直流电机驱动电路设计..

合集下载

直流电机驱动与控制电路设计报告MMZ

直流电机驱动与控制电路设计报告MMZ

直流电机驱动与控制电路设计报告MMZ 摘要
本文主要介绍了直流电机驱动和控制电路的设计,该电路应用于基于MMZ系列直流电机的应用。

在电源连接之后,通过控制器连接电机和接收端,在控制器中的PWM调速模式控制直流电机的转速。

通过对电路图的分析,可以知道该电路可以实现直流电机的变频控制和调速控制功能。

该电
路的优点包括低成本,高可靠性,简单的操作等。

关键词:MMZ系列直流电机,变频控制,控制器,PWM调速
1绪论
随着信息技术的发展和人们生活水平的提高,各行业对电机的要求越
来越高,直流电机的应用非常广泛。

直流电机有很多优点,首先它的功耗低,其次它的抗干扰性强,可以承受比较大的风扇或水泵负荷,同时它还
具有可调速度和方向控制的特性,这使其在工业生产中起到了重要作用。

MMZ系列直流电机是一种新型的高性能直流电机,它具有较高的功率
和较低的噪声,大大降低了系统损耗,而且还具有良好的稳定性和可靠性,所以在工业自动化控制领域有着广泛的应用。

为了使电机具有良好的方向
控制特性和速度控制的功能,必须进行变频控制和调速控制,这就要求电
机配备有电源模块、控制器模块和接收端模块。

基于IR2136的无刷直流电机驱动电路的设计

基于IR2136的无刷直流电机驱动电路的设计

基于IR2136的无刷直流电机驱动电路的设计无刷直流电机是一种广泛应用于工业和家用设备中的驱动器件。

与传统的有刷直流电机相比,无刷直流电机具有更高的效率、更长的寿命和更低的噪音水平。

为了实现无刷直流电机的控制和驱动,需要设计相应的驱动电路。

IR2136是一种常用的无刷直流电机驱动器件。

它具有多种保护和控制功能,可以用于控制无刷直流电机的转速、方向和制动等。

下面是基于IR2136的无刷直流电机驱动电路设计的详细介绍。

首先,设计一个适合的电源电路来为驱动器件和无刷直流电机提供电源。

电源电路应具有稳定的输出电压和电流能力。

通常,使用电池或稳压电源作为驱动电路的电源。

其次,设计一个合适的电机驱动电路。

IR2136包括三个半桥驱动器,每个半桥驱动器都包括一个高侧和低侧开关管。

通过控制这三个半桥驱动器的开关管的导通和截止状态,可以实现对无刷直流电机的控制。

此外,IR2136还具有保护电路,如过温保护、过电压保护、低电压保护和短路保护等。

这些保护功能可以保证电机和驱动器的安全运行。

在设计过程中,需要根据无刷直流电机的参数和工作要求选择合适的电源电压、电流和功率。

还需要选择合适的IR2136驱动芯片和外围电路元件,如电感、电容等。

此外,还需要设计驱动器和电机之间的连接线路,保证信号传输的可靠性。

最后,进行电路的调试和测试。

通过对电路进行测试和调试,可以确保电机能够正常工作,并且具有所需的转速和扭矩。

在调试过程中,可以调整驱动器的参数和工作模式,如占空比、频率等,来优化电机的性能。

总结起来,基于IR2136的无刷直流电机驱动电路设计需要考虑电源电路、驱动器电路和保护电路等方面的设计。

通过合理选择电路元件和参数,并进行适当的调试和测试,可以实现无刷直流电机的稳定驱动和控制。

这样的电路设计可以用于各种需要无刷直流电机的应用中,如工业自动化、机器人和电动车等。

H桥直流电机驱动控制电路设计

H桥直流电机驱动控制电路设计
电路 原理 框 图如 图 1 示 。 所
强型场 效应管 构建 H桥 , 现 大功 率直 流 电机 驱 实
、c 乏 PW M ห้องสมุดไป่ตู้
图 1 电路 原 理 框 图
在 大功率 驱 动系统 中 , 驱 动 回路 与 控制 回 将 路 电气 隔离 , 少 驱 动 控制 电路对 外 部控 制 电路 减 的干扰 。隔离后 的控 制信 号经 电机 驱动 电路产 生 电机逻辑 控制 信号 , 分别 控 制 H 桥 的上下 臂 。驱 动 H 桥功率 驱 动电路来 驱动 直流 电机 。
率 M SE O F T构 成 H 桥 电路 的桥 臂 。H 桥 电路 中
的 4个 功率 MO F T分 别 采用 N沟 道 型 和 P沟 SE 道型 , P沟道 功率 MO F T一般 不 用 于下 桥 臂 而 SE
在驱 动控制 电路 中, H桥 由 4个 N沟 道 功率 MO F T组 成 。若 要控 制 各个 MO F T, MO — SE SE 各 S F T的 门极 电压必 须足够 高 于栅 极 电压 。通 常 要 E
使 MO F T完全可靠 导通 , 门极 电压一 般在 l SE 其 0
V以上 , V >1 即 0V。对 于 H桥下 桥 臂 , 接 施 直
加 1 OV以上 的 电压 即可使 其导 通 ; 而对 于上桥 臂 的 2个 MO F T, SE 要使 V s 0V, G >1 就必 须 满 足 V c
> +l 即驱动 电路 必 须 能提供 高 于 电源 电 V 0V, 压 的电压 , 就要求 驱 动电路 中增设升 压 电路 , 这 提 供高 于栅极 1 0V的 电压 。
路 , Q 导通 , 此 同时 电源 电压 (+1V) 自 使 : 在 2 经

