汽轮机原理核电汽轮机讲解
汽轮机工作原理及结构
汽轮机工作原理及结构汽轮机是一种热力机械设备,其工作原理是利用高温和高压下的高速蒸汽通过叶轮叶片的作用,驱动轴,从而将热能转化为机械能。
汽轮机具有高效率、大功率、可靠性高等优点,广泛应用于发电、船舶、火车等领域。
本文将介绍汽轮机的工作原理及其结构组成。
### 一、汽轮机的工作原理汽轮机的工作原理基于卡诺循环的热力学理论,并且符合热力学第一、第二定律。
其工作过程可分为四个主要步骤:压缩、加热、膨胀、排放。
下面将对每个步骤进行详细说明:1. 压缩过程:在压缩过程中,汽轮机从外部介质(如空气、燃气等)吸入气体,并将其压缩至较高的压力。
这一步骤一般利用压缩机完成,其主要目的是提高进入汽轮机的工作流体的压力和密度,以便提高膨胀过程的能量转化效率。
2. 加热过程:在加热过程中,压缩后的工作流体进入锅炉或燃烧室,与燃料发生反应并吸收热量。
这使得工作流体的温度和能量进一步增加。
加热过程一般通过燃烧器来完成,通过燃料的燃烧释放的热量将水转化为高温高压的蒸汽。
3. 膨胀过程:在膨胀过程中,高温高压的蒸汽进入汽轮机的叶轮叶片中,使叶轮以高速旋转。
这一过程中,蒸汽的热能被转化为机械能,从而驱动汽轮机的输出轴转动。
4. 排放过程:在排放过程中,膨胀后的工作流体离开汽轮机,并进入冷凝装置或排放系统。
蒸汽在冷凝器中冷却并凝结为水,然后被泵送回锅炉以完成循环。
排放过程的主要目的是回收剩余的热量,并将工作流体恢复为液体状态,以便重新进入压缩过程。
以上四个步骤连续循环进行,从而使汽轮机持续输出机械能,满足各类工业和交通运输领域的需求。
### 二、汽轮机的结构组成汽轮机通常由以下几个主要组成部分构成:压缩机、燃烧器、涡轮机、冷却系统和辅助系统。
下面将对每个部分进行详细介绍。
1. 压缩机:压缩机是汽轮机中的重要组成部分,其主要功能是提高进入汽轮机的工作流体的压力和密度。
压缩机一般采用离心式、轴流式或混流式结构,通过旋转的叶轮将气体压缩并提供给燃烧器。
汽轮机工作原理
汽轮机工作原理
汽轮机是一种利用蒸汽能量来驱动转子旋转,从而产生功率的热力机械设备。
它是发电厂中最常见的发电装置之一,也被广泛应用于船舶和工业生产中。
汽轮机的工作原理主要包括蒸汽进汽、膨胀工作、排汽和再循环等几个基本过程。
首先,蒸汽进汽。
在汽轮机中,蒸汽由锅炉产生,经过调节阀进入汽轮机的高
压缸。
蒸汽进入高压缸后,通过喷嘴对转子产生冲击,推动转子旋转。
这一过程中,蒸汽的压力和温度都在不断下降,同时转子也在不断受到驱动。
接着是膨胀工作。
在高压缸中完成膨胀工作后的蒸汽,将进入中压缸和低压缸
依次进行膨胀工作,从而驱动汽轮机的转子旋转。
在这个过程中,蒸汽的压力和温度会不断降低,而转子则会不断受到推动。
然后是排汽。
当蒸汽完成了在汽轮机中的膨胀工作后,会被排出汽轮机,进入
凝汽器进行冷凝,最终变成液态水。
在凝汽器中,蒸汽和冷却水进行热交换,使蒸汽凝结成水,然后通过泵送回锅炉中继续循环使用。
最后是再循环。
在汽轮机工作中,为了提高效率和节能,通常会采用再循环系统。
再循环系统是将部分排汽重新加热后送回锅炉,再次转化为高温高压蒸汽,再次进入汽轮机中进行膨胀工作。
这样可以充分利用热能,提高汽轮机的热效率。
综上所述,汽轮机的工作原理是通过蒸汽的膨胀工作驱动转子旋转,从而产生
功率。
蒸汽进汽、膨胀工作、排汽和再循环是汽轮机工作过程中的基本环节。
汽轮机作为一种重要的动力装置,在工业生产和发电领域具有重要的应用价值,对其工作原理的深入理解和掌握,对于提高其效率和性能具有重要意义。
图解汽轮发电机组工作原理及结构(ppt)
太阳能发电和风力发电流程(热核反应),4氢—1氦,1KG氢的
