计算机操作系统 实验一:进程调度实验报告书

合集下载

计算机操作系统进程调度实验报告

计算机操作系统进程调度实验报告

计算机操作系统进程调度实验报告实验报告:计算机操作系统进程调度1.实验背景与目的计算机操作系统是一种负责管理和协调计算机硬件和软件资源的系统。

进程调度作为操作系统的重要功能之一,主要负责决定哪些进程可以运行、何时运行以及运行多长时间等问题。

本实验旨在通过实践学习进程调度的原理和实现细节,加深对操作系统的理解。

2.实验原理与步骤(1)实验原理:进程调度的目标是充分利用计算机资源,提高系统的吞吐率和响应时间。

常用的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。

在本实验中,我们将实现时间片轮转调度算法,并对比不同算法的性能差异。

(2)实验步骤:1)设计进程数据结构:创建进程控制块(PCB)结构体,包含进程的标识符、到达时间、服务时间、剩余时间、等待时间等信息。

2)生成进程:根据指定的进程个数和服务时间范围,生成随机的进程并初始化进程控制块。

3)时间片轮转调度算法:根据时间片大小,按照轮转调度的方式进行进程调度。

4)性能评估:通过记录进程的等待时间和周转时间,比较不同调度算法的性能差异。

3.实验结果与分析通过实验我们生成了10个进程,并使用时间片大小为2进行轮转调度。

下表列出了各个进程的信息及调度结果。

进程到达时间服务时间剩余时间等待时间周转时间P108068P214004P3291310P4350115P542032P6570147P763063P8761714P981071P1093104从实验结果可以看出,时间片轮转调度算法相对公平地分配了CPU给各个进程,减少了等待时间和周转时间。

但是,对于长时间服务的进程,可能出现饥饿问题,即一些耗时较长的进程无法得到充分的CPU时间。

与时间片轮转算法相比,先来先服务(FCFS)算法对于短作业具有更好的响应时间,但可能导致长作业等待时间过长。

最短作业优先(SJF)算法能够最大化短作业的优先级,提高整体性能。

4.实验总结与体会本次实验通过实践了解了进程调度的原理与实现细节,加深了对操作系统的理解。

操作系统实验报告进程调度

操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。

其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。

实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。

实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。

在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。

实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。

在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。

2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。

在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。

3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。

在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。

实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。

在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。

因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。

结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。

同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。

进程调度程序实验报告

进程调度程序实验报告

一、实验目的通过本次实验,加深对进程调度原理和算法的理解,掌握进程调度程序的设计与实现方法。

实验要求我们使用高级编程语言编写一个简单的进程调度程序,实现不同调度算法的模拟,并通过实验验证算法的性能。

二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:IntelliJ IDEA三、实验内容本次实验主要实现以下调度算法:1. 先来先服务(FCFS)2. 最短作业优先(SJF)3. 时间片轮转(RR)四、实验步骤1. 定义进程类(Process):```javapublic class Process {private String processName; // 进程名称private int arrivalTime; // 到达时间private int burstTime; // 运行时间private int waitingTime; // 等待时间private int turnaroundTime; // 周转时间// 构造函数public Process(String processName, int arrivalTime, int burstTime) {this.processName = processName;this.arrivalTime = arrivalTime;this.burstTime = burstTime;}// 省略getter和setter方法}```2. 定义调度器类(Scheduler):```javapublic class Scheduler {private List<Process> processes; // 进程列表private int currentTime; // 当前时间// 构造函数public Scheduler(List<Process> processes) {this.processes = processes;this.currentTime = 0;}// FCFS调度算法public void fcfs() {for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// SJF调度算法public void sjf() {processes.sort((p1, p2) -> p1.getBurstTime() -p2.getBurstTime());for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// RR调度算法public void rr(int quantum) {List<Process> sortedProcesses = new ArrayList<>(processes);sortedProcesses.sort((p1, p2) -> p1.getArrivalTime() -p2.getArrivalTime());int timeSlice = quantum;for (Process process : sortedProcesses) {if (process.getBurstTime() > timeSlice) {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += timeSlice;process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(process.getBurstTime() - timeSlice);} else {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(0);}}}}```3. 测试调度程序:```javapublic class Main {public static void main(String[] args) {List<Process> processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));Scheduler scheduler = new Scheduler(processes); System.out.println("FCFS调度结果:");scheduler.fcfs();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));System.out.println("SJF调度结果:");scheduler.sjf();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));System.out.println("RR调度结果(时间片为2):");scheduler.rr(2);for (Process process : processes) {System.out.println(process);}}}```五、实验结果与分析通过实验,我们可以观察到以下结果:1. FCFS调度算法简单,但可能导致长作业等待时间过长。