详解直流电机驱动电路设计

详解直流电机驱动电路设计

详解直流电机驱动电路设计
直流电机驱动电路设计概述
电机驱动电路是控制电机运行的电路,也称作动力源电路,它的主要
作用是提供电机所需要的适当电压和频率的电能,以控制电机的转速和转
动方向。

一般讲,电机驱动电路包括三个部分:驱动器,控制器和电源电路。

一、直流电机驱动电路的设计
1、驱动器的设计
直流电机驱动电路主要由驱动器、控制器和电源电路组成。

在这里,
驱动器主要负责将控制器的控制信号转换为适合电机工作的电流。

现在,
基于IGBT的驱动器已经成为直流电机驱动电路中的主要组成部分。

驱动
器电路很复杂,包括用于驱动电机的晶体管,用于传输控制信号的晶体管,以及调节电流的电阻等。

2、控制器的设计
控制器是电机驱动电路的核心部分,它负责接收外部输入信号,并根
据设定的参数来调整电机的转速、转向和加速等。

控制器设计非常复杂,
一般包括两个主要部分:控制电路和放大路由部分。

控制电路负责检测电
机的运行状态和外部输入,并根据这些信息来调整电机的转速。

放大部分
负责将控制电路的输出信号放大,并将其转换为能够驱动电机的标准控制
信号。

3、电源电路的设计。

无刷直流电机驱动电路的实现方法

无刷直流电机驱动电路的实现方法

无刷直流电机驱动电路的实现方法文章标题:无刷直流电机驱动电路的实现方法导言:无刷直流电机具有高效、低噪声和长寿命等优点,广泛应用于工业自动化、电动车辆和家用电器等领域。