热核反应,相当地球燃烧19000T的标煤,太阳中可燃烧的氢为10分之1,能燃 烧100多亿年。电磁波-粒子流。地球接收的能量只占总能量的20亿分之1。
4.核能发电:利用铀235的核裂变,产生的 能量,进行发电。
中国核电站分布图
原理:1个中子进入铀235原子核以后,原子就变的不稳 定,分裂成2个较小质量的原子核,这就是核裂反应, 产生很大的能量的同时,还会放出2-3个中子和其他射 线,这些中子再次进入铀235原子核,不断重复上述核 裂变反应。
图解汽轮发电机组 工作原理及结构 (ppt)
汽轮机厂房内平 台汽轮发电机组
汽轮机厂房内平台汽 轮发电机组
汽轮机锅炉集中控制室
600前希腊人泰勒斯 发现了电 (丝绸和琥珀麽擦产生 静电)
1660年德国人埃里克发明了世界上第一台 摩擦发电机 (产生静电 没有实用的价值)
。
1780年意大利医生加法尼,通过动物组织对电流 的反应 (他认为电是动物组织产生的)
1799年意大利物理学家伏特,他认为电不是来 源动物 1800年伏特他发明了世界上第一块 电池
1821年英国人法拉第发明了世界上第一台发电机。 1831年他发现当电磁铁穿过一个闭合回路时,线圈内就会 产生电流,这就是“电磁感应”。由此他发明了世界 上 第一台永久磁铁能连续生产电流的发电机
1876年德国人西门子他发明了,采用电磁 铁连续生产电流的发电机。
从作用力方面分析原理
蒸汽流经级时先在喷嘴中膨胀压力 降低,速度增加一方面通过速度方
向的改变,产生冲动力F1
蒸汽在动叶中继续膨胀,压力降低, 所产生的焓降转化为动能造成动叶
出口的相对速度w2大于进口相对速 度w1,使汽流产生了作用于动叶上 的与汽流方向相反的反动力Fr。
核电厂汽轮机的相关知识
核电厂汽轮机的相关知识核电厂大多数都使用饱和汽,为了降低发电成本,单机容量已增加到1000MW级。
在总体配置上,饱和汽轮机组总是设计成高压缸和一组低压缸串级式配置,在进入低压缸前设置有汽水分离再热器,有的设计在汽水分离再热器和低压缸之间设置中压缸或中压段。
一般情况下,核电厂大功率汽轮机的所有汽缸都设计成双流的,且两个或更多的低压缸是并联设置。
还有在高压缸两端对称地每端布置两个低压缸的设计。
我国田湾核电厂就采用这种汽轮机配置。
大亚湾核电厂的汽轮机为英国公司设计制造的多缸单轴系冲动式汽轮机。
汽轮机的转速为3000r/min,额定功率为900MW,新汽参数为6.63MPa,283℃,低压缸排汽压力0.0075MPa,额定负荷下蒸汽流量为5515t/h,汽轮机为4缸、六排汽口型式。
一个高压缸和3个低压缸皆为双流对分式。
新蒸汽分4路经高压缸汽室后由进汽短管导入高压缸,高压缸的两个排汽口,各通过4根蒸汽管与低压缸两侧的汽水分离再热器相连。
高压缸排汽在汽水分离再热器经汽水分离再热后,进入低压缸,每个低压缸的两个排汽口与一台凝汽器相接,整台汽轮机,共有6个抽汽口,供2组高压加热器和4组低压加热器以及给水泵汽轮机用汽。
除氧器用汽来自高压缸排汽。
高压缸为铬钼材料铸造的单层缸结构,水平对分型式,每一汽流流向各有5级。
其中隔板皆采用隔板套结构,高压缸转子由镍铬钼钒钢锻成,每个流向都有锻成一体的5级叶轮,各级叶片的叶根皆为多*型,叶片长度为91mm,叶片的顶部有预加工的铆钉头,用来装置围带,每一级叶片的围带都由数段组成扇形叶片组。
高压缸的轴封、隔板汽封和通流部分汽封皆采用梳齿形汽封结构。
三台低压缸具有基本相同的结构,皆为双层缸,水平对分式。
内缸包含环形进汽室和所有的隔板。
外缸提供低阻力的蒸汽流道并将内缸的反冲力矩传递给汽轮机基础。
低压缸的内、外缸都由碳钢制造,内缸为焊接结构,外缸为焊接组装结构。
低压缸隔板由铁素体不锈钢制造,隔板的结构为标准的焊接静片和内外围带结构,嵌在隔板套的槽内。