实验一、进程调度实验报告

实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。

通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。

就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。

2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。

先来先服务算法按照进程到达的先后顺序进行调度。

短作业优先算法优先调度执行时间短的进程。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。

四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。

实现进程的创建、插入、删除等操作。

实现不同的调度算法。

2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。

分别采用先来先服务、短作业优先和时间片轮转算法进行调度。

记录每个算法下的平均周转时间、平均等待时间等性能指标。

五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。

进程调度操作系统实验报告

进程调度操作系统实验报告

进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。

二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。

先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。

这种算法简单直观,但可能导致短作业等待时间过长。

短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。

如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。

优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。

四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。

2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。

从就绪队列中取出第一个进程进行调度执行,直到其完成。

3、实现短作业优先算法计算每个进程的剩余服务时间。

将进程按照剩余服务时间从小到大排序,放入就绪队列。

从就绪队列中取出剩余服务时间最短的进程进行调度执行。

4、实现时间片轮转算法设定时间片大小。

将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。

进程在时间片内未完成的,放回就绪队列末尾。

5、实现优先级调度算法为每个进程设置优先级。

将进程按照优先级从高到低排序,放入就绪队列。

从就绪队列中取出优先级最高的进程进行调度执行。

6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。

操作系统进程调度实验报告

操作系统进程调度实验报告

《计算机操作系统》课程实验报告题目实验一进程调度学院: 计算机学院专业: 计算机科学与技术姓名班级学号2015年10月21日实验一进程调度1.实验目的:通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。

2.实验内容:用C语言实现对N个进程采用某种进程调度算法先来先服务调度、短作业优先调度的调度。

3.设计实现:要求给出设计源码,设计源码要有详细注释,#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/int atime; /*到达时间*/int stime; /*服务时间*/int ftime; /*完成时间*/int rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("根据到达时间重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=0;i<n-1-j;i++)if(a[i].atime>a[i+1].atime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %d %d |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void fcfs(struct program a[],int n){int i;int time=0;for(i=0;i<n;i++){time=time+a[i].stime;a[i].ftime=a[0].atime+time;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=(float)a[i].rtime/a[i].stime;}printf("\nFCFS算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %d %.2d %.2d %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******先来先服务算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);fcfs(pro,m);getchar();}#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/float atime; /*到达时间*/float stime; /*服务时间*/float ftime; /*完成时间*/float rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=1;i<n-1-j;i++)if(a[i].stime>a[i+1].stime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %f %f |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void SJF(struct program a[],int n){int i;a[0].ftime=a[0].atime+a[0].stime;a[0].rtime=a[0].ftime-a[0].atime;a[0].qrtime=a[0].rtime/a[0].stime;for(i=1;i<n;i++){a[i].ftime=a[i-1].ftime+a[i].stime;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=a[i].rtime/a[i].stime;}printf("\nSJF算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %.2f %.2f %.2f %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******短作业优先算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);SJF(pro,m); getchar(); }4.实验结果5.实验过程中出现的问题及解决办法先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。

