第一章 编译器概述

合集下载

编译原理-陈火旺版-第一章

编译原理-陈火旺版-第一章

编译器的作用与重要性
01
编译器是将高级语言程序翻译成机器语言程序的软件工具,是 软件开发的基础设施之一。
02
编译器可以提高程序的执行效率,使得程序能够在各种计算机
上运行。
编译器还可以对程序进行优化,提程简介
01
02
03
词法分析
将输入的源程序分解成一 个个的单词符号,即词法 单元。
词法分析器的构造
构造原理
根据词法规则构造出识别相应单 词符号的有限自动机,然后将有 限自动机转换为对应的程序代码
构造方法
手工构造法、自动生成法
注意事项
处理好单词符号的二义性问题; 识别出源程序中的错误并进行适 当的处理。
04
语法分析
语法分析概述
语法分析的任务
根据语言的语法规则,对输 入的符号序列进行合法性检 查,并构造出相应的语法结
中间代码的形式
常见的中间代码形式有三地址码、四元式、树形表示等。
中间代码生成算法
根据源程序的语法结构和语义规则,生成相应的中间代码序列。
符号表管理
符号表的作用
符号表用于记录源程序中各种标识符的属性信息,如类型、作用域 和存储地址等。
符号表的组织方式
常见的符号表组织方式有线性表、散列表和树形结构等。
循环优化
通过循环展开、循环合并、循环交换等技术来改进循环的性能。
目标代码生成方法
机器无关代码生成
机器相关代码生成
生成与特定机器无关的中间代码,然后在 运行时将其转换为特定机器上的目标代码 。
直接生成特定机器上的目标代码,这需要 考虑机器的指令集、寄存器分配、内存访 问等因素。
汇编语言代码生成
高级语言虚拟机代码生成

编译器设计(第2版)

编译器设计(第2版)

编译器设计(第2版)全文共四篇示例,供读者参考第一篇示例:编译器是计算机科学领域中一个非常重要的概念,它负责将高级语言编写的代码转换成机器语言执行。

《编译器设计(第2版)》一书是一本经典的教材,提供了深入的编译器设计理论和实践知识。

本文将介绍该书的内容和重要观点,并深入探讨编译器设计领域的一些关键问题。

在《编译器设计(第2版)》一书中,作者Alfred V. Aho 和Jeffrey D. Ullman等人深入解释了编译器的各个组成部分,包括词法分析、语法分析、语义分析、优化和代码生成等。

他们着重强调了编译器设计中的算法和数据结构,以及对理论和实践的结合。

通过系统地介绍编译器设计的基本原理和技术,读者可以更好地理解和掌握如何设计和实现一个高效的编译器。

在编译器设计中,词法分析是非常重要的一部分,它负责将源代码转换成标识符、关键字、运算符等各种词法单元。

在《编译器设计(第2版)》一书中,作者详细介绍了有限自动机、正规语言和正规表达式等词法分析的基本概念和技术。

他们还介绍了lex工具和flex工具等流行的词法分析器生成器,帮助读者更快地生成词法分析器。

除了词法分析外,语法分析也是编译器设计中的另一个核心问题。

语法分析负责将词法单元转换成语法树,从而展示程序的结构和语法规则。

在《编译器设计(第2版)》一书中,作者详细介绍了自顶向下和自底向上两种主流的语法分析方法,包括LL分析器、LR分析器、语法制导翻译等。

通过深入研究这些方法,读者可以更好地理解语法分析的原理和实践应用。

在编译器设计过程中,语义分析是另一个至关重要的环节。

语义分析负责检查源代码中的语义错误,并对表达式、语句等进行类型检查等操作。

在《编译器设计(第2版)》一书中,作者介绍了各种语义分析的技术,包括语义动作、作用域规则、类型检查等。

通过学习这些技术,读者可以更好地理解和实现语义分析的过程。

优化和代码生成是编译器设计中的最后一步,它负责对生成的中间代码进行优化和转换成目标代码。

编译原理课程设计教案

编译原理课程设计教案

编译原理课程设计教案第一章:编译原理概述1.1 编译器的作用与重要性解释编译器将高级语言程序转换为机器语言程序的过程强调编译器在软件开发中的关键角色1.2 编译原理的基本概念介绍编译程序的基本组成部分,如词法分析器、语法分析器、语义分析器、中间代码器、目标代码器和代码优化器等解释源程序、目标程序和中间代码的概念1.3 编译过程的阶段详细介绍编译过程的各个阶段,包括词法分析、语法分析、语义分析、中间代码、代码优化和目标代码强调每个阶段的目标和重要性第二章:词法分析2.1 词法分析的基本概念解释词法分析器的任务和作用介绍词法单位的概念,如标识符、关键字、常量和符号等2.2 词法分析的技术和方法介绍词法分析常用的技术和方法,如有限自动机、正则表达式和词法规则等解释词法分析过程中的扫描线和词法单元的产生过程2.3 词法分析器的实现介绍如何实现一个简单的词法分析器,包括词法规则的定义和词法分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的词法分析功能第三章:语法分析3.1 语法分析的基本概念解释语法分析器的任务和作用介绍语法规则和语法树的概念3.2 语法分析的技术和方法介绍语法分析常用的技术和方法,如递归下降分析法、LL分析法、LR分析法等解释语法分析过程中的分析表和状态机的概念3.3 语法分析器的实现介绍如何实现一个简单的语法分析器,包括语法规则的定义和语法分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的语法分析功能第四章:语义分析4.1 语义分析的基本概念解释语义分析器的任务和作用介绍语义规则和语义错误的概念4.2 语义分析的技术和方法介绍语义分析常用的技术和方法,如类型检查、上下文无关文法分析、语义规则等解释语义分析过程中的语义规则和语义冲突的解决方法4.3 语义分析器的实现介绍如何实现一个简单的语义分析器,包括语义规则的定义和语义分析器的构造提供相关的编程练习,让学生通过编写代码实现基本的语义分析功能第五章:中间代码5.1 中间代码的基本概念解释中间代码器的任务和作用介绍中间代码的概念和中间代码的原则5.2 中间代码的技术和方法介绍中间代码的常用技术和方法,如三地址代码、静态单赋值代码等解释中间代码过程中的基本规则和操作符的转换5.3 中间代码器的实现介绍如何实现一个简单的中间代码器,包括中间代码的定义和中间代码器的构造提供相关的编程练习,让学生通过编写代码实现基本的中间代码功能第六章:代码优化6.1 代码优化的基本概念解释代码优化器的任务和作用介绍代码优化的目标和常见的优化技术6.2 常见代码优化技术详细介绍各种代码优化技术,如常量折叠、死代码消除、循环优化、表达式简化等强调优化技术对提高程序性能的重要性6.3 代码优化器的实现介绍如何实现一个简单的代码优化器,包括优化规则的定义和代码优化器的构造提供相关的编程练习,让学生通过编写代码实现基本的代码优化功能第七章:目标代码7.1 目标代码的基本概念解释目标代码器的任务和作用介绍目标代码的概念和目标代码的原则7.2 目标代码的技术和方法介绍目标代码的常用技术和方法,如寄存器分配、指令调度等解释目标代码过程中的基本规则和操作符的转换7.3 目标代码器的实现介绍如何实现一个简单的目标代码器,包括目标代码的定义和目标代码器的构造提供相关的编程练习,让学生通过编写代码实现基本的目标代码功能第八章:调试技术8.1 调试技术的基本概念解释调试器的作用和重要性介绍调试过程中的常见问题和调试技术8.2 调试器的结构和原理详细介绍调试器的结构和原理,如断点、单步执行、查看变量等功能强调调试技术对发现和修复程序错误的重要性8.3 调试器的实现介绍如何实现一个简单的调试器,包括断点的设置、单步执行、变量查看等功能提供相关的编程练习,让学生通过编写代码实现基本的调试功能第九章:编译器性能评价9.1 编译器性能评价的基本概念解释编译器性能评价的目的和方法介绍编译器性能评价的指标和评价方法9.2 编译器性能评价的指标和评价方法详细介绍编译器性能评价的指标,如执行速度、内存占用、编译时间等介绍常用的编译器性能评价方法和工具9.3 编译器性能评价的实践介绍如何进行编译器性能评价的实践,包括评价指标的选取和评价方法的实施提供相关的实践练习,让学生通过实际操作评价编译器的性能第十章:编译原理应用与发展趋势10.1 编译原理在软件开发中的应用介绍编译原理在软件开发中的应用领域,如解释器设计、即时编译、程序分析等强调编译原理在提高程序性能和开发效率方面的重要性10.2 编译原理的研究现状与未来发展介绍编译原理研究领域的前沿技术和最新研究成果探讨编译原理未来的发展趋势和挑战10.3 编译原理在实践中的应用案例分析分析编译原理在实际项目中的应用案例,如开源编译器项目、商业编译器产品等引导学生思考如何将编译原理应用于实际工程实践中的问题重点和难点解析重点环节一:编译器的作用与重要性编译器作为程序设计语言和计算机硬件之间的桥梁,其作用不可忽视。