然而,为了实现无刷直流电机的高效运行,需要一个可靠而高效的驱动电路。

本文将介绍无刷直流电机驱动电路的实现方法,并探讨其中的关键技术和设计要点。

一、无刷直流电机驱动电路的基本原理无刷直流电机驱动电路是通过控制电机的相序和电流来实现电机的运转。

它主要由功率电子器件、控制电路和电源组成。

其中,功率电子器件用于控制电流的开关和调节,控制电路用于检测电机的位置和速度,并控制功率电子器件的工作。

电源则提供所需的电能。

二、无刷直流电机驱动电路的实现方法1. 直流电压源驱动法直流电压源驱动法是最简单、成本最低的无刷直流电机驱动方法之一。

它通过将电压源直接连接到电机的相,通过调节电压的极性和大小来控制电机的运转。

然而,由于缺乏对电机位置和速度的准确检测和控制,其控制性能较差,适用于一些简单的应用场景。

2. 舵机驱动法舵机驱动法通过使用传感器检测电机的位置和速度,并根据检测结果控制功率电子器件的工作,实现对电机的精确控制。

该方法通常包括位置传感器、速度传感器和控制模块。

然而,由于传感器的引入增加了系统的复杂性和成本,对传感器的精度和稳定性要求较高。

3. 无传感器驱动法无传感器驱动法是一种最为常用和成熟的无刷直流电机驱动方法。

它通过使用反电动势(Back EMF)来检测电机的位置和速度,并根据检测结果来控制功率电子器件的工作。

该方法不仅降低了系统的复杂性和成本,还提高了系统的可靠性和稳定性。

然而,由于反电动势的检测较为困难,需要一套复杂的算法和控制策略。

三、无刷直流电机驱动电路的关键技术1. 电子换向技术无刷直流电机的运转需要按照一定的相序来进行,电子换向技术是实现相序控制的关键。

它通过控制功率电子器件的工作来改变电流的方向和大小,从而实现电机的正常运转。

较大功率直流电机驱动电路的设计方案

较大功率直流电机驱动电路的设计方案

1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。

许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。

基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。

该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。

2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。

对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。

可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。

而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。

三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。

因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。

2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。

当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。

无刷直流电机的驱动电路

无刷直流电机的驱动电路

无刷直流电机的驱动电路一、无刷直流电机简介无刷直流电机是一种通过电子方式实现电机转子磁场与定子磁场的同步旋转,无需刷子与换向器来调整磁场方向的电机。

它具有高效率、高转矩密度、长寿命等优点,被广泛应用于工业、航空航天、交通工具等领域。

二、无刷直流电机的基本原理无刷直流电机的驱动主要是通过电子器件来控制电机的磁场和转子的位置。

基本原理如下: 1. 无刷直流电机的转子上安装有磁体,称为永磁体,用来产生转子磁场。

2. 定子上绕有若干个线圈,通过电流激励产生定子磁场。

3. 当定子磁场与转子磁场交叉时,产生转矩,使电机转动。

三、无刷直流电机的驱动电路设计要求设计无刷直流电机的驱动电路时,需要满足以下要求: 1. 高效率:电路应尽可能减少能量的损耗,以提高电机的效率。

2. 稳定性:电路应具有良好的稳定性,能够在各种工作条件下保持电机的正常运行。

3. 可调性:电路应具备可调节转速和转向的功能,以满足不同应用场景的需求。

4. 保护功能:电路应具备过流、过温等保护功能,以确保电机和电路的安全运行。

四、无刷直流电机的驱动电路设计方案4.1 无刷直流电机驱动电路的基本组成无刷直流电机的驱动电路通常由以下几部分组成: 1. 电源模块:提供电机驱动所需的电压和电流。

2. 电流检测模块:用于检测电机驱动电路中的电流情况,保护电机和电路的安全。

3. 电压转换模块:用于将电源提供的电压转换为电机所需的工作电压。

4. 逻辑控制模块:根据输入信号控制电机的转速和转向。

5. 保护模块:监测电机驱动电路的工作状态,当出现异常情况时进行相应的保护。

4.2 无刷直流电机驱动电路的工作原理无刷直流电机的驱动电路工作原理如下: 1. 逻辑控制模块接收输入信号,根据信号产生驱动电流的时序。

2. 驱动电流经过电流检测模块后,进入电机的定子线圈。

3. 电机定子线圈中的电流产生定子磁场,与转子磁场交叉产生转矩。

4. 电压转换模块将电源提供的电压转换为电机所需的工作电压。

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计一、本文概述随着现代电子技术的飞速发展,直流电机因其优良的控制性能和简单的结构设计,在工业自动化、精密仪器和消费电子等领域得到了广泛应用。