实验进程调度的实验报告

实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。

2. 掌握进程调度算法的基本原理和实现方法。

3. 培养编程能力和系统分析能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。

1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。

2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。

3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。

4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。

五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。

2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。

3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。

b. SJF算法:优先调度运行时间最短的进程。

c. 优先级调度算法:根据进程的优先级进行调度。

d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。

4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。

b. 循环执行调度算法,将CPU分配给就绪队列中的进程。

c. 更新进程状态,统计进程执行时间、等待时间等指标。

d. 当进程完成时,将其移至完成队列。

六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。

2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。

进程调度 实验报告

进程调度 实验报告

进程调度实验报告进程调度实验报告概述:进程调度是操作系统中一个重要的组成部分,它负责决定在多个进程同时运行时,每个进程分配到的CPU时间片以及切换进程的时机。

合理的进程调度算法能够提高系统的性能和资源利用率,因此对进程调度的研究和优化具有重要意义。

1. 背景介绍进程调度是操作系统中的一个关键任务,它负责管理和控制多个进程的执行顺序,以实现对CPU的合理分配。

在多道程序设计环境下,进程调度的作用尤为重要。

进程调度算法的好坏直接影响着系统的性能和响应速度。

2. 进程调度算法2.1 先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的先后顺序进行调度,即先到达的进程先执行,直到该进程执行完成或者发生I/O操作。

FCFS算法的优点是公平且易于实现,但是它无法适应不同进程的执行时间差异,可能导致长作业效应。

2.2 最短作业优先(SJF)最短作业优先调度算法是根据进程的执行时间长度来进行调度,执行时间越短的进程越优先执行。

SJF算法能够最大程度地减少平均等待时间,但是它需要预先知道进程的执行时间,这在实际应用中往往是不可行的。

2.3 时间片轮转(RR)时间片轮转是一种经典的调度算法,它将CPU的执行时间划分为若干个时间片,每个进程在一个时间片内执行,如果时间片用完还没有执行完,则将该进程放入就绪队列的末尾,继续执行下一个进程。

RR算法能够保证每个进程都能获得公平的CPU时间,但是对于长时间执行的进程,会导致较大的上下文切换开销。

3. 实验设计与结果分析为了评估不同进程调度算法的性能,我们设计了一系列实验。

首先,我们使用不同的进程到达时间和执行时间生成一组测试数据。

然后,分别使用FCFS、SJF和RR算法进行调度,并记录每个进程的等待时间和周转时间。

最后,我们对实验结果进行分析。

实验结果显示,FCFS算法对于执行时间较长的进程会出现较长的平均等待时间,而SJF算法能够有效减少平均等待时间。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

操作系统实验——动态优先级进程调度实验报告

操作系统实验——动态优先级进程调度实验报告

1.实验名称:动态优先权调度过程中就绪队列的模拟2.实验要求:采用动态优先权的进程调度算法,用C语言编程模拟调度过程中每个时间片内的就绪队列。

3.实验内容:(1)每个进程控制块PCB用结构描述,包括以下字段:*进程标识符id*进程优先数priority,并规定优先数越大的进程,其优先权越高。

*进程已占用的CPU时间cputime*进程还需占用的CPU时间alltime,当进程运行完毕时,aiitime变为0*进程的阻塞时间startblock,当进程再运行startblock个时间片后,进程将进入阻塞状态*进程被阻塞的时间blocktime,已阻塞的进程再等待blocktime个时间片后,将转换成就绪状态*进程状态state*队列指针next,将PCB排成队列。