第1章 概述-编译原理及实践教程(第3版)-黄贤英-清华大学出版社

第1章 概述-编译原理及实践教程(第3版)-黄贤英-清华大学出版社
• 重点掌握:编译程序工作的基本过程及其各阶 段的基本任务,编译程序总框。
《编译原理实践及应用》
1.1 程序设计语言及翻译程序
为什么要使用编译程序?
• 机器语言 (machine language)
C7 06 0000 0002
• 汇编语言 (assembler language)
MOV X , 2
为该语言编译程序能够识别的形式加入到标准源程序中。 在VC++6.0中,通过预处理后,将.c的源程序变为了.i的文 本文件。
《编译原理实践及应用》
编译
标准的C语言程序由编译程序翻译为对应于某个计算机 上的汇编语言程序。汇编语言是和机器语言一一对应的易于 阅读的文本形式的语言。编译的结果是某种机器上汇编语言 书写的程序。如在VC++6.0中,编译这一步将.i的文本文件 生成了.cod的文本文件,这就是汇编代码。有的编译器生成 .s或.asm后缀的文件。
• 解释程序:将高级程序设计语言写的源程序作为输入,
边解释边执行源程序本身,而不产生目标程序的翻译程序。
• 其他概念:
– 诊断编译程序 – 优化编译程序 – 交叉编译程序 – 可变目标编译程序
宿主机 目标机
《编译原理实践及应用》
对编译程序的一些说明
• 编译程序实质上是一个翻译程序,要注意等价变 换
• 高级语言 (high-level language)
X=2
《编译原理实践及应用》
语言层次和翻译程序大家族
翻译程序:能够将某种语言写的程序转换成另一
种语言的程序,而且后者与前者在逻辑上是等价的。
转换
高级语言层 高级语言1
程序
高级语言2
高级语言3 高级语言4

什么是编译器

什么是编译器

什么是编译器?编译器是一种将高级语言代码转换成机器语言的软件工具。

它是计算机科学中的一个重要概念,用于将人类可读的代码转换为计算机可执行的指令。

编译器的主要功能是将源代码(如C、C++、Java等高级语言)转换为目标代码(如汇编语言或机器语言)。

这个转换过程被称为编译。

编译器分为多个阶段,每个阶段都完成了特定的任务,最终生成可执行的目标文件。

编译器的工作流程通常包括以下几个步骤:1. 词法分析(Lexical Analysis):将源代码分解为一个个词法单元(Token),如关键字、标识符、运算符等。

词法分析器扫描源代码,识别和分类各个词法单元。

2. 语法分析(Syntax Analysis):将词法分析得到的词法单元组织成语法树(Parse Tree)或抽象语法树(Abstract Syntax Tree)。