汽轮机工作原理和结构
叶片与叶轮装配实例
拉金联接方式
拉金用来将叶片连成叶 片组,其作用是增长叶 片旳刚性以改善其振动 特征。拉金一般作成棒 状(实心拉金)或管状 (空心拉金),穿在叶型 部分旳拉金孔中。拉金 与叶片之间有 焊接旳 (焊接拉金) ,也有不 焊接旳(松拉金或阻尼 拉金)。在一级叶片中 一般有1~2圈拉金,最 多不超出3圈。 用拉金 连接叶片旳方式有:分 组联接、整圈联接及组 间连接等方式,
多级反动式汽轮机剖面图
冲动式与反动式旳主要区别
项目
动叶片出、入侧 横截面形状
冲动式
反动式
匀称,汽流流道从入 不对称,叶型入口较
口到出口其面积基本 肥大,而出口侧较薄,
不变。
蒸汽流道从入口到出
口呈渐缩状。
进汽方式
大部分喷嘴 调整
推力平衡措 叶轮上开有平衡孔 施
蒸汽压降产生部位 仅在隔板旳 喷嘴中
弯扭叶片
叶根和轮缘构造
叶片经过叶根固定在叶轮 上,叶根与叶轮旳连接应 该牢固可靠,而且应确保 叶片在任何运营条件下不 会松动。同步,叶根旳构 造应在满足强度旳条件下 尽量简朴,使制造、安装 以便,并使叶轮轮缘旳轴 向尺寸为最小。伴随动叶 片旳圆周速度和长度旳不 同,其叶根所受旳作用力 也不同,这就需要采用不 同旳叶根构造型式。
双列汽轮机工作原理
多级冲动式汽轮机
左图所示为一种具有三个 冲动级旳多级冲动式汽轮机。 整个汽轮机旳比焓降分别由三 个冲动级加以利用。蒸汽进入 汽缸后,在第一级喷嘴2中发 生膨胀,压力由p0降至p1,汽 流速度由co增至c1,然后进入 第一级动叶栅3中作功,作功后 流出动叶栅旳汽流速度降至c2, 因为蒸汽在动叶栅中不发生膨 胀,动叶栅后旳压力(即第一 级后压力)即等于喷嘴后旳压 力p1,从第一级流出旳蒸汽, 再依次进入其后旳两级并反复 上述作功过程,最终从排汽管 中排出。
汽轮机工作原理和结构
汽轮机工作原理和结构汽轮机是一种利用燃气或蒸汽驱动转子旋转从而产生功的动力机械。
汽轮机工作原理是通过燃烧燃油或燃气与空气混合物,使得燃料释放的热能转化为热能增加的蒸汽或燃气的热能。
蒸汽或燃气通过高速喷射流,使得转子受到推力,因此转子开始旋转。
通过连接转子的轴来提供输出功率。
下面将详细介绍汽轮机的工作原理和结构。
1.汽轮机的工作原理汽轮机的工作过程可以分为四个步骤:压缩、燃烧、膨胀和排气。
a)压缩:进入汽轮机的空气被压缩到高压状态。
通常采用离心式压气机,它由若干个叶轮和固定导叶组成。
当空气经过叶轮时,由于叶片高速旋转的作用,空气被迫向前流动,流速增大且压力增加。
b)燃烧:经过压缩的空气进入燃烧室,并与燃料混合燃烧。
燃料可以是燃油或天然气。
在燃烧室中,混合物点燃并燃烧,燃料的热能转化为高温高压的蒸汽或燃气。
c)膨胀:高温高压的蒸汽或燃气被喷入汽轮机的叶片中使其转动。
蒸汽或燃气在叶片中膨胀,产生推力,从而将转子推动旋转。
蒸汽或燃气的压力和温度逐渐下降。
d)排气:蒸汽或燃气离开汽轮机后,被排入大气中。
排出蒸汽或燃气后,进入汽轮机的空气和燃料被再次压缩和加热,形成循环。
2.汽轮机的结构汽轮机主要由压气机、燃烧室、涡轮和调速装置等组成。
a)压气机:压气机是汽轮机的核心之一,用于将空气压缩到高压状态。
压气机包括若干个级,每个级别都由一个或多个叶轮和一些固定导叶组成。
叶轮通过旋转强制空气流经导叶,产生压力增加。
b)燃烧室:燃烧室是燃烧燃料的地方。
燃烧室通常是一个圆筒形的结构,内部涂有耐高温材料。
燃料喷入燃烧室中与空气混合并燃烧,产生高温高压的蒸汽或燃气。
c)涡轮:涡轮是通过高温高压的蒸汽或燃气驱动的。
涡轮包括高压涡轮和低压涡轮。
高压涡轮通常由多个级别组成,而低压涡轮由较少级别组成。
蒸汽或燃气在叶片中膨胀,产生推力,推动涡轮旋转。