2)调度前,系统中有五个进程,它们的初始状态如下:3)进程在就绪队列呆一个时间片,优先数增加1。

4)进程每运行一个时间片,优先数减3。

5)按下面格式显示每个时间片内就绪队列的情况:READY_QUEUE:->id1->id24.任务分析进程控制块用结构体来表示,包含它的各项属性。

建立两个队列:一个就绪队列,一个阻塞队列。

创建一个进程控制块表示当前正在运行的进程。

程序开始运行时,所有进程都在就绪队列中。

当startblock减少到0时,进程进入阻塞队列。

在阻塞队列中的进程,当blocktime减少到0时,转入就绪队列。

在就绪队列中的进程,如果优先级比当前正在执行的进程高,就可以取代当前进程获取时间片。

当前进程如果运行完毕,就绪队列中优先级最高的进程就可以成为新当前进程。

5.程序流程图#include〈iostream〉#include〈string〉usingnamespace std;#define LEN5typedefenum STATE{READYBLOCKEND}STATE;//定义进程控制块typedefstruct PCB{int id;int priority;int cputime;int alltime;int startblock;int blocktime;STATE state;}PCB;//定义队列typedefstruct queue{int si ze;PCB*data[LEN];}Queue;PCB ps[LEN];PCB*cp; //进程最大数量//进程状态//就绪//阻塞//完成//进程标识符//进程优先级//已占用的CPU时间//还需占用的CPu时间//阻塞时间//被阻塞时间//进程状态//队列中进程的数量//进程的指针//进程数组//当前正在运行的进程6.程序清单Queue rQueue,bQueue;//就绪队列和阻塞队列//就绪队列按优先级降序排序(使用了冒泡排序法)void rQueueSort(){ PCB*temp;for(int i=0;i<rQueue.size-1;i++){for(int j=0;j<rQueue.size-1-i;j++){if(rQueue.data[j]-〉priority<rQueue.data[j+1]-〉priority){temp=rQueue.data[j];rQueue.data[j]=rQueue.data[j+1];}}rQueue.dataj+1]=temp;}}//初始化void init(){//给进程赋值for(int i=0;i<LEN;i++){ps[i].id=i;ps[i].state=READY;ps[i].cputime=0;ps[i].alltime=3;ps[i].blocktime=0;ps[i].startblock=T;}ps[0].priority=9;ps[1].priority=38;ps[2].priority=30;ps[3].priority=29;ps[4].priority=0;ps[2].alltime=6;ps[4].alltime=4;ps[0].startblock=2;ps[0].blocktime=3;cp=NULL;//当前进程赋空bQueue.size=0;//阻塞队列没有进程for(int i=0;i<LEN;i++){bQueue.data[i]=NULL;rQueue.data[i]=&ps[i];}rQueue.size=5;//所有进程全部进入就绪队列rQueueSort();//对就绪队列排序}//打印void print(){cout〈〈"\nRUNNINGPROG:";if(cp!=NULL){cout〈〈cp->id;}cout<<"\nREADY_QUEUE:";for(int i=0;i<rQueue.size;i++){cout〈〈"-〉"〈〈rQueue.data[i]-〉id; }cout<<"\nBLOCK_QUEUE:";for(int i=0;i<bQueue.size;i++){cout〈〈"-〉"〈〈bQueue.data[i]-〉id; }cout〈〈"\n"<<endl;cout<<"ID\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].id<<"\t";}cout<<"\nPRI0RITY\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].priority〈〈"\t";}cout<<"\nCPUTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].cputime〈〈"\t";}cout<<"\nALLTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].alltime〈〈"\t";}cout<<"\nSTARTBLOCK\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].startblock<<"\t";}cout<<"\nBLOCKTIME\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].blocktime<<"\t";}cout<<"\nSTATE\t\t";for(int i=0;i<LEN;i++){if(ps[i].state==READY){cout<<"READY"<<"\t";}elseif(ps[i].state==BLOCK){cout<<"BLOCK"<<"\t";}elseif(ps[i].state==END){cout〈〈"END"<<"\t";}}cout〈〈endl;}//出队,返回进程指针PCB*pop(Queue*q){PCB*temp;if(q-〉size>0){temp=q-〉data[0];//取出队首进程for(int i=0;i<q-〉size-1;i++){q-〉data[i]=q-〉data[i+1];//其他进程依次向前移动}q->size__;return temp;//返回队首进程}return NULL;}//入队void push(Queue*q,PCB*p){if(q_>size<LEN){q_>data[q_〉size]=p;//将入队的进程放在队尾q_>size++;}return;}//运行进程void run(){if(rQueue.size〉0||bQueue.size〉0){if(cp==NULL){//程序一开始运行时,从就绪队列取出首进程cp=pop(&rQueue);}//当前进程没有结束,但优先级比就绪队列首进程低if(cp_〉alltime〉0&&cp_>priority<rQueue.data[0]_〉priority){}push(&r Queue,c//改变进程状态//从就绪队列取出新的当前进程//修改当前进程的状态 //将当前进程加入阻塞队列 //从就绪队列取出新的当前进程{//当前进程的startblock 为正数时//运行一次减一个时间片//减到0时,修改进程状态//每运行一个时间片//就绪队列中的进程优先级+1//每运行一个时间片//阻塞队列中的进程blocktime-1//将当前进程放入就绪队列 //就绪队列队首进程成为当前进程if (cp-〉alltime==0){cp->state =END ;cp=pop(&rQueue); }//如果当前进程运行结束//startblock 为0,标志着当前进程要进入阻塞状态if (cp —>startblock==0&&cp —>blocktime>0){cp —>state=BLOCK ; push(&bQueue,cp); cp=pop(&rQueue); }elseif (cp —>startblock>0)cp —>st artblock 一; }cp —>alltime ——;if (cp —>alltime==0){cp —>state=END ;for (int i=0;i<rQueue.size;i++){rQueue.data[i]-〉priority++; }for (int i=0;i<bQueue.size;i++){if (bQueue.data[i]-〉blocktime>0){bQueue.data[i]-〉blocktime--; }//当阻塞队列队首进程blocktime 为0时if (bQueue.size 〉0&&bQueue.data[0]-〉blocktime==0){bQueue.data[0]-〉state=READY ;//修改进程状态push(&rQueue,pop(&bQueue));//将阻塞队列首进程取出,放入就绪队列cp —〉priority-=3;//修改当前进程的优先级cp —>cputime++; //当前进程占用CPU 时间片+1 if (cp —>alltime>0){//当前进程还需运行的时间片-1}//每运行一个时间片,就绪队列排一次序rQueueSort();} }//主函数int main(){init();//初始化 print();//打印进程信息 while (1){_sleep(1000);if (rQueue.size==0&&bQueue.size==0){//当两个队列都为空时,结束程序cp-〉state=END ;break ; }run();//运行进程 print();//打印进程信息 }return 0; }7.实验过程记录m 匚:\WINDQWS\system32\cmd.exe程序开始执行,当前进程是优先级最高的1号进程,1号进程的优先级减3、cputime++、执行几次之后,1号进程执行完毕而且优先级也不是最高的了,所以优先级为33的2号进程成为当前进程,开始执行。