语法分析器根据语法规则检查源代码的语法正确性,并生成中间表示。

3. 语义分析(Semantic Analysis):对中间表示进行语义检查,确保源代码的语义正确性。

语义分析器会检查变量的声明和使用、类型匹配、函数调用等语义相关的问题。

4. 中间代码生成(Intermediate Code Generation):将语法分析和语义分析得到的中间表示转化为一种中间代码,如三地址码或虚拟机代码。

中间代码是一种抽象的表示形式,比源代码更接近于机器语言。

5. 代码优化(Code Optimization):对中间代码进行优化,以提高程序的性能和效率。

代码优化器尝试通过改变代码结构、减少计算和存储等方式来减少程序的执行时间和空间消耗。

6. 目标代码生成(Code Generation):将优化后的中间代码转换为机器语言或特定硬件平台的汇编语言。

目标代码生成器会根据目标机器的架构和指令集生成相应的机器代码。

7. 符号表管理(Symbol Table Management):编译器会维护一个符号表,用于存储变量、函数和其他标识符的信息。

大连理工大学编译原理复习

大连理工大学编译原理复习

编译技术命题指导意见教学内容知识点及题型第一章编译器概述A (1)编译的阶段划分[选择题2分][1] 编译程序绝大多数时间花在( )上。

A. 出错处理B. 词法分析C. 目标代码生成D. 符号表管理答案:D[2] ( ) 和代码优化部分不是每个编译程序都必需的。

A. 语法分析B. 中间代码生成C. 词法分析D. 代码生成答案:B[3] 编译程序前三个阶段完成的工作是( )。

A. 词法分析、语法分析和代码优化B. 代码生成、代码优化和词法分析C. 词法分析、语法分析和语义分析D. 词法分析、语法分析和代码生成答案:C(2)遍的概念[填空题2分][1] 编译阶段的活动常用一遍扫描来实现,一遍扫描包括和。

答案:读一个输入文件写一个输出文件[2] 将编译程序分成若干个“遍”是为了________。

答案:使程序的结构更加清晰[3] 编译器从逻辑上可以分为7个阶段,其中,可以作为一个后端遍的是___________阶段。

答案:代码生成(3)前端和后端的划分[简答题5分][1] 什么是前端?[5分]答案:编译器分成分析和综合两大部分。

分析部分揭示源程序的基本元素和它们所形成的层次结构,决定它们的含义,建立起源程序的中间表示,分析部分经常被称为前端。

[2] 什么是后端?[5分]答案:编译器分成分析和综合两大部分。

综合部分从源程序的中间表示建立起和源程序等价的目标程序,它经常被称为后端。

[3] 什么是前端?什么是后端?[5分]答案:编译器分成分析和综合两大部分。

分析部分揭示源程序的基本元素和它们所形成的层次结构,决定它们的含义,建立起源程序的中间表示,分析部分经常被称为前端。

综合部分从源程序的中间表示建立起和源程序等价的目标程序,它经常被称为后端。

第二章2.1 2.2 词法记号的定义及描述B (1)词法分析器的功能[选择题2分][1] 词法分析程序的输出结果是()。

A. 单词的种别编码B. 单词在符号表中的位置C. 单词的种别编码和单词属性值D. 单词的单词属性值答案:C[2] 词法分析器用于识别_____。

编译技术复习题答案

编译技术复习题答案

第一章:编译系统概述一.单项选择题1.编译程序前三个阶段完成的工作是〔C〕。

A.词法分析, 语法分析和代码优化B.代码生成, 代码优化和词法分析C.词法分析, 语法分析, 语义分析和中间代码生成D.词法分析, 语法分析和代码优化2.编译程序绝大多数时间花在〔D〕上。

A.出错处理 B.词法分析 C.目标代码生成D.表格管理3.编译程序是对〔C〕。

A.汇编程序的翻译 B.高级语言程序的说明执行C.高级语言的翻译 D.机器语言的执行4.在运用高级语言编程时,首先可通过编译程序发觉源程序的全部〔A〕错误。

A.语法 B.语义 C.语用 D.运行二.填空题1.编译程序首先要识别出源程序中每个(单词),然后再分析每个(句子)并翻译其意义。

2.通常把编译过程分为分析前端及后端两大阶段。

词法, 语法和语义分析是对源程序的(分析),中间代码生成, 代码优化及目标代码的生成那么是对源程序的(综合)。

3.对编译程序而言,输入数据是(源程序),输出结果是(目标程序)。

4.对以下错误信息,请指出可能是编译的哪个阶段〔词法分析, 语法分析, 语义分析,代码生成〕报告的。

〔1〕 else 没有匹配的if 〔语法分析〕〔2〕数组下标越界〔语义分析〕〔3〕运用的函数没有定义〔语法分析〕〔4〕在数中出现非数字字符〔词法分析〕5.假如编译程序生成的目标程序是机器代码程序,那么源程序的执行分为两大阶段:〔编译阶段〕和〔运行阶段〕。

假如编译程序生成的目标程序是汇编语言程序,那么源程序的执行方式分成三个阶段:〔编译阶段〕〔汇编阶段〕和〔运行阶段〕。

6.编译程序在其工作过程运用最多的数据构造是〔表〕,它记录着源程序中各种信息,以便查询或修改,在这些〔表〕中,尤以〔符号表〕最重要,它的生存期最长,运用也最频繁。

三.简述题:1.编译程序的工作分为那几个阶段答:词法分析, 语法分析和语义分析是对源程序进展的分析(称为编译程序的前端),而中间代码生成, 代码优化和代码生成三个阶段合称为对源程序进展综合(称为编译程序的后端),它们从源程序的中间表示建立起和源程序等价的目标程序。

编译原理

编译原理

代码优化器
temp1 = id3 * 60.0 id1 = id2 + temp1
衡量目标程序质量 高低主要标准: 1. 空间指标; 2. 时间指标。
第一章 编译器概述
27
代码生成(target code generator)
符号表 temp1 = id3 * 60.0 id1 = id2 + temp1 1 2 代码生成器 3 position initial rate ... ... ...
第一章 编译器概述
10
由于计算机硬件只懂得自己的指令系 统,因此对于高级程序设计语言编写的程 序无法直接识别。 为解决这个问题,我们需要对所编写 的程序进行改进,改进的方法有两种:翻
译和解释。
第一章 编译器概述
11
翻译:把一种语言编写的程序(源程序)通
过一个翻译器翻译成为与之等价的另一种语言的 程序(目标程序)。
第一章 编译器概述
表达式
数 (60)
22
语法分析(parsing / syntax analysis, hierarchical analysis) id1 = id2 + id3 * 60 1 语法分析器 2 3 := id1 id2 id3
第一章 编译器概述
符号表 position initial rate ... ... ...
第一章 编译器概述
21
语法分析(parsing / syntax analysis, hierarchical analysis) 任何一个标识符都是表 initial + rate * 60 达式; 表达式 任何一个数都是表达 式; 表达式 + 如 果 e1 和 e2 都 是 表 达 表达式 式,那么 表达式 标识符 e1 + e2 * (initial) e1 * e2 标识符 (e1) (rate) 也都是表达式