d)调速装置:汽轮机在运行过程中需要不同负载下的不同输出功率。
调速装置用于控制汽轮机的转速,以保持恒定的转速或调整转速。
汽轮机技术知识整理(详细完整版)
汽轮机技术知识整理(详细完整版)一、汽轮机概述汽轮机是一种将热能转换为机械能的热力发动机,广泛应用于发电、工业驱动等领域。
汽轮机的工作原理是通过燃料燃烧产生高温高压的蒸汽,蒸汽在汽轮机中膨胀做功,推动汽轮机转子旋转,进而驱动发电机或其他机械设备。
二、汽轮机主要部件1. 汽轮机本体:汽轮机本体是汽轮机的核心部分,包括转子、叶片、汽封等。
转子是汽轮机的旋转部分,叶片是汽轮机做功的关键部件,汽封则是用来密封汽轮机内部空间,防止蒸汽泄漏。
2. 蒸汽发生系统:蒸汽发生系统负责产生汽轮机所需的高温高压蒸汽,包括锅炉、过热器、再热器等设备。
3. 调速系统:调速系统负责调节汽轮机的转速,包括调速器、油泵、油马达等设备。
4. 冷凝系统:冷凝系统负责将汽轮机排出的乏汽冷凝成水,以便循环利用,包括冷凝器、水泵等设备。
三、汽轮机工作原理1. 蒸汽发生:燃料在锅炉中燃烧,产生高温高压的蒸汽。
2. 蒸汽膨胀:蒸汽进入汽轮机,在汽轮机中膨胀做功,推动汽轮机转子旋转。
3. 机械能输出:汽轮机转子旋转,通过联轴器将机械能传递给发电机或其他机械设备。
4. 冷凝:汽轮机排出的乏汽进入冷凝器,被冷却水冷凝成水,以便循环利用。
四、汽轮机维护与保养1. 定期检查:定期检查汽轮机各部件的工作状态,发现问题及时处理。
2. 润滑保养:定期对汽轮机进行润滑保养,保证各部件的运行顺畅。
3. 清洁保养:定期对汽轮机进行清洁保养,保持汽轮机的卫生状况。
4. 预防性维护:根据汽轮机的运行情况,进行预防性维护,延长汽轮机的使用寿命。
五、汽轮机的类型1. 按照工作压力分类:有低压汽轮机、中压汽轮机、高压汽轮机、超高压汽轮机、亚临界压力汽轮机和超临界压力汽轮机等。
2. 按照热力循环分类:有朗肯循环汽轮机、再热循环汽轮机和热电循环汽轮机等。
3. 按照结构形式分类:有单缸汽轮机、双缸汽轮机、多缸汽轮机等。
六、汽轮机的发展趋势1. 高参数化:随着科技的进步,汽轮机的参数越来越高,热效率也越来越高。
电厂汽轮机工作原理
电厂汽轮机工作原理
汽轮机是一种利用燃料燃烧产生高温高压气体推动涡轮旋转的热力机械,常用于发电厂中。
其工作原理主要包括以下几个步骤:
1. 燃料燃烧:燃料在燃烧室中与空气混合并点火燃烧,产生高温高压气体(通常为水蒸气和高温燃烧气体)。
2. 气体膨胀:高温高压气体进入涡轮机组,驱动涡轮旋转。
涡轮通常由一系列叶片组成,气体通过这些叶片时产生反作用力,推动涡轮转动。
3. 动能转换:涡轮的旋转运动转化为轴的旋转运动,从而驱动发电机或其他设备工作。
发电机通过转动磁场产生电流,将机械能转化为电能。
4. 气体排出:在驱动涡轮旋转后,气体的能量被转化为机械能,温度和压力降低。
然后,剩余的废气被排放到大气中。
整个过程中,汽轮机通过不断循环流动的高温高压气体驱动涡轮旋转,实现了燃料的能量转化为机械能,并进一步转化为电能的过程。
汽轮机工作原理及结构
汽轮机工作原理及结构汽轮机作为一种常见的热能转换装置,在能源领域发挥着重要的作用。
本文将介绍汽轮机的工作原理和结构,以帮助读者更好地了解和应用这一技术。
一、工作原理汽轮机通过当燃料燃烧产生高温高压气体,然后将这些气体通过喷嘴喷入汽轮机装置中的转子。
转子上的叶片受到高速高压气体的冲击力,在转子上产生转动力,从而驱动轴的转动。
同时,高温高压气体通过转子后转变为低温低压气体,然后被排出。
汽轮机通常采用闭式循环,也就是说排出的低温低压气体会再次进入锅炉或燃烧室进行再加热,然后再进入汽轮机转子。
这种循环能够充分利用能量,提高汽轮机的热效率。