操作系统进程调度实验报告

操作系统进程调度实验报告

操作系统进程调度实验报告操作系统进程调度实验报告引言:操作系统是计算机系统中的核心软件之一,负责管理计算机的硬件资源并提供用户与计算机硬件之间的接口。

进程调度作为操作系统的重要功能之一,负责决定哪个进程可以获得处理器的使用权,以及进程如何在处理器上运行。

本实验旨在通过设计和实现一个简单的进程调度算法,加深对操作系统进程调度原理的理解。

一、实验目的本实验的主要目的是通过编写代码模拟操作系统的进程调度过程,掌握进程调度算法的实现方法,深入理解不同调度算法的特点和适用场景。

二、实验环境本实验使用C语言进行编程实现,可在Linux或Windows系统下进行。

三、实验内容1. 进程调度算法的选择在本实验中,我们选择了最简单的先来先服务(FCFS)调度算法作为实现对象。

FCFS算法按照进程到达的先后顺序进行调度,即先到先服务。

这种调度算法的优点是简单易实现,但缺点是无法适应不同进程的执行时间差异,可能导致长作业效应。

2. 进程调度的数据结构在实现进程调度算法时,我们需要定义进程的数据结构。

一个进程通常包含进程ID、到达时间、执行时间等信息。

我们可以使用结构体来表示一个进程,例如:```struct Process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间};```3. 进程调度算法的实现在FCFS调度算法中,我们需要按照进程到达的先后顺序进行调度。

具体实现时,可以使用一个队列来保存待调度的进程,并按照到达时间的先后顺序将进程入队。

然后,按照队列中的顺序依次执行进程,直到所有进程执行完毕。

4. 实验结果分析通过实现FCFS调度算法,我们可以观察到进程调度的过程和结果。

可以通过输出每个进程的执行顺序、等待时间和周转时间等指标来分析调度算法的效果。

通过比较不同调度算法的指标,可以得出不同算法的优缺点。

四、实验步骤1. 定义进程的数据结构,包括进程ID、到达时间和执行时间等信息。

进程调度实验报告答案(3篇)

进程调度实验报告答案(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。

二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。

2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。

3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。

2. 实现进程调度函数,根据所选调度算法进行进程调度。

3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。

4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。

分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。

2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。

分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。

3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。

分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告一、实验目的进程调度是操作系统的核心功能之一,它负责合理地分配 CPU 资源给各个进程,以提高系统的性能和效率。

本次实验的目的是通过编写和模拟进程调度程序,深入理解不同的进程调度算法的原理和特点,并比较它们在不同情况下的性能表现。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