KEIL Cx51 编译器 说明书

KEIL Cx51 编译器 说明书

Cx51编译器对传统和扩展的8051微处理器的优化的C 编译器和库参考用户手册09.2001Keil Software – Cx51编译器用户手册—ፉᑗኔፉᑗኔ由于本人的英语水平有限所以在使用KEIL C51的过程中老要去看那英文的手册总感到不是那么方便老要用词霸查来查去的烦的很因此在看到C51BBS上的倡议后就动了把它翻译出来的念头我想这对自己和别人都会带来些好处利用工作之余的时间经过几个月的努力终于把它翻译完了但由于水平所限文中肯定有很多不是十分恰当的地方或许没有用大家比较熟悉的惯用语或许可能引起误解所以在这里我请大家能指出其中的错误和不当之处请大家EMAIL告诉我使我能够作出改正对于大家的建议我会很高兴的接受我最大的愿望是希望我的翻译不会误导大家且能对大家有所帮助不明之处可以参考英文原文感谢C51BBS版主龙啸九天的帮助欢迎大家与我交流我的e-mail**************Keil Software声明本文档所述信息不属于我公司的承诺范围其内容的变化也不会另行通知本文档所述软件的出售必须经过授权或签订特别协议本文档所述软件的使用必须遵循协议约定在协议约定以外的任何媒体上复制本软件将触犯法律购买者可以备份为目的而做一份拷贝在未经书面许可之前本手册的任何一部分都不允许为了购买者个人使用以外的目的而以任何形式和任何手段(电子的机械的)进行复制或传播版权1988-2001所有者Keil Elektronik GmbH和Keil Software公司Keil C51™Keil CX51™,和uVision TM是Keil Elektronik GmbH的商标Microsoft®和Windows™是Microsoft Corporation的商标或注册商标IBM®PC®和PS/2®是International Business Machines Corporation的注册商标Intel®MCS®51MCS®251ASM-51®和PL/M-51®是Intel的注册商标我们尽全力去做来保证这本手册的正确从而保证我们个人公司和在此提及的商标的形象前言本手册讲述对8051的目标环境如何使用C x51优化C编译器编译C程序C x51编译器包可以用在所有的8051系列处理器上可以在WINDOWS 32位命令行中执行本手册假定你熟悉WINDOWS操作系统知道如何编程8051处理器并会用C语言编程注意本手册用条件窗口来指明32位WINDOWS版本是WINDOWS95WINDOWS98WINDOWS ME WINDOWS NT WINDOWS 2000或WINDWOS XP如果你对C编程有问题或者你想知道C语言编程的更多信息可参考16页的关于C 语言的书手册中讨论的许多例子和描述是从WINDOWS命令提示符下调用的这对在一个集成环境如µVision2中运行C x51的情况是不适用的本手册中的例子是通用的可以应用到所有编程环境手册组织本用户手册分成下面的章节和附录第一章介绍概述C x51编译器第二章用C x51编译解释怎样用C x51交叉编译器编译一个源文件本章叙述控制文件处理编译和输出的命令行提示第三章语言扩展叙述支持8051系统结构必须的C语言扩展本章提供一个在ANSI C说明中没有的命令函数和控制的详细列表第四章预处理器叙述C x51编译器预处理器的组成和包含的例子第五章派生的8051叙述C x51编译器支持的8051派生系列本章还包括能帮助提高目标程序性能的技巧第六章高级编程技术对有经验的开发人员的重要信息本章包括定制文件描述优化器详细资料和段名约定本章还讨论了C x51编译器产生的程序和别的8051编程语言如何接口第七章错误信息列出了在使用C x51编译器时可能遇到的致命错误语法错误和警告第八章库参考提高一个扩展的C x51库参考分类列出了库例程和相关的包含文件本章最后有一个按字母顺序的参考包括每个库例程的例子代码附录中包含不同编译器版本间的差异作品编号和别的有些信息文档约定本文档有下列约定README .TXT 粗体大写用在可执行程序名数据文件名源文件名环境变量和输入WINDOWS 命令行的命令上表示你必须手工输入的文本不一定要大写例CLS DIR BL51.EXELanguage Elements C 语言的构成包括关键词操作符和库函数用粗体例if != longisdigit main >>Courier 这种字体的文本代表显示在屏幕上或打印出的信息这字体也用在讨论或描述命令行中Variables 斜体字必须提供的信息例如在语法字符串中的projectfile 表示需要提供实际的工程文件名重复的成分…例子中使用的省略号…表示重复的成分省略代码 . . .垂直省略号用在源代码例子中表示省略一段程序例子void main(void ) {...while(1);[可选项]命令行中的可选参数和选择项用方括号表示例C51 TEST.C PRINT [(filename )]{opt1|opt2}大括号中的文本用竖线分隔代表一组选项必须从中选一项大括号中包含了所有选项竖线分隔选项KeysSans serif 字体的文本代表键盘的键例如按Enter 继续ContentsChapter 1. Introduction (15)Support for all 8051 Variants (15)Books About the C Language (16)Chapter 2. Compiling with the C x51 Compiler (17)Environment Variables (17)Running C x51 from the Command Prompt (18)ERRORLEVEL (19)C x51 Output Files (19)Control Directives (20)Directive Categories (20)Reference (23)AREGS / NOAREGS (24)ASM / ENDASM (26)BROWSE (28)CODE (29)COMPACT (30)COND / NOCOND (31)DEBUG (33)DEFINE (34)DISABLE (35)EJECT (37)FLOATFUZZY (38)INCDIR (39)INTERVAL (40)INTPROMOTE / NOINTPROMOTE (41)INTVECTOR / NOINTVECTOR (44)LARGE (46)LISTINCLUDE (47)MAXARGS (48)MOD517 / NOMOD517 (49)MODA2 / NOMODA2 (51)MODAB2 / NOMODAB2 (52)MODDA2 / NOMODDA2 (53)MODDP2 / NOMODDP2 (54)MODP2 / NOMODP2 (55)NOAMAKE (56)NOEXTEND (57)OBJECT / NOOBJECT (58)OBJECTADVANCE (59)OBJECTEXTEND (60)ONEREGBANK (61)OMF2 (62)OPTIMIZE (63)ORDER (65)PAGELENGTH (66)PAGEWIDTH (67)PREPRINT (68)PRINT / NOPRINT (69)REGFILE (70)REGISTERBANK (71)REGPARMS / NOREGPARMS (72)RET_PSTK, RET_XSTK (74)ROM (76)SAVE / RESTORE (77)SMALL (78)SRC (79)STRING (80)SYMBOLS (81)USERCLASS (82)VARBANKING (84)WARNINGLEVEL (85)XCROM (86)Chapter 3. Language Extensions (89)Keywords (89)Memory Areas (90)Program Memory (90)Internal Data Memory (91)External Data Memory (92)Far Memory (93)Special Function Register Memory (93)Memory Models (94)Small Model (94)Compact Model (95)Large Model (95)Memory Types (95)Explicitly Declared Memory Types (96)Implicit Memory Types (97)Data Types (97)Bit Types (98)Bit-addressable Objects (99)Special Function Registers (101)sfr (101)sfr16 (102)sbit (102)Absolute Variable Location (104)Pointers (106)Generic Pointers (106)Memory-specific Pointers (109)Pointer Conversions (111)Abstract Pointers (114)Function Declarations (118)Function Parameters and the Stack (119)Passing Parameters in Registers (120)Function Return Values (120)Specifying the Memory Model for a Function (121)Specifying the Register Bank for a Function (122)Register Bank Access (124)Interrupt Functions (125)Reentrant Functions (129)Alien Function (PL/M-51 Interface) (132)Real-time Function Tasks (133)Chapter 4. Preprocessor (135)Directives (135)Stringize Operator (136)Token-pasting operator (137)Predefined Macro Constants (138)Chapter 5. 