考虑多种资产的收益率、风险等因素,这时候组合模型最优加权法的公式就能派上用场啦。
这个公式通常可以表示为:W = (Σwi * Xi) / (Σwi) 。
这里的 W 就是我们最终想要的最优值,wi 是每个因素的权重,Xi 则是对应的因素值。
那为啥要用这个公式呢?咱们还是拿小明的例子来说。
小明他们班要组织一次户外活动,有几个备选方案,比如去爬山、去公园野餐、去博物馆参观。
每个方案都有各自的优点和缺点,比如爬山能锻炼身体但比较累,野餐轻松愉快但可能会有点无聊,参观博物馆能长知识但可能不够有趣。
这时候,小明就可以用组合模型最优加权法的公式来决定啦。
他给每个方案的不同方面打个分,再根据自己的喜好给这些方面设定权重,最后通过公式计算出哪个方案对他来说是最优的选择。
再比如说,在一个公司里,要评估员工的绩效。
不能只看工作成果,还得考虑工作态度、团队合作能力等等。
这时候,也可以用这个公式,给每个方面设定合适的权重,算出一个综合的绩效分数。
我还记得当时给小明讲完这个公式后,让他自己试着用这个公式去解决他生活中的一些小选择。
他一开始还不太熟练,算得磕磕绊绊的,但慢慢地就掌握了窍门。
有一次他特别兴奋地跟我说,他用这个公式决定了周末先写作业还是先玩游戏,结果安排得特别合理,既玩得开心,作业也完成得很棒。
其实啊,组合模型最优加权法的公式不仅仅在数学问题里有用,在咱们的日常生活中也能帮上大忙。
数学建模最佳组队方案
在一年一度的数学建模竞赛活动中,都会有不少院校组织学生参加数学建模竞赛, 比赛规则就是3 个人组成一个队,但是每一个学校都会有同样的问题,那就是在挑选出来的参赛团队中如何安排组队才干使队伍实力最强,以及整个团队实力最强,即追求一种整体实力最大化,这是参赛之前每一个院校必须做好的工作,组队原则是队员各方面能力能互补。
根据某院校20 名参赛预选队员,学校决定从20 名队员中选出18 名队员参加数学建模竞赛。
根据对20 名队员各项(7 项) 衡量指标判定学生的综合素质,我们通过定义7 项指标的权重得到一个正互反阵,采用层次分析法,进行分析,并且检验是否通过一致性检验,即则通过一致性检验,那末就可以知道每一个学生的综合成绩,通过筛选把最差的两个学生排除,就得到安排人数及名单,经检验在问题一中各项指标分层分析都通过一致性检验,运用MATLAB 进行计算输出结果。
在问题二中采用一随机三个人进行组合,进行随机组队,然后采用对每一个队组成的的一个矩阵这样的矩阵通过MATLAB 计算有816 个,那末就有816 种组合方式,在矩阵中每一行表示学生的姓名, 列表示学生的各项指标,为了让三个对员能够形成互补,我们采用调用函数方法进行搜索每一列最大值,构成一个新的数组,代表该队的各项能力水平,这样挨次取出就得到816 个队的各项指标的成绩,再与问题一里面的权重向量相乘,就得到一个的一个总体综合实力的矩阵,再通过排序筛选出最大的一个值,找到与之对应的组合队员,那么就可以确定该队实力最强。
问题三采用随机排序然后每隔3 个数归为一个整体代表每一个,一共有六个,通过增加其随机次数来确定它的稳定值.层次分析,随机数循环,加权向量,MATLAB,一致性检验对于问题一的得要求要在20 个队员中选出最好的18 个人参加比赛,通过筛选把最后的两个同学进行排就可以确定参赛队员名单。
对于问题二,根据题目要求通过对全局组合进行筛选,这里运用问题一里面的数据,通过层次分析出来的权向量, 以及筛选出来的18 个队员名单进行罗列组合的所有可能性做一个全局计算,得到每种可能组队的一个总体评价分数指标,然后筛选出最大的一个分数,就可以知道该队的人员组合安排.对于问题三,根据题目要求筛选出来的18 名队员组成的六个队需要进行一个科学合理的搭配使得总体水平效果最好,要解决的问题是具体安排每一个队由哪些人员组成,需要解决的是队员组成的队伍里面队员能够进行相互各方面的缺陷,这样才干使总体效果最好。