此外,汽轮机还可以与发电机或水泵相结合,将机械能转化为电能或液压能。
二、结构组成汽轮机通常由以下几个主要部分组成:1. 锅炉:负责产生高温高压气体的燃烧室。
不同类型的汽轮机使用的锅炉有所不同,包括燃煤锅炉、燃气锅炉和核电锅炉等。
2. 压缩机:负责将空气压缩并输送到锅炉,以增加锅炉燃烧效率。
常见的压缩机类型有离心式压缩机和轴流式压缩机。
3. 燃气轮机:由轴和转子组成,是汽轮机的核心部件。
在燃烧室中释放的高温高压气体通过喷嘴进入燃气轮机,推动转子旋转,从而产生机械能。
4. 发电机或水泵:将燃气轮机输出的机械能转化为电能或液压能。
发电机或水泵与燃气轮机通过轴相连,通过传递转动力来完成能量转换。
5. 辅助设备:包括冷却系统、润滑系统、控制系统等,用于确保汽轮机的正常运行和安全性。
除了上述主要组成部分,汽轮机的结构还可能包括透平机组、减速机、机架等。
这些部件的具体组合和布局会根据实际应用需求的不同而有所变化。
三、应用领域汽轮机广泛应用于发电、航空、船舶、石化等众多领域。
其中,发电是汽轮机最常见的应用之一。
在热电站中,汽轮机与发电机结合,通过燃烧燃料产生高温高压气体,并将这些气体转化为电能。
此外,汽轮机还可以配合热泵系统,提供供暖和供热。
在航空领域,涡轮引擎是最常见的汽轮机类型之一。
汽轮机原理课件汇总最全面
第一章 汽轮机级的工作原理
第一节 概述 一 , 汽 轮 机 的 级 、级内能量转换过程
1,汽轮机的级:静叶栅 动叶栅 是汽轮机作功的最小单元。
23
2,级内能量转换过程: 具有一定压力、温度的蒸汽通过汽轮机的级时,首先在静叶 栅通道中得到膨胀加速,将蒸汽的热能转化为高速汽流的动 能,然后进入动叶通道,在其中改变方向或者既改变方向同 时又膨胀加速,推动叶轮旋转,将高速汽流的动能转变为旋 转机械能。
c1 =c1t
3,喷嘴损失
蒸汽在喷嘴通道中流动时,动能的损失
称为 喷嘴损失,用hn 表 示 :
hn =12(C21t 12C21 =12C21t (1 2 ) =(1 2 )hn*
13
14
15
2 汽论机分类:
按作功原理分
冲动式汽轮机 反动式汽轮机
汽 按功能分 凝汽式汽轮机
轮
机
供热式汽轮机
背压式汽轮机
调节抽汽式汽轮机
低压汽轮机
中压汽轮机
高压汽轮机
按参数高低分
超高压汽轮机
亚临界压力汽轮机
超临界压力汽轮机
16
按热力特性分类(即汽轮机型式)
凝汽式、中间再热式 背压式
供热
调整抽汽式
一 ,基本假设和基本方程式
流过叶栅通道的蒸汽是具有粘性、非连续性和不稳定的三 元流动的实际流体。为了研究方便,特作如下假设: 1 . 蒸汽在叶栅通道的流动是稳定的:即在流动过程中,通道 中任意点的蒸汽参数不随时间变化而改变。 2. 蒸汽在叶栅通道的流动是一元流动:即蒸汽在叶栅通道中流 动时,其参数只沿流动方向变化,而在与流动方向相垂直的截 面上不变化。 3. 蒸汽在叶栅通道的流动是绝热流动:即蒸汽在叶栅通道中流 动时与外界没有热交换。
汽轮机原理及构造
汽轮机原理及构造一、汽轮机原理汽轮机是一种利用高速旋转的轴来驱动机械设备的热力机械,其原理是通过燃烧燃料产生高温高压气体,然后将高压气体喷射到叶片上,使叶片转动,从而产生动力。
汽轮机的原理可以简单概括为三个步骤:压气、燃烧和推进。
1.压气:在汽轮机的压气阶段,空气被压缩并带入燃气室。
压缩空气提高了其温度和压力。
2.燃烧:在燃烧室中喷入燃料并点燃,形成高温高压的可膨胀气体。
3.推进:可膨胀气体通过喷嘴或喷管进入涡轮叶片,产生反作用力,推动轴转动,从而实现能量转换。
汽轮机运用了热力学循环原理,通常采用布雷顿循环,包括压缩、供热、膨胀和冷却四个过程。
在汽轮机循环过程中,燃气流体经由涡轮、压气机、燃烧室等组成的主要设备,依次完成不同的热力学过程。