8051 Derivatives (139)Analog Devices MicroConverter B2 Series (140)Atmel 89x8252 and Variants (141)Dallas 80C320, 420, 520, and 530 (142)Dallas 80C390, 80C400, 5240, and Variants (143)Arithmetic Accelerator (144)Infineon C517, C509, 80C537, and Variants (145)Data Pointers (145)High-speed Arithmetic (146)Library Routines (146)Philips 8xC750, 8xC751, and 8xC752 (147)Philips 80C51MX Architecture (148)Philips and Atmel WM Dual DPTR (148)Chapter 6. Advanced Programming Techniques (149)Customization Files (150)STARTUP.A51 (151)INIT.A51 (153)XBANKING.A51 (154)Basic I/O Functions (156)Memory Allocation Functions (156)Optimizer (157)General Optimizations (157)8051-Specific Optimizations (158)Options for Code Generation (158)Segment Naming Conventions (159)Data Objects (160)Program Objects (161)Interfacing C Programs to Assembler (163)Function Parameters (163)Parameter Passing in Registers (164)Parameter Passing in Fixed Memory Locations (165)Function Return Values (165)Using the SRC Directive (166)Register Usage (168)Overlaying Segments (168)Example Routines (168)Small Model Example (169)Compact Model Example (171)Large Model Example (173)Interfacing C Programs to PL/M-51 (175)Data Storage Formats (176)Bit Variables (176)Signed and Unsigned Characters, Pointers to data, idata, and pdata (177)Signed and Unsigned Integers, Enumerations, Pointers to xdata andcode (177)Signed and Unsigned Long Integers (177)Generic and Far Pointers (178)Floating-point Numbers (179)Floating-point Errors (182)Accessing Absolute Memory Locations (184)Absolute Memory Access Macros (184)Linker Location Controls (185)The _at_ Keyword (186)Debugging (187)Chapter 7. Error Messages (189)Fatal Errors (189)Actions (190)Errors (191)Syntax and Semantic Errors (193)Warnings (205)Chapter 8. Library Reference (209)Intrinsic Routines (209)Library Files (210)Standard Types (211)jmp_buf (211)va_list (211)Absolute Memory Access Macros (212)CBYTE (212)CWORD (212)DBYTE (213)DWORD (213)FARRAY, FCARRAY (214)FVAR, FCVAR, (215)PBYTE (216)PWORD (216)XBYTE (217)XWORD (217)Routines by Category (218)Buffer Manipulation (218)Character Conversion and Classification (219)Data Conversion (220)Math Routines (221)Memory Allocation Routines (223)Stream Input and Output Routines (224)String Manipulation Routines (226)Variable-length Argument List Routines (227)Miscellaneous Routines (227)Include Files (228)8051 Special Function Register Include Files (228)80C517.H (228)ABSACC.H (229)ASSERT.H (229)CTYPE.H (229)INTRINS.H (229)MATH.H (230)SETJMP.H (230)STDARG.H (230)STDDEF.H (230)STDIO.H (231)STDLIB.H (231)STRING.H (231)Reference (232)abs (233)acos / acos517 (234)asin / asin517 (235)assert (236)atan / atan517 (237)atan2 (238)atof / atof517 (239)atoi (240)atol (241)cabs (242)calloc (243)ceil (244)_chkfloat_ (245)cos / cos517 (246)cosh (247)_crol_ (248)_cror_ (249)exp / exp517 (250)fabs (251)floor (252)fmod (253)free (254)getchar (255)_getkey (256)gets (257)init_mempool (258)_irol_ (259)_iror_ (260)isalnum (261)isalpha (262)iscntrl (263)isdigit (264)isgraph (265)islower (266)isprint (267)ispunct (268)isspace (269)isupper (270)isxdigit (271)labs (272)log / log517 (273)log10 / log10517 (274)longjmp (275)_lrol_ (277)_lror_ (278)malloc (279)memccpy (280)memchr (281)memcmp (282)memcpy (283)memmove (284)memset (285)modf (286)_nop_ (287)offsetof (288)pow (289)printf / printf517 (290)putchar (296)puts (297)rand (298)realloc (299)scanf (300)setjmp (304)sin / sin517 (305)sinh (306)sprintf / sprintf517 (307)sqrt / sqrt517 (309)srand (310)sscanf / sscanf517 (311)strcat (313)strchr (314)strcmp (315)strcpy (316)strcspn (317)strlen (318)strncat (319)strncmp (320)strncpy (321)strpbrk (322)strpos (323)strrchr (324)strrpbrk (325)strrpos (326)strspn (327)strstr (328)strtod / strtod517 (329)strtol (331)strtoul (333)tan / tan517 (335)tanh (336)_testbit_ (337)toascii (338)toint (339)tolower (340)_tolower (341)toupper (342)_toupper (343)ungetchar (344)va_arg (345)va_end (347)va_start (348)vprintf (349)vsprintf (351)Appendix A. Differences from ANSI C (353)Compiler-related Differences (353)Library-related Differences (353)Appendix B. Version Differences (357)Version 6.0 Differences (357)Version 5 Differences (358)Version 4 Differences (359)Version 3.4 Differences (361)Version 3.2 Differences (362)Version 3.0 Differences (363)Version 2 Differences (364)Appendix C. Writing Optimum Code (367)Memory Model (367)Variable Location (369)Variable Size (369)Unsigned Types (370)Local Variables (370)Other Sources (370)Appendix D. Compiler Limits (371)Appendix E. Byte Ordering (373)Appendix F. Hints, Tips, and Techniques (375)Recursive Code Reference Error (375)Problems Using the printf Routines (376)Uncalled Functions (377)Using Monitor-51 (377)Trouble with the bdata Memory Type (378)Function Pointers (379)Glossary (383)Index (391)࢒ጙᐺ஑࿬C语言是一个通用的编程语言它提供高效的代码结构化的编程和丰富的操作符C不是一种大语言不是为任何特殊应用领域而设计它一般来说限制较少可以为各种软件任务提供方便和有效的编程许多应用用C比其他语言编程更方便和有效优化的C x51 C编译器完整的实现了ANSI的C语言标准对8051来说C x51不是一个通用的C编译器它首先的目标是生成针对8051的最快和最紧凑的代码C x51具有C编程的弹性和高效的代码和汇编语言的速度C语言不能执行的操作如输入和输出需要操作系统的支持这些操作作为标准库的一部分提供因为这些函数和语言本身无关所以C特别适合对多平台提供代码既然C x51是一个交叉编译器C语言的某些方面和标准库就有了改变或增强以适应一个嵌套的目标处理器的特性更多的细节参考89页的第三章.语言扩展支持所有的8051变种8051系列是增长最快的微处理器构架之一从不同的芯片厂家提供了400多种芯片新扩展的8051芯片如PHILIPS 8051MX有几M字节的代码和数据空间可被用到大的应用中为了支持这些不同的8051芯片KEIL提供了几种开发工具如下表所列一个新的输出文件格式OMF2允许支持最多16MB代码和数据空间CX51编译器适用于新的PHILIPS 8051MX结构C51编译器A51宏汇编BL51连接器对传统的8051开发工具包括支持32 x64KB 的代码库C51编译器有OMF2输出AX51宏汇编LX51连接器对传统的8051和扩展的8051芯片如DALLAS 390的开发工具包括支持代码库和最多16MB代码和XDATA存储区CX51编译器AX51宏汇编LX51连接器对PHILIPS 8051MX的开发工具支持最多16MB 代码和XDATA存储区C x 51编译器在不同的包中提供上表是完整的8051开发工具参考注意Cx51指两种编译器C51编译器和CX51编译器C 语言的书有许多书介绍C 语言有更多的书详细介绍用C 完成的任务下面的列表不是一个完整的列表列表只是作为参考The C Programming Language, Second Edition Kernighan & RitchiePrentice-Hall, Inc.ISBN 0-13-110370-9C: A Reference Manual, Second EditionHarbison & SteelPrentice-Hall Software SeriesISBN 0-13-109810-1C and the 8051: Programming and MultitaskingSchultzP T R Prentice-Hall, Inc.ISBN 0-13-753815-4࢒औᐺ፿Cx51ܠፉ໭ܠፉ本章说明怎样编译C源文件讨论编译器的控制命令这些命令可以命令C x51编译器产生列表文件控制包含在OBJ文件中的信息的数量指定优化级别和存储模式注意一般来说你应在µVision2 IDE中使用Cx51关于使用µVision2IDE的更多信息参考用户手册Getting Started with µVision2 and C51”.环境变量如果在µVision2IDE中运行Cx51编译器计算机不需要另外的设置如果想要在命令行中运行C x51编译器和工具必须手工创建下面的环境变量PATH\C51\BIN C51和CX51可执行程序的路径TMP编译器产生的临时文件的路径如果指定的路径不存在编译器会生成错误并停止编译C51INC\C51\INC Cx51头文件的路径C51LIB\C51\LIB Cx51库文件的路径对WINSOWS NT WINDOWS 2000和WINDOWS XP这些环境变量在Control Panel –System – Advanced – Environment Variables中输入对WINDOWS 95WINDOWS 98和WINDOWS ME这些设置放在AUTOEXEC.BAT中PATH=C\KEIL\C51\BIN;%PATH%SET TMP=D:\SET C51INC=C:\KEIL\C51\INCSET C51LIB=C:\KEIL\C51\LIB从命令行运行Cx51调用C51或CX51编译器在命令行输入C51或CX51在命令行中必须包含要编译的C源文件和必需的编译控制命令C x51命令行的格式C51 sourcefile [directives…]CX51 sourcefile [directives…]或C51 @commandfileCX51 @commandfile这里sourcefile要编译的源文件名directives用来控制编译器功能的命令参考20页的控制命令commandfile包含源文件名和命令的命令输入文件当C x51调用行较复杂超过了WINDOWS命令行的限制时使用commandfile下面的命令行例子调用C51指定源文件SAMPLE.C用控制DEBUG CODE和PREPRINTC51 SAMPLE.C DEBUG CODE PREPRINTC x51编译器在成功编译后显示下面的信息C51 COMPILER V6.10C51 COMPILATION COMPLETE. 0 WARNING S0 ERROR S错误级别在编译后错误和警告的数目输出在屏幕上C x51编译器设置ERRORLEVEL指示编译的状态值如下表所列0没有错误或警告1只有警告2错误和可能的警告3致命错误可以在批处理文件中访问ERRORLEVEL变量关于ERRORLEVEL或批处理文件可以参考WINDOWS命令索引或在线帮助Cx51输出文件C x51编译器在编译时产生许多输出文件缺省的输出文件和源文件同名但文件的扩展名不同下面的表列出了文件并有简短的说明Filename.LST列表文件包含格式化的源文件和编译中检测到的错误列表文件可以选择包含所用的符号和生成汇编代码更多的信息参考PRINT命令Filename.OBJ包含可重定位目标代码的OBJ模块OBJ模块用Lx51连接器连接到一个绝对的OBJ模块Filename.I包含由预处理器扩展的源文件所有的宏都扩展了所有的注释都删除了可参考PREPRINT命令Filename.SRC C源代码产生的汇编源文件可以用A51汇编可参考SRC命令控制命令C x51编译器提供许多控制命令控制编译除了指定的命令由一个或多个字母或数字组成在命令行中在文件名后指定或在源文件中用#pragma命令例如C51 testfile.c SYMBOLS CODE DEBUG#pragma SYMBOLS CODE DEBUG在说明的例子中SYMBOLS CODE和DEBUG都是控制命令testfile.C是要编译的源文件注意对命令行和#pragma语法是相同的在#pragma可指定多个选项典型的每个控制命令只在源文件的开头指定一次如果一个命令指定多次编译器产生一个致命错误退出编译可以指定多次的命令在下面部分注明命令种类控制命令可以分成三类源文件控制目标控制和列表控制源文件控制定义命令行的宏定义要编译的文件名目标控制影响产生的目标模块*.OBJ的形式和内容这些命令指定优化级别或在OBJ文件中包含调试信息列表控制管理列表文件*.LST的各种样式特别是格式和指定的内容上下表按字母顺序列出了控制命令有下划线的字母表示命令的缩写AREGS NOAREGS Object 使能或不使能绝对寄存器ARn地址ASM ENDASM Source 标志内嵌汇编块的开始和结束BROWSE †Object 产生浏览器信息CODE †Listing 加一个汇编列表到列表文件COMPACT †Object 设置COMPACT 存储模式COND NOCOND †Listing 包含或执行预处理器跳过的源程序行DEBUG †Object 在OBJ 文件中包含调试信息DEFINE Source 在Cx51调用行定义预处理器名DISABLE Object 在一个函数内不允许中断EJECTListing 在列表文件中插入一个格式输入字符FLOATFUZZY Object 在浮点比较中指定位数INCDIR †Source 指定头文件的附加路径名INTERVAL †Object 对SIECO 芯片指定中断矢量间隔INTPROMOTE NOINTPROMOTE†Object 使能或不使能ANSI 整数同时提升INTVECTOR NOINTVECTOR †Object 指定中断矢量的基地址或不使能矢量LARGE †Object 选择LARGE 存储模式LISTINCLUDE Listing 在列表文件中显示头文件MAXAREGS †Object 指定可变参数列表的大小MOD517NOMOD517Object 使能或不使能代码支持80C517和派生的额外的硬件特征MODA2NOMODA2Object 使能或不使能ATMEL 82x8252和变种的双DPTR 寄存器MODAB2NOMODAB2Object 使能或不使能模拟设备ADuC B2系列支持双DPTR 寄存器MODDA NOMODDA Object 使能或不使能DALLAS 80C39080C400和5240支持算法加速器MODDP2NOMODDP2Object 