数学建模权重模型-概述说明以及解释
数学建模权重模型-概述说明以及解释1.引言1.1 概述在数学建模领域中,权重模型是一种常见的数学模型,用于描述和分析各种实际问题中各个因素的相对重要性。
权重模型通过对不同因素进行加权处理,从而确定它们在整体分析中的贡献程度。
这些加权因素可以是定量或定性的,并且可以基于专家意见、数据采集或统计分析等不同方式进行确定。
权重模型的主要目标是为决策者提供决策支持和参考,帮助他们更准确地评估问题和制定相应的解决方案。
本文将深入探讨权重模型的定义、应用场景以及相关的算法和计算方法。
在权重模型的定义部分,将介绍权重模型的基本概念和数学表达方式。
在应用场景一节中,将涵盖权重模型在不同领域中的广泛应用,如金融风险评估、人才选拔和供应链管理等。
在算法和计算方法的部分,将介绍常见的权重模型的建模方法和计算步骤,包括层次分析法、模糊权重法和专家打分法等。
在论文的结论部分,将重点评估权重模型的优势和局限性。
权重模型的优势在于能够提供更全面、客观和准确的决策支持,帮助决策者更好地辨识和解决问题。
然而,权重模型也存在一些局限性,如对数据的依赖性较大、权重的确定存在主观性等。
在对未来研究的展望中,将提出一些可以进一步探索和改进的方向,如融合多种权重模型、提升权重计算的准确性等。
综上所述,权重模型在数学建模中具有重要的应用价值和研究意义。
通过对权重模型的深入研究和应用,可以为实际问题的解决提供更科学、有效的方法和工具。
希望本文能够为读者提供对权重模型的初步了解,并促进更多关于权重模型的研究和应用。
1.2文章结构1.2 文章结构本文按照以下结构进行论述:1. 引言:在本部分中,将对数学建模权重模型的概述进行介绍,包括权重模型的背景和重要性。
同时,还将介绍整篇文章的目的和意义。
2. 正文:2.1 权重模型的定义:详细介绍数学建模权重模型的定义和基本原理,包括权重的概念和其在数学建模中的应用。
2.2 权重模型的应用场景:探讨权重模型在不同领域的应用场景,如金融领域的投资组合优化、物流领域的路径规划等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模论文加权向量组合安排最佳组队方案摘要:在一年一度的数学建模竞赛活动中,都会有很多院校组织学生参加数学建模竞赛,比赛规则就是3个人组成一个队,但是每个学校都会有同样的问题,那就是在挑选出来的参赛团队中如何安排组队才能使队伍实力最强,以及整个团队实力最强,即追求一种整体实力最大化,这是参赛之前每个院校必须做好的工作,组队原则是队员各方面能力能互补。
根据某院校20名参赛预选队员,学校决定从20名队员中选出18名队员参加数学建模竞赛。
根据对20名队员各项(7项)衡量指标判定学生的综合素质,我们通过定义7项指标的权重得到一个正互反阵, 采用层次分析法,进行分析,并且检验是否通过一致性检验,即0.1cicr ri=< 则通过一致性检验,那么就可以知道每一个学生的综合成绩,通过筛选把最差的两个学生排除,就得到安排人数及名单,经检验在问题一中各项指标分层分析都通过一致性检验,运用MATLAB 进行计算输出结果。
在问题二中采用一随机三个人进行组合,进行随机组队,然后采用对每一个队组成的37⨯的一个矩阵这样的矩阵通过MATLAB计算有816个,那么就有816种组合方式,在矩阵中每一行表示学生的姓名,列表示学生的各项指标,为了让三个对员能够形成互补,我们采用调用函数max()方法进行搜索每一列最大值,构成一个新的数组,代表该队的各项能力水平,这样依次取出就得到816个队的各项指标的成绩,再与问题一里面的权重向量w相乘,就得到一个8161⨯的一个总体综合实力的矩阵,再通过排序筛选出最大的一个值,找到与之对应的组合队员,那么就可以确定该队实力最强。