传统的直流电机驱动控制电路存在功耗大、效率低、响应速度慢等问题,难以满足当前对高性能电机控制系统的需求。

研究新型的直流电机驱动控制电路具有重要意义。

本文主要聚焦于基于场效应管的直流电机驱动控制电路设计。

场效应管(FET)作为一种高效、快速的电子器件,在电机驱动领域具有独特的优势。

本文将首先介绍场效应管的基本原理和特性,以及其在直流电机驱动控制中的应用优势。

接着,本文将详细阐述一种基于场效应管的直流电机驱动控制电路的设计方法,包括电路的拓扑结构、工作原理以及关键参数的设计与优化。

本文的研究重点在于如何通过优化电路设计,提高直流电机驱动控制系统的性能,包括降低功耗、提高效率、加快响应速度等。

本文还将探讨电路设计中可能遇到的问题和挑战,并提出相应的解决策略。

总体而言,本文旨在为直流电机驱动控制电路的设计提供一种新的思路和方法,以推动电机控制技术在现代工业和电子领域的应用与发展。

二、场效应管基础知识场效应管(FieldEffect Transistor,简称FET)是一种利用电场效应来控制电流流动的半导体器件。

它具有三个引脚:源极(Source)、栅极(Gate)和漏极(Drain)。

场效应管的主要类型包括结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。

在直流电机驱动控制电路中,MOSFET因其高输入阻抗、低导通电阻和高开关速度等特点而得到广泛应用。

场效应管的工作原理基于电场效应。

在MOSFET中,当在栅极和源极之间施加一个电压时,会在栅极和硅基片之间形成一个电场。

这个电场会影响硅基片中的电荷分布,从而控制源极和漏极之间的电流流动。

当栅极电压达到一定阈值时,MOSFET开始导通,电流可以在源极和漏极之间流动。

场效应管的特性参数对其在电路中的应用至关重要。

单片机 直流电机的驱动电路

单片机 直流电机的驱动电路

单片机直流电机的驱动电路
直流电机是常用的电机类型之一,其驱动电路的设计对于电机的正常运行和控制至关重要。

对于单片机的直流电机驱动电路,一般可以采用H桥电路或PWM控制电路。

首先,简要介绍一下H桥电路。

H桥电路的形状类似于字母“H”,它由四个开关器件(如晶体管或MOSFET)组成。

通过控制开关器件的通断状态,可以改变电机两端的电压极性,从而实现电机的正转和反转。

在H桥电路中,可以采用单片机控制开关器件的通断状态,实现电机的启动、停止、正转和反转等操作。

另外,PWM控制也是一种常见的直流电机控制方法。

PWM控制通过调节电机两端的平均电压值来改变电机的转速,从而达到调速的目的。

在PWM控制电路中,可以采用单片机内部的PWM模块或者利用数字GPIO口进行PWM信号的输出。

通过调节PWM信号的占空比,可以控制电机两端的平均电压值,从而改变电机的转速。

综上所述,单片机在直流电机驱动电路中扮演着重要的角色,通过H桥电路或PWM控制电路可以实现电机的灵活控制。

在实际应用中,可以根据具体需求选择合适的驱动电路和控制方法。

直流电机(H桥)驱动电路

直流电机(H桥)驱动电路

直流电机(H桥)驱动电路图4.12中所示为一个典型的直流电机控制电路。

电路得名于“H桥驱动电路”是因为它的形状酷似字母H。

4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。

如图所示,H桥式电机驱动电路包括4个三极管和一个电机。

要使电机运转,必须导通对角线上的一对三极管。

根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。

图4.12 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。

例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。

按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。

当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。

当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。

图4.14 H桥驱动电机逆时针转动驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。

如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。

此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。

基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。

图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。

4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。

而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。

基于drv8871芯片的直流电动机驱动电路系统设计_概述说明

基于drv8871芯片的直流电动机驱动电路系统设计_概述说明

基于drv8871芯片的直流电动机驱动电路系统设计概述说明1. 引言1.1 概述:本文旨在介绍基于drv8871芯片的直流电动机驱动电路系统设计。

该设计旨在通过合理选择和匹配驱动器、设计保护回路以及优化控制策略,实现对直流电动机的高效驱动和精确控制。

通过详细阐述DRV8871芯片的功能特点和工作原理,深入讲解直流电动机的基本原理和常见应用场景,以及直流电动机驱动电路设计要点,读者将能够全面了解这个系统的构成和关键设计考虑因素。

1.2 文章结构:本文共分为六个章节。

引言部分首先介绍了整篇文章的概述,并简要概括了各章节的内容。

第二节将详细介绍DRV8871芯片的功能特点、工作原理以及相关参数规格。

第三节将重点讲解直流电动机的基本原理,包括其结构、工作原理以及常见类型和应用场景。

第四节将详细阐述直流电动机驱动电路设计的要点,包括合适的驱动器选择与匹配、保护回路设计以及控制策略选择与优化。

第五节将通过一个基于DRV8871芯片的直流电动机驱动电路系统设计实例进行分析,包括系统框架设计与硬件选型说明、关键组件参数计算与选择方法描述以及驱动电路连接图与控制策略详细说明。

最后一节为结论与展望部分,总结了设计效果,并提出了进一步研究的方向和潜在问题。

1.3 目的:本文旨在帮助读者深入理解基于drv8871芯片的直流电动机驱动电路系统设计。

通过对DRV8871芯片的介绍和直流电动机原理的讲解,读者将能够掌握该系统的核心原理和相关关键技术。

同时,通过实例分析和具体设计考虑因素的阐述,读者将能够学习到实际应用中如何进行具体电路设计以及如何根据需求选择合适的控制策略。

本文旨在为工程师和研究人员提供有关直流电动机驱动电路系统设计方面的知识与参考,并为进一步研究和应用提供启示和指导。

2. DRV8871芯片简介2.1 芯片功能特点:DRV8871是一款高性能、集成化的直流电动机驱动器芯片。

它具有以下功能特点:- 高性能运算放大器:内置多个运算放大器,用于实现电机控制回路的精确测量和调节。

直流电机驱动电路设计

直流电机驱动电路设计

直流电机驱动电路设计时间:2007-04-23 来源: 作者: 点击:49151 字体大小:【大中小】一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。

如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。

2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。

1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。

要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。

3)对控制输入端的影响。

功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4)对电源的影响。

共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。

5)可靠性。

电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。

二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。

注意1脚对地连接了一个2K欧的电阻。

当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。

当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。

或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。

高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。

直流电机的驱动

直流电机的驱动

直流电机驱动电路设计时间:2007-04-23 来源: 作者: 点击:32646 字体大小:【大中小】一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。

如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。

2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。

1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。

要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。

3)对控制输入端的影响。

功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4)对电源的影响。

共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。

5)可靠性。

电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。

二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。

注意1脚对地连接了一个2K欧的电阻。

当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。

当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。

或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。

高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。

直流无刷电机驱动电路设计

直流无刷电机驱动电路设计

直流无刷电机驱动电路设计提纲:一、直流无刷电机驱动电路的基础原理及设计要点分析二、直流无刷电机驱动电路的设计方法及其优缺点探讨三、直流无刷电机驱动电路中的功率因素控制技术研究四、直流无刷电机驱动电路的实际应用案例分析五、直流无刷电机驱动电路的未来发展方向预测一、直流无刷电机驱动电路的基础原理及设计要点分析直流无刷电机驱动电路的主要原理基于于磁场相互作用的电动力学基本规律,即当电流经过线圈时,可激发磁场,从而推动马达的转动。