二、汽轮机构造汽轮机通常由压气机、燃烧室、涡轮机和辅助设备组成。
1.压气机:压气机是汽轮机的关键部件之一,其作用是将进入轴流压气机的空气通过压缩提高其温度和压力。
压气机通常由多个级别的叶轮和导叶构成,气流会随着不同阶段的叶轮的作用而被不断压缩。
2.燃烧室:燃烧室是燃料燃烧的地方,将燃料和压缩空气混合并点燃。
燃烧室内的燃料燃烧产生高温高压气体,它们会进一步被进入涡轮机的喷嘴推入和加速。
3.涡轮机:涡轮机由高和低压涡轮组成,其主要作用是利用燃烧气流的动能转化为机械能,驱动轴旋转。
高压涡轮和低压涡轮的叶片受到高温高压气体的冲击,从而转动轴,实现能量转换。
4.辅助设备:汽轮机还有一些辅助设备,包括增压器、减温器、调速器、冷却系统等。
增压器用于增加压气机进气量,提高整个系统的效率。
减温器用于降低压缩空气的温度。
调速器用于控制汽轮机的转速,以适应实际运行需求。
冷却系统用于冷却涡轮叶片和其他高温部件,防止过热损坏。
总之,汽轮机利用燃料燃烧产生的高温高压气体驱动涡轮旋转,并通过传动装置将机械能输出。
汽轮机具有结构简单、工作可靠、适用范围广等特点,被广泛应用于发电、机械制造、航空、航天等领域。
汽轮机的工作原理
按主蒸汽压力分
汽轮机类别 低压汽轮机 中压汽轮机 高压汽轮机 超高压汽轮机 亚临界压力汽轮机 超临界压力汽轮机 超超临界压力汽轮机 主蒸汽压力(MPa) 0.12~1.5 2~4 6~10 12~14 16~18 >22.1 >32
汽轮机的型号
Δ XX - XX - XX
型 式 变型设计次序 蒸汽参数 额定功率
调节级
喷嘴调节:多数汽轮机采用改变第一级喷嘴面积
的方法调节进汽量,称之为喷嘴调节。
调节级:中、小容量汽轮机的调节级喷嘴调节汽
轮机的第一级称为调节级,一般采用复速级。大
容量汽轮机多采用单列冲动级。
还把汽轮机的级分为速度级和压力级两种。
汽轮机的分类
冲动式汽轮机
按工作原理分 反动式汽轮机 凝汽式汽轮机
蒸汽热能
喷嘴
气流的动能
动叶
轴的机械能
一、汽轮机的工作原理
“级”是汽轮机中最基本的
工作单元。在结构上它是由
2叶轮 3动叶栅
静叶(喷嘴)和对应的动叶
所组成;一列固定的喷嘴和
与它配合的动叶片构成了汽
轮机的基本作功单元,称为
1轴
4喷嘴
汽轮机的“级”
单级冲动式汽轮机工作原理结构立体图
(一)冲动作用原理
理想情况下表面式凝汽器的凝水温度应与排汽温度相同,被冷却水
带走的热量仅为排汽的汽化潜热。但实际运行中,由于排汽流动阻 力及非凝结气体的存在,导致凝结水温度低于排汽温度,两者的温 差称为过冷却度。冷却水管布置不当,运行中凝结水位过高而浸泡 冷却水管,均会加大过冷却度。正常情况过冷却度应不大于1~2℃。 排汽压力与机组功率 降低凝汽式汽轮机的排汽压力,虽可提高 热效率,但因排汽比容增大,汽轮机末级通流面积和叶片需要相应增 大,这加大了制造成本,使加工困难。因此,最佳排汽压力需通过技术 经济综合分析确定。目前一般凝汽式汽轮机排汽压力取为0.004~ 0.006兆帕。 汽轮机功率决定于蒸汽流量。凝汽式汽轮机可通过的最大流量 决定于末级叶片长度。由于叶片越大,离心力越大,这使它受到材料 强度的限制。目前,末级叶片最大长度可达1000~1200毫米,叶片顶 端最大允许圆周速度为550~650米/秒,单排汽口极限功率约为100~ 120兆瓦。低压缸采用分流式结构可提高单机功率。到80年代末,常 规火电厂最大凝汽式单机功率,双轴机组为1300兆瓦,单轴机组为 800兆瓦。 凝汽式机组设计为低转速(1500或1800转/分)时,可提高极限 功率,但这又使汽轮机尺寸及材料消耗增加,因为汽轮机总重量与 转速的三次方成反比。因此,除核电站为适应低参数、大流量特点, 常采用低速汽轮机外,中国火力发电厂均采用3000转/分汽轮机