问题三采用随机排序然后每隔3个数归为一个整体代表每一个,一共有六个,通过增加其随机次数来确定它的稳定值。
关键词:层次分析,随机数循环,加权向量,MATLAB,一致性检验一.问题重述:问题一:对于问题一的得要求要在20个队员中选出最好的18个人参加比赛,通过筛选把最后的两个同学进行排就可以确定参赛队员名单。
问题二:对于问题二,根据题目要求通过对全局组合进行筛选,这里运用问题一里面的数据,通过层次分析出来的权向量w,以及筛选出来的18个队员名单进行排列组合的所有可能性做一个全局计算,得到每种可能组队的一个总体评价分数指标,然后筛选出最大的一个分数,就可以知道该队的人员组合安排。
问题三:对于问题三,根据题目要求筛选出来的18名队员组成的六个队需要进行一个科学合理的搭配使得总体水平效果最好,要解决的问题是具体安排每一个队由哪些人员组成,需要解决的是队员组成的队伍里面队员能够进行相互各方面的缺陷,这样才能使总体效果最好。
二.模型假设:1. 假设竞赛水平的发挥只取决于表中所给的各项条件;2. 参赛队员都能正常发挥自己的水平;3.假设7个指标的影响度是逐渐降低的4.假设随机组组队,每个队员在该组都能弥补其他两人的不足5.假设每队的综合能力只是取决于他们的7项指标三.符号说明:CI:一致性指标;CR:一致性比率;RI:随机一致性指标;X:7个指标的权重Y: 每个队员的综合得分W:每名队员依据各个指标所占权重所得分数Tl:每个方案总分t:一个方案下每个队的竞技水平Z:表示组队的名称i四.模型建立与求解:问题一:该问题是一个综合排序问题。
对于此类问题,可通过层次分析法知道不同评价指标所占权重,然后根据权重进行整体评估与排序。
在本题中,依据层次分析法,目标层为选择队员;准则层为学科成绩、智力水平、动手能力、写作能力、外语能力、协作能力、其它特长;方案层为A 、B 、C 、D 、E 、F 、G 、H 、I 、J 、K 、L 、M 、N 、O 、P 、Q 、R 、S 、T 这20个待选队员(如图1)。
假设7个评价指标所占权重是依次递减的,分别为1,2,3,4,5,6,7。
通过两两比较建立成对比较阵(如图2),然后进行一致性检验,若检验通过,则计算出目标层与准则层之间权重X 。
针对准则层与方案层,若用层次分析法,需建立7个2020 的矩阵,人为工作量过大;且心理学家认为,成对比较因素不宜超过9个,而此时的成对比较因素有20个,因此准则层与方案层之间的权重计算不用层次分析法,而通过Excel 直接依据各个指标所占权重计算每个人的得分,再将每个人的7个指标得分求和得出每个队员的综合得分Y ,并对总得分Y 降序排列排除最后两名队员。
图1:计算每名队员综合得分的方法如下:(1)在matlab 中输入正互反矩阵(图2),调用编写好的层次分析法计算权重方程xxjj0,得出CI 、CR ,判断一致性; (2)得出7个指标所占权重X ;(3)通过Excel 计算每名队员依据各个指标所占权重所得分数W ; (4)每个队员各个指标的B 求和,得出每个队员的综合分数Y ;目标层准则层方案层(5)个队员的综合分数C进行排序,选出前18位;输入正互反矩阵(图2)矩阵2:得出0.0326CR=CI=,0.0247当正互反阵为7阶时,对应的 1.32RI=得到结果:CI RICR<,所以通过一致性检验,可用产生的权<且0.1重7个指标权重分别为:[]X=,,,,,,0.35430.23990.15870.10360.06760.04480.0312对B求和,得出每个队员的综合分数Y如下表:名队员名单分别为:A、B、C、D、E、F、G、J、K、L、M、N、O、P、Q、R、S、T。