基本的驱动电路由电源、电机控制器和无刷直流电动机组成。

在电机控制器中,通常采用功率半导体器件(IGBT、MOSFET等)作为开关元件,通过PWM、SPWM 等调制方式将电机的速度、扭矩控制在合理的范围内,从而实现直流无刷电动机的转速调控。

在电路设计中,应优先考虑功率半导体元件的选择、功率因素的控制、电流保护等方面。

二、直流无刷电机驱动电路的设计方法及其优缺点探讨直流无刷电机驱动电路的设计根据不同的应用场景和工作特点采用不同的控制方法。

目前常见的方法包括四种:1. 电压调制(V/F)控制方法:调节电机控制器输出的交流电压和频率,来控制电机的转速和扭矩。

2. 电流控制方法:通过控制电机控制器中的感应电流、换向电流等来控制电机转速和扭矩。

3. 磁场定向控制方法:通过调节电机控制器中所激励的电流方向和大小来控制磁场的方向和大小,进而控制电机的转速和扭矩。

4. 磁场反转控制方法:通过调节电机控制器中的电流,将电机磁场相反转,从而达到正反转换和调速的目的。

不同的控制方法各具优缺点,应根据实际应用需求选择适当的控制策略。

三、直流无刷电机驱动电路中的功率因素控制技术研究在直流无刷电机驱动电路实际应用中,由于诸多因素影响,在实际运行中往往存在较大的滞后现象,导致功率因素较低,从而降低了电路效率、增加了电能消耗。

针对这一问题,可以采用计算机数值控制技术、电容电感等附加校正芯片、电流同步控制器等手段来进一步提高电路功率因素,从而进一步提高电路效率和稳定性。

基于LMD18200的直流电机驱动电路设计

基于LMD18200的直流电机驱动电路设计

基于LMD18200的直流电机驱动电路设计——2012.05.08LMD18200 是美国国家半导体公司(NS)推出的专用于运动控制的H桥组件。

同一芯片上集成有CMOS 控制电路和DMOS 功率器件, 峰值输出电流高达6A ,连续输出电流达3A ,工作电压高达55V ,还具有温度报警和过热与短路保护功能。

主要应用于位置控制、速度控制、工业机器人和各种数控设备都需要直流电机和步进电机。

其功能如下:★连续输出电流3A,峰值电流6A,,工作电压高达55V;★可通过输入的PWM信号实现PWM控制;★可通过输入的方向控制信号实现转向控制;★可以接受TTL或CMOS以及它们兼容的输入控制信号;★可以实现直流电动机的双极型和单极型控制;★内设过热报警输出和自动关断保护电路;★内设防桥臂直通电路;★低导通电阻,典型值0.3欧LMD18200的原理图如下图所示。

其内部集成了四个DMOS管,组成一个标准的H型驱动桥。

通过充电泵电路为上桥臂的2个开关管提供栅极控制电压,充电泵电路由一个300kHz左右的振荡器控制,使充电泵电容可以充至14V左右,典型上升时间是20us,适于1KHz左右的频率。

可在引脚1、11外接电容形成第二个充电泵电路,外接电容越大,向开关管栅极输入的电容充电速度越快,电压上升的时间越短,工作频率可以更高。

引脚 2、10接直流电机电枢,正转时电流的方向应该从引脚2到引脚10,反转时电流的方向应该从引脚10到引脚2。

电流检测输出引脚8可以接一个对地电阻,通过电阻来检测输出过流情况。

内部保护电路设置的过电流阈值为10A,当超过该值时会自动封锁输出,并周期性的自动恢复输出。

如果过电流持续时间较长,过热保护将关闭整个输出。

过热信号还可通过引脚9输出,当结温达到145度时引脚9有输出信号。

LMD18200内部原理图基本工作原理1、PWM 信号类型LMD18200 可采用两种不同类型的PWM信号。

类型: PWM 信号中既包含方向信息又包含幅值信息, 50 %占空比的PWM 信号代表零电压。

H桥直流电机驱动电路设计

H桥直流电机驱动电路设计

H桥直流电机驱动电路设计本文针对直流电机的驱动电路的各个模块进行了详细的分析与设计,主要介绍了大功率直流电机驱动电路的设计流程。

经分析,该电路可以很好地控制直流电机的正反转及调速,并且具有结构简单,驱动能力强,低功耗,低成本等优点。

关键字:H桥驱动电力MOS管直流电机一、引言直流电动机凭借其良好的线性特性、优异的控制性能、以及可以实现频繁的无级快速启动、制动和反转等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。