操作系统为 Windows 10。

三、实验原理1、先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源。

2、短作业优先(SJF)调度算法短作业优先调度算法优先调度执行时间短的进程。

3、时间片轮转(RR)调度算法时间片轮转调度算法将 CPU 时间划分为固定大小的时间片,每个进程轮流获得一个时间片的 CPU 资源。

四、实验设计1、进程类的设计创建一个进程类,包含进程 ID、到达时间、服务时间、剩余服务时间等属性,以及用于更新剩余服务时间和判断进程是否完成的方法。

2、调度算法实现分别实现先来先服务、短作业优先和时间片轮转三种调度算法。

3、模拟流程(1)初始化进程列表。

(2)按照选定的调度算法进行进程调度。

(3)计算每个进程的等待时间、周转时间等性能指标。

五、实验步骤1、定义进程类```pythonclass Process:def __init__(self, pid, arrival_time, service_time):selfpid = pidselfarrival_time = arrival_timeselfservice_time = service_timeselfremaining_service_time = service_time```2、先来先服务调度算法实现```pythondef fcfs_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0for process in process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("先来先服务调度算法的平均等待时间:",average_waiting_time)print("先来先服务调度算法的平均周转时间:",average_turnaround_time)```3、短作业优先调度算法实现```pythondef sjf_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0sorted_process_list = sorted(process_list, key=lambda x: xservice_time) for process in sorted_process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("短作业优先调度算法的平均等待时间:",average_waiting_time)print("短作业优先调度算法的平均周转时间:",average_turnaround_time)```4、时间片轮转调度算法实现```pythondef rr_scheduling(process_list, time_slice):current_time = 0total_waiting_time = 0total_turnaround_time = 0ready_queue =while len(process_list) > 0 or len(ready_queue) > 0:for process in process_list:if processarrival_time <= current_time:ready_queueappend(process)process_listremove(process)if len(ready_queue) == 0:current_time += 1continueprocess = ready_queuepop(0)if processremaining_service_time <= time_slice: waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += processremaining_service_time turnaround_time = current_time processarrival_time total_turnaround_time += turnaround_time processremaining_service_time = 0else:waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += time_sliceprocessremaining_service_time = time_sliceready_queueappend(process)average_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均等待时间:", average_waiting_time)print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均周转时间:", average_turnaround_time)```5、主函数```pythonif __name__ =="__main__":process_list =Process(1, 0, 5),Process(2, 1, 3),Process(3, 2, 8),Process(4, 3, 6)print("先来先服务调度算法:")fcfs_scheduling(process_list)print("短作业优先调度算法:")sjf_scheduling(process_list)time_slice = 2print("时间片轮转调度算法(时间片大小为",time_slice, "):")rr_scheduling(process_list, time_slice)```六、实验结果与分析1、先来先服务调度算法平均等待时间为 575,平均周转时间为 1275。

学生进程调度实验报告(3篇)

学生进程调度实验报告(3篇)