问题二:考虑到3名队员之间能力的互补性,需选出3名队员,他们每个人在7项评价指标中最高分予以保留生成新的最高分。
将新生成的7项最高分按第一问的权重相加,得出最高综合分。
这3名队员的综合最高分越高,则这只队伍的能力越强。
对于每一项评价指标,三人进行比较,将3人中的最高值予以保留,得到由三人成绩共同组成的新的一组指标。
将新得出的一组指标分别乘以第一组得出的权重,让后对一组中的7项指标求和,其积记为这一组的总分数。
求出所有组合情况下每组的总分数,并选出所有总分数中的最大值。
找出最大值所对应的组合情况,即为最佳3人组队。
经过程序运行计算,得出总分最大值为9.5178,此时为第622种组合情况,对应的队员名单为:G 、S 、L 。
程序请看在附录-第二问问题三:要求18名队员组成6个队, 并且整体竞赛技术水平最高, 同时给出每个队的竞赛技术水平。
通过matlab 随机产生18个元素的一行18列矩阵,随机分成六组作为一个分组方案,编程类似问题二,最后通过总分t 衡量,量化看一个方案的优秀程度。
经过大数量的循环得到最优方案(1)一次循环即为一个方案,随机分出6个组,记为(1, (6)i Z i =列出每个组的分数矩阵,例如随机组合一个组如下8.698.287.99.568.28.88.1 6.57.79.1288.68.58.59.29.68⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(2)每个组各项的水平应该由其三个队员各项能力中最高的数组决定,所以用max()函数得出能代表每组各项水平,结果如下:[]8.698.58.59.29.68(3)将每组通过用max()函数得到的行向量乘以每项能力的权重X 得到t ,t 即为衡量每组综合能力的数值。
例如[][==t X8.698.58.59.29.68*9.39409.39399.24528.96989.31149.297将t向量六项元素求和得Tl,用Tl值来衡量该方案的优秀程度解得结果如下:[]A B C D E F G J K L M N O P Q R S T上面为筛选后的十八名队员排序编号分别为1,...18,所以对应上表得到组队方案:第一队BLG第二队NKO第三队CTP第四队EMQ第五队DSJ第六队AFR五.模型的误差分析在第一问中,本文采用了层次分析法。
依题意较主观的对7项评价指标进行了重要度的评测。
从不同的角度、不同侧重点对7项评价指标的重要度进行评测,其评测结果存在差异,这将导致7项评价指标所占权重存在差异。
在第三问中,由于全局搜索计算量过大,本文通过多次产生随机组合的方法求18名队员总体的最佳竞赛水平。
由于随机生成的组合方法不同,18名队员的分组情况会有差异,18名队员整体竞赛水平也会有差异,但误差可控制在0.01之内。
六.模型评价本文针对第一问,采用了层次分析法,能够较科学的得出7项评价指标指标所占权重。
但又未完全采用层次分析法,避免了由于成对比较因素过多而造成RI值不准确,保证了所求每个队员综合得分的准确性与科学性。
本文对18名队员所有组合情况进行了全局搜索,对于最佳组合能力衡量较全面,所选的3名队员能力具有互补性。
而对于每种组合情况,具有科学的量化标准。
本程序能够精确的选出所需的3名队员,并给出综合得分。
本文对于18个队员组成6队的人员分组,进行了随机生成,大大减少了计算机的工作量,同时所得结论亦科学合理。
模型的不足受题目本身的影响,有些误差无法避免,重要系数得到的正反矩阵是人为定义的误差无法避免。
七.模型推广此模型在对待评价对象进行全面而综合的科学评价,多个选择对象进行筛选,任务分配,组队等问题中有着广泛的应用,解决数学建模的最佳组队问题对实际的日常生活有重要意义。
层次分析可用于选择旅游方案,公司招聘职员等问题,八.附录:第一问:%产生7项评价指标的对应权重。