特别是第二代全控型电力半导体器件(GTR、GTO、MOSFET、IGBT)的发展,以及脉冲宽度调制(PWM)技术的成熟,使得直流电机具有了更加广泛的应用前景。

二、直流电机驱动电路总体结构直流电机驱动电路分为光电隔离电路、死区控制电路、电机驱动逻辑电路、驱动信号放大电路、H桥功率驱动电路等五部分。

其中控制信号有控制电机转向的DIR信号和控制电机转速的PWM信号。

1、光电隔离电路2、死区控制电路3、电机驱动逻辑电路4、H桥功率驱动电路设计近30年来,电力电子技术的迅猛发展,带动和改变着电机控制的面貌和应用。

常用的电子开关器件有继电器,三极管,MOS管,IGBT等。

普通继电器属机械器件,开关次数有限,开关速度比较慢,而且继电器内部为感性负载,对电路的干扰比较大。

晶体管本身有导通电阻,在通过大电流时会明显发热,如果没有散热措施会很容易烧毁,一般使用于小功率驱动电路。

电力MOS管导通电阻远比普通三极管低,允许流过更大的电流,且内置有反向二极管来保护管子本身,使用MOS管搭建H桥,高位电路要用P沟道管,低位电路要用N沟道管。

IGBT 管由于价格昂贵一般不采用。

3)功率驱动芯片IR2130小功率驱动电路可以采用上圖的H桥驱动电路,当驱动功率比较大时,一般桥臂电压也比较高,为了安全和可靠,希望驱动回路(主回路)与控制回路绝缘。

此时,主回路必须采用浮地前置驱动。

如上图4所示,其中浮地前置驱动电路都是互相独立的并由独立的电源供电。

详解直流电机驱动电路的设计

详解直流电机驱动电路的设计

详解直流电机驱动电路的设计直流电机驱动电路是将直流电源的电能转换为电机机械能的关键部分。

设计一个高效、可控的直流电机驱动电路需要考虑多个因素,包括电源选择、控制电路设计、保护电路设计等。

首先,在设计直流电机驱动电路之前,需要确定所需的电源电压和电流。

一般来说,直流电机的额定电压和额定电流是由电机制造商给出的,可以根据这些参数来选择合适的电源。

其次,设计直流电机驱动电路需要考虑电机的控制方式。

常见的电机控制方式包括电压控制和PWM控制。

电压控制方式是通过改变电源电压的大小来控制电机的转速,而PWM控制是通过改变电源电压的脉宽来控制电机的转速。

选择适当的控制方式取决于具体的应用需求。

接下来,需要设计电机的控制电路。

控制电路主要包括接口电路、驱动电路和保护电路。

接口电路用于接收控制信号,将其转换为适合驱动电路的信号。

驱动电路则根据接口电路的信号来控制电机的功率开关。

保护电路用于保护电机和驱动电路免受过电流、过电压等不良因素的损害。

另外,还需要考虑闭环控制系统的设计。

闭环控制系统可以通过反馈信号来调整驱动电路的输出,使得电机的转速能够达到预期的目标。

闭环控制系统通常包括传感器(如转速传感器、位置传感器等)、比较器、PID控制器等组成。

最后,需要进行模拟和数字电路的设计和电路优化。

模拟电路设计应考虑信号放大、滤波、隔离等问题。

数字电路设计涉及到处理器的选择和接口设计等。

总之,直流电机驱动电路的设计需要综合考虑电源、控制电路、保护电路以及闭环控制系统的设计,并进行模拟和数字电路的优化。

通过合理地设计和优化,可以实现高效、可控的直流电机驱动。

详解直流电机驱动电路设计

详解直流电机驱动电路设计

直流电机(direct current machine )是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

它是能实现直流电能和机械能互相转换的电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

直流电机的基本构成直流电机山定子和转子两部分组成,其间有一定的气隙。

直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。

其中上磁极是产生直流电机气隙磁场的主要部件,山永磁体或带有直流励磁绕组的叠片铁心构成。

直流电机的转子则山电枢、换向器(乂称整流子)和转轴等部件构成。

其中电枢山电枢铁心和电枢绕组两部分组成。

电枢铁心山硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。

换向器是一种机械整流部件。

山换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。

各换向片间互相绝缘。

换向器质量对运行可靠性有很大影响。

电刷主谡极直流电机的组成结构直流电机的结构应由定子和转子两大部分组成。

直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。

运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常乂称为电枢,山转轴、电枢铁心、电枢绕组、换向器和风扇等组成。

01定子主磁极i磁极的作用是产生气隙磁场。

主磁极山主磁极铁心和励磁绕组两部分组成铁心一般用0. 5inm〜1. 5mm用:的硅钢板冲片叠压钏紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,乂便于固定励磁绕组。

励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。

整个主磁极用螺钉固定在机座上。

换向极换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,山换向极铁心和换向极绕组组成。

无刷直流电动机功率驱动电路设计

无刷直流电动机功率驱动电路设计

无刷直流电动机功率驱动电路设计
一、概述
无刷直流电动机(BLDC)是一种特殊的直流电动机,其转子上没有刷子
起到对电压的分割作用,主要依靠逆变器来模拟驱动直流电动机的三相交
流电压和频率,从而实现电动机的驱动,相比于直流电动机,BLDC电动
机具有更高的效率、更高的扭矩,更小的体积和更高的转速,由此成为伺
服控制应用的优先考虑的电动机之一
因此,本文关注如何设计一款以BLDC为驱动的电动机功率驱动电路,以达到BLDC电动机的最佳工作效果,下面将首先介绍BLDC电动机的工作
原理,然后介绍功率驱动电路的设计,最后讨论功率驱动电路的原理和特点。