使能或不使能DALLAS 的320520530550和变种支持双DPTR 寄存器MODP2NOMODP2Object 使能或不使能PHILIPS 和ATMELWM 派生的支持双DPTR 寄存器NOAMAKE †Object 不记录µVision2更新信息NOEXTEND †Source Cx51不扩展到ANSI COBJECT NOOBJECT †Object 指定一个OBJ 文件或禁止OBJ 文件OBJECTEXTEND†Object 在OBJ 文件中包含变量类型信息ONEREGBANKObject假定在中断中只用寄存器组0OMF2†Object 产生OMF2输出文件格式OPTIMIZE Object 指定编译器的优化级别ORDER †Object 按源文件中变量的出现顺序分配PAGELENGTH †Listing 指定页的行数PAGEWIDTH †Listing 指定页的列数PREPRINT †Listing 产生一个预处理器列表文件扩展所有宏PRINTNOPRINT †Listing 指定一个列表文件名或不使能列表文件REGFILE †Object 对全局寄存器优化指定一个寄存器定义文件REGISTERBANK Object 为绝对寄存器访问选择寄存器组REGPARMS NOREGPARMS Object 使能或不使能寄存器参数传递RET_PSTK † RET_XSTK †Object 用重入堆栈保存返回地址ROM †Object AJMP/ACALL 指令产生控制SAVERESTORE Object 保存和恢复AREGS REGPARMS 和OPTIMIZE 命令设置SMALL†Object 选择SMALL 存储模式缺省SRC †Object 产生一个汇编源文件不产生OBJ 模块STRING †Object 定位固定字符串到XDATA 或远端存储区SYMBOLS †Listing 模块中所有符号的列表文件USERCLASS †Object 对可变的变量位置重命名存储区类VARBANKING †Object 使能FAR 存储类型变量WARNINGLEVEL†Listing 选择警告检测级别XCROM †Object对CONST XDATA 变量假定ROM 空间† 这些命令在命令行或源文件开头的#pragma中只指定一次在一个源文件中不能使用多次控制命令和参数除了用DEFINE 命令的参数是大小写无关的参考本章的余下部分按字母顺序描述C x51编译器控制命令他们分成如下部分缩写可以替代命令的缩写参数命令可选和要求的参数缺省命令的缺省设置µVision2控制怎样指定命令说明详细的说明命令和使用参考相关命令例子命令使用的例子有时也列出结果AREGS/NOAREGS缩写无参数无缺省AREGSµVision2控制Options – C51 – Don‘t use absolute register access说明AREGS控制使编译器对寄存器R0到R7用绝对寄存器地址绝对地址提高了代码的效率例如PUSH和POP指令只能用直接或绝对地址用AREGS命令可以直接PUSH或POP寄存器可用REGISTERBANK命令定义使用的寄存器组NOAREGS命令对寄存器R0到R7不使能绝对寄存器地址用NOAREGS编译的函数可以使用所有的8051寄存器组命令可用在被别的函数用不同的寄存器组调用的函数中注意虽然可能在一个程序中定义了几次AREGS/NOAREGS选项只有定义在函数声明为有效例子下面是一个使用NOAREGS 和AREGS 的源程序和代码的列表注意保存R7到堆栈中的不同方法函数noaregfunc 产生的代码是MOV A R7PUSHACC同时对aregfunc 函数的代码是PUSHAR7stmt levelsource1extern char func ();2char k;34#pragma NOAREGS 5noaregfunc (){61k =func ()+func ();71}89#pragma AREGS 10aregfunc (){111k =func ()+func ();121};FUNCTION noaregfunc (BEGIN);SOURCE LINE #60000120000E LCALL func 0003EF MOV A,R70004C0E0PUSH ACC 0006120000E LCALL func 0009D0E0POP ACC 000B 2F ADD A,R7000C F500R MOV k,A;SOURCE LINE #7000E22RET;FUNCTION noaregfunc (END);FUNCTION aregfunc (BEGIN);SOURCE LINE #110000120000E LCALL func 0003C007PUSH AR70005120000E LCALL func 0008D0E0POP ACC 000A 2F ADD A,R7000B F500R MOV k,A;SOURCE LINE #12000D22RET;FUNCTION aregfunc (END)ASM/ENDASM缩写无参数无缺省无µVision2控制本命令不能在命令行指定说明ASM命令标志一块源程序的开始它可以直接合并到由SRC命令产生的.SRC文件中这些源程序可以认为是内嵌的汇编然而它只输出到由SRC命令产生的源文件中源程序不汇编和输出到OBJ文件中在µVision2应对C源文件中包含ASM/ENDASM段如下设置一个文件指定选项右键点击PROJECT窗口 – 文件表中的文件选择Options for…打开选项 – 属性页使能Generate Assembler SRC file使能Assemble SRC file用这些设置µVision2产生一个汇编源文件.SRC并用汇编编译产生一个OBJ文件.OBJENDASM命令标志一个源程序块的结束注意ASM和ENDASM命令只能在源文件中使用且作为#pragma命令的一部分例子#pragma asm / #pragma endasm 下面是C 源文件产生下面的.SRC 文件...stmt levelsource1extern void test ();23main (){41test ();5161#pragma asm 71JMP $;endless loop 81#pragma endasm 91}..;ASM.SRC generated from:ASM.C NAME ASM PRmainASM SEGMENT CODE EXTRN CODE (test)EXTRN CODE (?C_STARTUP)PUBLIC main;extern void test ();;;main (){RSEG ?PR?main?ASM USING 0main:;SOURCE LINE #3;test ();;SOURCE LINE #4LCALL test;;#pragma asmJMP $;endless loop;#pragma endasm ;};SOURCE LINE #9RET ;END OF mainENDBROWSE缩写BR参数无缺省不创建浏览信息µVision2控制Options – Output – Browse Information说明用BROWSE编译器产生浏览信息浏览信息包括标识符包含预处理器符号他们的存储空间类型定义和参考列表信息可以在µVision2内显示选择View – Source Browser打开µVision2源浏览器参考µVision2用户手册第四章µVision2功能源浏览器例子C51 SAMPLE.C BROWSE#pragma browseCODE缩写CD参数无缺省不产生汇编代码列表µVision2控制Options – Listing – C Compiler Listing – Assembly Code说明CODE命令附加一个汇编助记符列表到列表文件汇编程序代码代表源程序中的每个函数缺省的在列表文件中没有汇编代码例子C51 SAMPLE.C CD#pragma code下面例子显示C源程序和它产生的OBJ结果代码和助记符在汇编间显示了产生代码的行号字符R和E代表可重定位和外部的stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61c=14+15*((b/c)+252);71}...ASSEMBLY LISTING OF GENERATED OBJECT CODE;FUNCTION main(BEGIN);SOURCE LINE#5;SOURCE LINE#60000E500E MOV A,b00028500F0R MOV B,c000584DIV AB000675F00F MOV B,#0FH0009A4MUL AB000A24D2ADD A,#0D2H000C F500R MOV c,A;SOURCE LINE#7000E22RET;FUNCTION main(END)COMPACT缩写CP参数无缺省SMALLµVision2控制Options – Target – Memory Model说明本命令选择COMPACT存储模式在COMPACT存储模式中所有的函数和程序变量和局部数据段定位在8051系统的外部数据存储区外部数据存储区可有最多256字节一页在本模式中外部数据存储区的短地址用@R0/R1不管什么存储类型可以在任何8051的存储范围内声明变量但是把常用的变量如循环计数器和数组索引放在内部数据存储区可以显著的提高系统性能注意函数调用所用的堆栈经常放在IDATA存储区参考SAMLL LARGE ROM例子C51 SAMPLE.C COMPACT#pragma compactCOND/NOCOND缩写CO参数无缺省CONDµVision2控制Options – Listing – C Compiler Listing - Conditional说明本命令定义这些部分的受条件编译影响的源程序是否显示在列表文件中COND命令在列表文件中包含编译省略的行行号和嵌套级不输出以便于阅读本命令影响预处理器删除的行NOCOND命令不在列表文件中包含编译省略的行例子下面的例子显示用COND命令编译产生的一个列表文件...stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61#if defined(VAX)c=13;#elif defined(__TIME__)91b=14;101a=15;111#endif121}..