汽轮机的工作原理
汽轮机的工作原理汽轮机是一种利用蒸汽压力产生动力的热机,它是由汽轮机本体和汽轮机辅机组成的。
汽轮机是利用蒸汽的动能来推动涡轮旋转,从而产生功率的装置。
它广泛应用于发电厂、船舶、飞机等领域,是现代工业中不可或缺的动力设备。
下面我们来详细了解一下汽轮机的工作原理。
首先,汽轮机的工作原理涉及到热力学和动力学的知识。
在汽轮机中,蒸汽由高压进入汽轮机,然后在涡轮叶片上产生动能,推动涡轮旋转。
涡轮旋转的功率通过轴传递到负载上,从而驱动负载工作。
在这个过程中,燃料燃烧产生高温高压的蒸汽,蒸汽的动能转化为机械能,完成了能源的转换。
其次,汽轮机的工作原理还涉及到热力循环的过程。
汽轮机的热力循环一般包括蒸汽发生器、汽轮机、凝汽器和再生器等部件。
在热力循环中,蒸汽在高温高压下进入汽轮机,推动涡轮旋转,然后蒸汽失去动能,变成低温低压的凝汽水,最终被再次加热成为高温高压的蒸汽,完成了一个循环。
这种热力循环的过程保证了汽轮机能够持续地产生动力。
此外,汽轮机的工作原理还与涡轮机的工作原理相关。
涡轮机是汽轮机的核心部件,它是利用动能原理将蒸汽的动能转化为机械能的装置。
涡轮机根据其结构和工作介质的不同,可以分为汽轮机、水轮机和气轮机等。
而汽轮机则是以水蒸气作为工作介质的一种涡轮机。
涡轮机的工作原理决定了汽轮机的工作原理,它们是密不可分的。
总的来说,汽轮机的工作原理是基于热力学和动力学的知识,利用蒸汽的动能来推动涡轮旋转,从而产生功率。
通过热力循环的过程,汽轮机能够持续地产生动力。
涡轮机作为汽轮机的核心部件,是实现能源转换的关键。
汽轮机的工作原理是现代工业中非常重要的一部分,它为各种设备和机械提供了动力支持,推动着工业的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饱和蒸汽核电站汽轮机特点
1. 低蒸汽参数。 2. 腐蚀和侵蚀。
大部分级都处在湿蒸汽区工核作电站,汽轮将机 引起动静部分零部件的腐蚀 和侵蚀, 3. 汽水分离再热器。 在高、低压缸之间必须装设汽水分离再热器,其由汽水分离器 和再热器两大部分组成,除掉高压缸排汽中90%~98%的水分, 然后在两级再热器中变成过热蒸汽,进入低压缸膨胀作功。 4. 半转速。 5. 甩负荷超速。 (1)甩负荷后存留在通流部分内、蒸汽联通管和汽水分离再热 器等处的大量蒸汽,继续流经各级膨胀作功,使其超速; (2)饱和蒸汽汽轮机的大量疏水积存在静子零部件表面,形成 一层水膜(据估计约1mm),或在凹坑内有积水,当汽轮机甩 负荷时,通流部分内蒸汽压力突然降低引起水膜闪蒸而产生大
核电站汽轮机
受反应堆冷却剂温度的限制,一般压水堆平均出口温度低于310℃,所 以二回路只能产生压力较低(5~7MPa)的饱和蒸汽(或微过热蒸汽)。
饱和蒸汽核电站汽轮机特点
核电站汽轮机
1. 低蒸汽参数。 所以饱和蒸汽汽轮机的进、排汽尺寸要比常规电初参数 低,在一定背压的条件下,整机的理想比焓降小; 初参数低,整机的理想比焓降小,比体积大,在相等的 功率下,饱和蒸汽汽轮机的进汽体积流量要比常规火电厂 的汽轮机大2.5~3.5倍,排汽体积流量为1.65倍;
所以饱和蒸汽汽轮机的进、排汽尺寸要比常规电厂汽轮机 大得多, 导致高压缸采用双流道两个排汽口,低压缸采用多缸双流 道多个排汽口,末级采用更长的叶片。
饱和蒸汽核电站汽轮机特点
核电站汽轮机
1. 低蒸汽参数。 所以饱和蒸汽汽轮机的进、排汽尺寸要比常规电初参数 低,在一定背压的条件下,整机的理想比焓降小; 初参数低,整机的理想比焓降小,比体积大,在相等的 功率下,饱和蒸汽汽轮机的进汽体积流量要比常规火电厂 的汽轮机大2.5~3.5倍,排汽体积流量为1.65倍;