二、BLDC驱动电机工作原理
BLDC驱动电机的工作原理是,逆变器将交流电源的输入转换为正弦
波形的三相电流,经过逆变器的每个通道的低频调制和半桥可控整流组件
输出,将可控直流电压的正弦波输出给无刷直流电机,实现无刷直流电机
的控制以及调速和位置控制。

BLDC驱动电机的驱动电路能够调整电流的强度和相位,以便控制电
机的状态,如转速、加速度和位置,并能够提高电机的效率和功率。

无刷
直流电机在低速下具有较大的转矩,在高速下具有较高的功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用越来越广泛的直流电机,驱动电路设计Source:电子元件技术| Publishing Date:2009-03-20中心论题:•在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素•分别介绍几种不同的栅极驱动电路并比较其性能优缺点•介绍PWM调速的实现算法及硬件电路•介绍步进电机的驱动方案解决方案:•根据实际电路情况以及要求仔细选择驱动电路•使用循环位移算法及模拟电路实现PWM调速•对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。

如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。

性能:对于PWM调速的电机驱动电路,主要有以下性能指标。

1。

输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2。

效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。

要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。

3。

对控制输入端的影响。

功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。

对电源的影响。

共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。

5。

可靠性。

电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。

三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。

注意1脚对地连接了一个2K欧的电阻。

当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。

当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。

或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。

高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。

7V基准电压比较,转换成接近功率电源电压幅度的方波信号。

KF347的输入电压范围不能接近负电源电压,否则会出错。

因此在运放输入端增加了防止电压范围溢出的二极管。

输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。

2.栅极驱动部分:后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。

当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。

上面的三极管导通,场效应管截止,输出为高电平。

当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效应管截止。

上面的三极管截止,场效应管导通,输出为低电平。

上面的分析是静态的,下面讨论开关转换的动态过程:三极管导通电阻远小于2千欧,因此三极管由截止转换到导通时场效应管栅极电容上的电荷可以迅速释放,场效应管迅速截止。

但是三极管由导通转换到截止时场效应管栅极通过2千欧电阻充电却需要一定的时间。

相应的,场效应管由导通转换到截止的速度要比由截止转换到导通的速度快。

假如两个三极管的开关动作是同时发生的,这个电路可以让上下两臂的场效应管先断后通,消除共态导通现象。

实际上,运放输出电压变化需要一定的时间,这段时间内运放输出电压处于正负电源电压之间的中间值。

这时两个三极管同时导通,场效应管就同时截止了。

所以实际的电路比这种理想情况还要安全一些。

场效应管栅极的12V稳压二极管用于防止场效应管栅极过压击穿。

一般的场效应管栅极的耐压是18V或20V,直接加上24V电压将会击穿,因此这个稳压二极管不能用普通的二极管代替,但是可以用2千欧的电阻代替,同样能得到12V的分压。

3.场效应管输出部分:大功率场效应管内部在源极和漏极之间反向并联有二极管,接成H桥使用时,相当于输出端已经并联了消除电压尖峰用的四个二极管,因此这里就没有外接二极管。

输出端并联一个小电容(out1和out2之间)对降低电机产生的尖峰电压有一定的好处,但是在使用PWM时有产生尖峰电流的副作用,因此容量不宜过大。

在使用小功率电机时这个电容可以略去。

如果加这个电容的话,一定要用高耐压的,普通的瓷片电容可能会出现击穿短路的故障。

输出端并联的由电阻和发光二极管,电容组成的电路指示电机的转动方向。

4.性能指标:电源电压15~30 V,最大持续输出电流5A/每个电机,短时间(10秒)可以达到10A,PWM频率最高可以用到30KHz(一般用1到10KHz)。

电路板包含4个逻辑上独立的,输出端两两接成H桥的功率放大单元,可以直接用单片机控制。

实现电机的双向转动和调速。

5.布线:大电流线路要尽量的短粗,并且尽量避免经过过孔,一定要经过过孔的话要把过孔做大一些(>1mm)并且在焊盘上做一圈小的过孔,在焊接时用焊锡填满,否则可能会烧断。

另外,如果使用了稳压管,场效应管源极对电源和地的导线要尽可能的短粗,否则在大电流时,这段导线上的压降可能会经过正偏的稳压管和导通的三极管将其烧毁。

在一开始的设计中,NMOS管的源极于地之间曾经接入一个0。

15欧的电阻用来检测电流,这个电阻就成了不断烧毁板子的罪魁祸首。

当然如果把稳压管换成电阻就不存在这个问题了。

在2004年的Robocon比赛中,我们主要采用了这个电路用以电机驱动。

低压驱动电路的简易栅极驱动一般功率场效应管的最高栅源电压为20V左右,所以在24V应用中要保证栅源电压不能超过20V,增加了电路的复杂程度。

但在12V或更低电压的应用中,电路就可以大大简化。

上图就是一个12V驱动桥的一边,上面电路的三极管部分被两个二极管和两个电阻代替。

(注意,跟上图逻辑是反的)由于场效应管栅极电容的存在,通过R3,R4向栅极电容充电使场效应管延缓导通;而通过二极管直接将栅极电容放电使场效应管立即截止,从而避免了共态导通。