第1篇一、实验目的本次实验旨在通过模拟操作系统中的进程调度过程,加深对进程调度算法的理解,提高程序设计能力。

通过实现不同调度算法,学习如何根据进程的优先级、到达时间和服务时间等因素,合理分配CPU资源,提高系统的吞吐量和响应速度。

二、实验内容1. 实验环境:Windows操作系统,C/C++编程环境。

2. 实验内容:(1)设计进程调度算法:FCFS(先来先服务)、SJF(最短作业优先)、RR(轮转法)和优先级调度算法。

(2)实现进程控制块(PCB)数据结构,包括进程名、到达时间、服务时间、优先级、状态等信息。

(3)模拟进程调度过程,根据调度算法选择合适的进程运行。

(4)打印进程调度结果,包括运行进程、就绪队列和完成进程等信息。

三、实验原理1. 进程调度算法(1)FCFS:按照进程到达时间顺序进行调度,先到达的进程先执行。

(2)SJF:优先选择执行时间最短的进程执行。

(3)RR:将CPU时间划分为若干个时间片,每个进程运行一个时间片,然后根据进程优先级重新排队。

(4)优先级调度算法:优先选择优先级最高的进程执行。

2. 进程控制块(PCB)PCB是进程的实体,用于描述进程的状态、控制信息和资源等信息。

PCB主要包括以下内容:(1)进程名:唯一标识进程。

(2)到达时间:进程进入就绪队列的时间。

(3)服务时间:进程执行所需的时间。

(4)优先级:表示进程的优先程度。

(5)状态:表示进程的当前状态,如就绪、运行、阻塞等。

四、实验步骤1. 定义PCB数据结构,包括进程名、到达时间、服务时间、优先级、状态等信息。

2. 设计调度算法,实现进程调度功能。

3. 模拟进程调度过程,包括进程到达、就绪、运行、阻塞和完成等状态转换。

4. 打印进程调度结果,包括运行进程、就绪队列和完成进程等信息。

五、实验结果与分析1. FCFS调度算法:按照进程到达时间顺序进行调度,可能导致短作业等待时间过长。

2. SJF调度算法:优先选择执行时间最短的进程执行,但可能存在饥饿现象。

计算机操作系统进程调度实验报告

计算机操作系统进程调度实验报告

操作系统实验题:设计一若干并发进程的进程调度程序一、实验目的无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。

这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。

进程调度是处理机管理的核心内容。

本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。

通过本实验可以加深理解有关进程控制块、进程队列的概念。

并体会了优先数和先来先服务调度算法的具体实施办法。

二、实验要求用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.三、实验内容进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。

每个进程有一个进程控制块( PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。

进程的到达时间为进程输入的时间。

进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。

就绪进程获得 CPU后都只能运行一个时间片。

用已占用CPU时间加1来表示。

如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。

每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。

重复以上过程,直到所要进程都完成为止。

进程调度实验报告

进程调度实验报告

操作系统实验 报告实验项目: 进程调度学 院: 计算机学院专 业:班 级:学 号:姓 名:1. 实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。

当就绪进程个数大于处理机数时,就必须依照某种策略来决定哪些进程优先占用处理机。

本实验模拟在单处理机情况下的进程调度,加深了解进程调度的工作。

2. 实验内容设计一个按时间片轮转法实现进程调度的程序。

(1)假定系统有五个进程,每一个进程用一个进程控制块PCB 来代表,进程控制块的格式为:其中,进程名——作为进程的标识,假设五个进程的进程名分别为Q 1,Q 2,Q 3,Q 4,Q 5。

指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。

要求运行时间——假设进程需要运行的单位时间数。

已运行时间——假设进程已经运行的单位时间数,初始值为“0”。

状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R ”表示。

当一个进程运行结束后,它的状态为“结束”,用“E ”表示。

(2)每次运行所设计的进程调度程序前,为每个进程任意确定它的“要求运行时间”。

(3)把五个进程按顺序排成循环队列,用指针指出队列连接情况。

另用一标志单元记录轮到运行的进程。

例如,当前轮到Q 2执行,则有:进程名 指针 要求运行时间 已运行时间 状态标志单元(4)进程调度总是选择标志单元指示的进程运行。

由于本实验是模拟进程调度的功能,所以对被选中的进程并不实际的启动运行,而是执行“已运行时间+1”来模拟进程的一次运行,表示进程已经运行过一个单位的时间。

请注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理机运行,直到出现等待事件或运行满一个时间片。

在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。

(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告一、实验目的本次实验旨在通过编写一个模拟操作系统进程调度的程序,以加深对进程调度算法的理解。

二、实验内容1. 实现进程相关的数据结构:进程PCB(Process Control Block)。

2.实现进程的创建、撤销以及调度等操作函数。

3. 实现常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)、轮转调度(RR)、优先级调度(Priority)。