增大单机功率(排汽面积) 提高热效率 重量与尺寸(半速:全速=1.3~1.5) 水蚀 汽缸稳定性
半速汽轮机提高热效率
核电站汽轮机
效率取决于容积流量
低压缸效率,排汽损失占很大比重。半速 汽轮机排汽速度低
目前百万千瓦级核电半速汽轮机热效率比 全速汽轮机高,平均高出2%,最多的高出 3.3%。
核电站汽轮机
热力过程的差别
核电站汽轮机
核电站汽轮机
没有中压缸 参数低 体积流量大 高压缸双流
低压缸排汽口多(降低流速,提高通流面积) 排汽口过多 轴太长 轴向间隙 汽轮机效率 提高叶片高度(受到限制)
调节方式的区别——火电
核电站汽轮机
大容量的火电汽轮机普遍采用喷嘴调节配汽方式。这种配汽方式只有 在最后开启的那组调节阀的汽流受到节流的影响,因此,节流导致的 能量损失不会很大,所以,对于变工况运行比较频繁的火电机组是最 佳的配汽方式
核电站汽轮机
级内除湿装置: 在汽轮机通流部分所采取 的去湿措施称为内部去湿 装置;
喷嘴叶片上缝隙式去湿装 置
汽缸和隔板外环上的沟槽 式去湿装置
外置式去湿装置或去湿再 热装置
防水蚀措施
核电站汽轮机
增加去湿,去除动叶片由于离心力的作用而 被甩到并聚集在隔板外缘延伸环上的水分。
增加动、静叶片之间的轴向间隙。 在叶片进汽边顶部进行防水蚀处理,如焊接
核电站汽轮机
与火电汽轮机的区别
核电站汽轮机
蒸汽参数的区别 调节方式的区别 转速的区别
蒸汽参数的差别
核电站汽轮机
蒸汽参 数低
易超速
体积流 量大
参数低 焓降 ,50% 功率G , 2倍 主汽 压G , 4 ~ 6倍 余速损失 d
蒸汽参数的差别
运行灵活性
核电站汽轮机
核电热力系统的独特性
核电站汽轮机
与火电区别:汽水分离再热循环(汽水分离在 热器)
作用一: 起到汽水分离的作用,经过汽水分 离器可以除去高压缸排出蒸汽中98% 的水份
作用二:为了提高蒸汽的循环经济性,避免多 级去湿,需要对蒸汽进行中间再热
去湿措施
图7-8 级内去站汽 轮机
核电站汽轮机
过热蒸汽核电站汽轮机:
高温气冷堆和改进型石墨气冷堆的核电站汽轮机,它的进 汽参数已完全达到常规火电厂的标准,也可采用中间再热, 容量也已达到甚至超过常规火电厂。
饱和蒸汽核电站汽轮机: 饱和蒸汽汽轮机又称湿蒸汽汽轮机(包括微过热蒸汽汽轮 机)。目前饱和蒸汽汽轮机约占总核电站装机容量89%, 其中绝大部分机组是利用轻水堆(包括压水堆和沸水堆) 产生的蒸汽。
核电机组蒸汽参数低、流量大,采用喷嘴调节的调节级动叶片的应力 很高。另外,由于节流配汽方式在阀门全开或稍有节流的额定负荷下 要比喷嘴配汽效率高,所以对于带基本负荷的核电汽轮机普遍采用节 流调节。
转速区别——核电半速汽轮机
核电站汽轮机
提高汽轮机的可靠性 F mR2
叶片应力与转速的平方成正比 实际应力比全速小1.3~2倍
核电站汽轮机
在半速机组上, 高压缸比较大些, 因此具有 抵抗大直径管道所造成的力和力矩。当然, 这种作用也不能过量。在这一点上,半速机 组比全速机组要略占优势。
振动特性
核电站汽轮机
半速汽轮机由于转速较全速低、转子重量重 、转动惯量大,因此其对激振力的敏感程度 比全速机低,抗振性能比全速机优。
司太立合金片等。 在高压和低压末级动叶片顶部进汽边开设径
向导流槽。
外观
核电站汽轮机
无中压缸 体积大,重量大
重量与尺寸
核电站汽轮机
核电站汽轮机
侵蚀与腐蚀
核电站汽轮机
核电汽轮机大约2/3的作功在低压缸内完 成,核电汽轮机低压缸的排汽湿度较大,一 般高达12% 一14% 。
在给定的排汽湿度下, 叶顶速度的高低是 影响叶片侵蚀程度的主要因素,半速汽轮机 叶顶速度低, 叶片侵蚀小, 可靠性高。
汽缸稳定性