这个电路要求在IN端输入的是边缘陡峭的方波脉冲,因此控制信号从单片机或者其他开路输出的设备接入后,要经过施密特触发器(比如555)或者推挽输出的高速比较器才能接到IN端。

如果输入边缘过缓,二极管延时电路也就失去了作用。

R3,R4的选取与IN信号边沿升降速度有关,信号边缘越陡峭,R3,R4可以选的越小,开关速度也就可以做的越快。

Robocon比赛使用的升压电路(原理相似)中,IN前用的是555。

边沿延时驱动电路在前级逻辑电路里,有意地对控制PMOS的下降沿和控制NMOS的上升沿进行延时,再整形成方波,也可以避免场效应管的共态导通。

另外,这样做可以使后级的栅极驱动电路简化,可以是低阻推挽驱动栅极,不必考虑栅极电容,可以较好的适应不同的场效应管。

2003年Robocon比赛采用的就是这种驱动电路。

下图是两种边沿的延时电路:下图是对应的NMOS,PMOS栅极驱动电路:这个栅极驱动电路由两级三极管组成:前级提供驱动场效应管栅极所需的正确电压,后级是一级射极跟随器,降低输出阻抗,消除栅极电容的影响。

为了保证不共态导通,输入的边沿要比较陡,上述先延时再整形的电路就可以做到。

其它几种驱动电路1.继电器+半导体功率器件的想法继电器有着电流大,工作稳定的优点,可以大大简化驱动电路的设计。

在需要实现调速的电机驱动电路中,也可以充分利用继电器。

有一个方案就是利用继电器来控制电流方向来改变电机转向,而用单个的特大电流场效应管(比如IRF3205,一般只有N型特大电流的管子)来实现PWM调速,如下图(a)所示。

这样是实现特别大电流驱动的一个方法。

换向的继电器要使用双刀双掷型的,接线如下图(b),线圈接线如下图(c):(b)(a)(c)2.几种驱动芯片1)L298 参考2)A3952 参考3)A3940 参考4)L6203 参考PWM调速的实现1.使用定时器的算法//butcher补充一下吧//算法原理//编程实现要点//优缺点2.使用循环移位的算法产生PWM信号可以由定时器来完成,但是由于51内部只提供了两个定时器,因此如果要向三个或更多的直流电机输出不同占空比的信号要反复设置定时器,实现较为复杂,我们采用一种比较简单的方法不仅可以实现对更多的直流电机提供不同的占空比输入信号,而且只占用一个定时器资源。

这种方法可以简单表述如下:在内存的某段空间内存放各个直流电机所需的输入信号占空比信息,如果占空比为1则保存0FFH(11111111B);占空比为0。

5则保存0F0H(11110000B)或任何2进制数中包括4个0和4个1。

即占空比=1的个数/8具体选取什么样的二进制数要看输出频率的要求。

若要对此直流电机输出PWM信号,只要每个时间片移位一次取出其中固定的一位(可以用位寻址或进位标志C实现)送到电机端口上即可。

另外,移位算法是一种对以前结果依赖的算法,所以最好定期检查或重置被移位的数,防止移错导致一直错下去。

这种算法的优点是独立进程,可以实现对多个电机的控制,缺点是占用资源较大,PWM频率较低。

3.模拟电路PWM的实现上图为一个使用游戏手柄或者航模摇杆上的线性电位器(或线性霍尔元件)控制两个底盘驱动电机的PWM 生成电路。

J1是手柄的插座,123和456分别是x,y两个方向的电位器。

U1B提供半电源电压,U1A是电压跟随。

x,y分量经过合成成为控制左右轮两个电机转速的电压信号。

在使用中,让L=(x+1)y/(x+1。

4),R=(x-1)y/(x-0。

6),经过试验有不错的效果(数字只是单位,不是电压值)。

经过U1C和U1D组成的施密特振荡器把电压转换为相应的PWM信号,用来控制功率驱动电路。

以U1D为例,R1,R2组成有回差的施密特电路,上下门限受输入电压影响,C1和R3组成延时回路,如此形成振荡的脉宽受输入电压控制。

Q1,Q2是三极管,组成反相器,提供差分的控制信号。

具体振荡过程参见对555振荡器的分析。

步进电机驱动1。

小功率4相步进电机的驱动下面是一种驱动电路框图:达林顿管阵列ULN2803分别从锁存器取出第0,2,4,6位和1,3,5,7位去驱动两个步进电机。

相关文档
最新文档