4.编写测试程序,验证实现的进程调度算法在不同场景下的表现。

三、实验过程及结果1.进程PCB的设计与实现进程PCB是进程的核心数据结构,用于存储和管理进程相关的信息,包括进程状态(就绪、运行、阻塞)、优先级、执行时间等。

2.进程的创建、撤销及调度函数的实现(1)进程创建函数:实现进程的创建,包括为其分配空间、初始化进程PCB等。

可以根据实际需求,设定进程的优先级、执行时间等属性。

(2)进程撤销函数:实现进程的撤销,包括释放其占用的资源、回收其使用的空间等。

(3)进程调度函数:根据不同的调度算法,实现进程的调度。

可以通过设置时间片大小、优先级设定等方式,实现不同调度算法的效果。

3.进程调度算法的设计与实现(1)先来先服务(FCFS)调度算法:按照进程到达的先后顺序,依次进行调度。

(2)最短作业优先(SJF)调度算法:根据进程的执行时间,选择执行时间最短的进程进行调度。

(3)轮转调度(RR)算法:按照时间片的大小进行调度,每个进程在一个时间片内执行,超过时间片后,暂停并进入等待队列,让其他进程执行。

(4)优先级调度(Priority)算法:根据进程的优先级,选择优先级最高的进程进行调度。

4.测试程序编写测试程序,模拟不同的进程到达顺序、执行时间和优先级等场景,验证不同调度算法的表现。

四、实验结果与分析通过测试程序的运行结果,观察不同调度算法的特点和效果。

可以得出以下结论:1.FCFS算法适用于进程到达时间差异较大的场景,保证了先到先服务。

操作系统实验之进程调度报告

操作系统实验之进程调度报告

实验一:进程调度一、实习内容1.模拟批处理多道操作系统的进程调度;2.模拟实现同步机构避免并发进程执行时可能与时间相关的错误;二、实习目的进程调度时进程管理的主要内容之一,通过设计,编制,调试一个简单的进程调度模拟系统,对进程调度,进程运行状态变换及PV操作加深理解和掌握。

三、实习题目采用剥夺式优先算法,对三个进程进行模拟调度模拟PV操作同步机构,用PV操作解决进程进入临界区的问题。

【提示】(1)对三个进程进行模拟调度,对各进程的优先数静态设置,P1,P2,P3三个进程的优先数为1,2,3,并指定P1的优先数最高,P3的优先数最低,每个进程都处于执行态“e”,就绪态“r”,等待态“w”三种状态之一,并假定初始态为“r”。

(2)每一个进程用一个PCB表,PCB表的内容根据具体情况设置,该系统在运行过程中能显示或打印各进程和参数的变化情况,以便观察各进程的调度。

(3)在完成必要的初始化后,便进入进程调度程序,首先由P1进入执行,当执行进程因等待某各事件被阻塞或唤醒某个进程等待进程时,转进程调度。

(4)在进入临界区前后,调PV操作。

(5)如果被唤醒的进程优先数高于现有执行的进程,则剥夺现行进程的执行权。

(6)当三个进程都处于等待状态时,本模拟系统退出执行。

四、示例1.数据结构:(1)进程控制块PCBstruct{int id;char status;int priority;int waiter1;}(2)信号量struct{int value;int waiter2;}sem[2](3)现场保护栈stackchar stack[11][4]每个进程都有一个大小为10个字的现场保护栈,用来保护被中断时的断点地址等信息。

(4)全局变量int i;用以模拟一个通用寄存器char addr;用以模拟程序计数器int m1,m2;为系统设置的公用数据被三个进程共享使用。

五、程序框图:六、程序说明:本程序是用C语言编写,模拟三个进程的运行情况,过程在运行中要调用P操作申请信号量,如果该过程得到其申请的信号量,就继续运行,否则P操作阻塞该申请过程的运行,并将过程置为所申请信号量的等待者,如果已有其它过程在等待同一信号量则将该申请过程排在所有等待进程之后。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院计算机工程学院实验报告书
课程名:《操作系统原理A》
题目:进程调度
班级:Z计121
学号:**********
*名:***
操作系统原理实验——进程调度实验报告
一、目的与要求
1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。

本实验可加深对进程调度算法的理解。

2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果)
3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。

2 实验内容或题目
1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。

2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。

3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。

4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。

3 实验步骤与源程序
4 测试数据与实验结果(可以抓图粘贴)
5 结果分析与实验体会
(1)在没做实验之前,只是知道一些概念,没有真正理解进程到底是怎么进行调度的。

在这次实验
中,我通过自己编写程序,查阅一些资料,让我进程调度的概念和算法有了了解。

(2)设置的分配的时间片数和优先级是采用rand()方法进行随机选择,选择范围是1到5和5到
10。

将prior对已经完成的进程可以将其优先级设置成很小,这样容易操作其他进程。

相关文档
最新文档