下面的例子用NOCOND命令编译产生的一个列表文件...stmt level source1extern unsigned char a,b;2unsigned char c;34main()5{61#if defined(VAX)91b=14;101a=15;111#endif121}...缩写DB参数无缺省不产生调试信息µVision2控制Options – Output – Debug Information说明DEBUG命令指示编译器在OBJ文件中包含调试信息缺省OBJ 文件不包含调试信息对程序的符号测试必需有调试信息信息包括全局和局部变量定义和地址和函数名和行号包含在目标模块中的调试信息在连接过程中仍有效这些信息可以被µVision2调试器或任何INTEL兼容的模拟器使用注意OBJECTEXTEND命令用来指示编译器在目标文件中包含附加的变量类型定义信息参考OBJECTEXTEND例子C51 SAMPLE.C DEBUG#pragma db缩写DF参数一个或多个符合C语言约定的的名称用逗号分隔对每个名称可有一个参数用DEFINE给出缺省无µVision2控制在Options –C x51 – Define输入名称说明DEFINE命令定义调用行的名称预处理器要用#if#ifdef和#ifndef查询这些名称定义的名称在输入后被复制这些命令是大小写相关的作为一个选项每个名称可跟一个值注意DEFINE命令只能在命令行中指定在一个C源程序中用C预处理器命令#define例子C51 SAMPLE.C DEFINE check,NoExtRamC51 MYPROG.C DF (X1=“1+5”,iofunc=“getkey()”)DISABLE缩写无参数无缺省无µVision2控制本命令不能在命令行中指定只能在源文件中指定说明DISABLE命令指示编译器在产生代码时在一个函数内不使能所有中断DISABLE必须在一个函数声明前一行用#pragma命令指定DISABLE控制只用到一个函数对每个新的函数必须重新指定注意DISABLE只能用#pragma命令指定不能在命令行指定DISABLE可在一个源文件中指定多次对每个函数只能指定一次执行后不使能中断一个不使能中断的函数不能对调用者返回一个位值例子本例子是一个用DISABLE命令函数的源程序和代码列表注意EA指定函数寄存器在函数进入时清除JBC EA C002在结尾时恢复MOV EA C...stmt level source1typedef unsigned char uchar;23#pragma disable/*Disable Interrupts*/4uchar dfunc(uchar p1,uchar p2){51return(p1*p2+p2*p1);61};FUNCTION_dfunc(BEGIN)0000D3SETB C000110AF01JBC EA,?C00020004C3CLR C0005?C0002:0005C0D0PUSH PSW;----Variable'p1'assigned to register'R7'----;----Variable'p2'assigned to register'R5'----;SOURCE LINE#4;SOURCE LINE#50007ED MOV A,R500088FF0MOV B,R7000A A4MUL AB000B25E0ADD A,ACC000D FF MOV R7,A;SOURCE LINE#6000E?C0001:000E D0D0POP PSW001092AF MOV EA,C001222RET;FUNCTION_dfunc(END)...EJECT缩写EJ参数无缺省无µVision2控制本命令不能在命令行中指定只能在源文件中指定说明EJECT命令在列表文件中插入一个格式输入字符注意EJECT只在源文件中出现必须是#pragma命令的一部分例子#pragma ejectFLOATFUZZY缩写FF参数0到7间的一个数字缺省FLOATFUZZY3µVision2控制Options - C x51 – Bits to round for float compare说明FLOATFUZZY命令在一个浮点比较前定义位数缺省值3指定最少有三个有效位例子C51 MYFILE.C FLOATFUZZY2#pragma FF(0)INCDIR缩写无参数指定头文件的路径缺省无µVision2控制Options - C x51 – Include Paths说明INCDIR命令指定Cx51编译器头文件的位置编译器最多50个路径声明如果需要多个路径路径名必须用分号分开如果指定#include“filename.h”Cx51编译器首先搜索当前目录然后是源文件目录当找不到或用了#include <filename.h>就搜索INCDIR指定的路径当仍找不到就使用C51INC环境变量指定的路径例子C51 SAMPLE.C INDIR C\KEIL\C51\MYINC;C:\CHIP-DIRINTERVAL缩写无参数对中断矢量表可选用括号括住缺省INTERV AL8µVision2控制Options - C x51 – Misc controls:enter the directive说明INTERV AL命令指定中断矢量的间隔指定间隔是SIECO-51派生系列要求的它定义中断矢量在3字节间隔用本命令编译器定位中断矢量在绝对地址如下计算(interval×n)+offset+3,这里interval INTERV AL命令的参数缺省为8n中断号offset INTVECTOR命令的参数缺省为0参考INTVECTOR/NOINTVECTOR例子C51 SAMPLE.C INTERV AL3#pragma interval(3)INTPROMOTE/NOINTPROMOTE缩写IP/NOIP参数无缺省INTPROMOTEµVision2控制Options - C x51 – Enable ANSI integer promotion rules说明INTPROMOTE命令使能ANSI整数提升规则如果提升声明了在比较前所用的表达式从小类型提升到整数表达式这使MICROSOFT C和BORLAND C改动很少就可用到Cx51上因为8051是8位处理器使用INTPROMOTE命令可能在某些应用中降低效率NOINTPROMOTE命令不使能自动整数提升整数提升使Cx51和别的ANSI编译器间有更大的兼容性然而整数提升可能降低效率例子C51 SAMPLE.C INTPROMOTE#pragma intpormoteC51 SAMPLE.C NOINTPROMOTE下面的代码示范用INTPROMOTE和NOINTPROMOTE命令产生的代码stmt lvl source1char c;2unsigned char c1,c2;3int i;45main(){61if(c==0xff)c=0;/*never true!*/71if(c==-1)c=1;/*works*/81i=c+5;91if(c1<c2+4)c1=0;101};FUNCTION main(BEGIN);SOURCE LINE#60000AF00MOV R7,c0002EF MOV A,R7000333RLC A000495E0SUBB A,ACC0006FE MOV R6,A0007EF MOV A,R70008F4CPL A00094E ORL A,R6000A7002JNZ?C0001000C F500MOV c,A000E?C0001:;SOURCE LINE#7000E E500MOV A,c0010B4FF03CJNE A,#0FFH,?C0002 0013750001MOV c,#01H0016?C0002:;SOURCE LINE#80016AF00MOV R7,c0018EF MOV A,R7001933RLC A001A95E0SUBB A,ACC001C FE MOV R6,A001D EF MOV A,R7001E2405ADD A,#05H0020F500MOV i+01H,A0022E4CLR A00233E ADDC A,R60024F500MOV i,A;SOURCE LINE#90026E500MOV A,c200282404ADD A,#04H002A FF MOV R7,A002B E4CLR A002C33RLC A002D FE MOV R6,A002E C3CLR C002F E500MOV A,c100319F SUBB A,R70032EE MOV A,R600336480XRL A,#080H0035F8MOV R0,A00367480MOV A,#080H003898SUBB A,R000395003JNC?C0004003B E4CLR A003C F500MOV c1,A;SOURCE LINE#10003E?C0004:003E22RET;FUNCTION main(END);FUNCTION main(BEGIN);SOURCE LINE#60000AF00MOV R7,c0002EF MOV A,R7000333RLC A000495E0SUBB A,ACC0006FE MOV R6,A0007EF MOV A,R70008F4CPL A00094E ORL A,R6000A7002JNZ?C0001000C F500MOV c,A000E?C0001:;SOURCE LINE#7000E E500MOV A,c0010B4FF03CJNE A,#0FFH,?C0002 0013750001MOV c,#01H0016;SOURCE LINE#80016E500MOV A,c00182405ADD A,#05H001A FF MOV R7,A001B33RLC A001C95E0SUBB A,ACC001E F500MOV i,A00208F00MOV i+01H,R7;SOURCE LINE#90022E500MOV A,c200242404ADD A,#04H0026FF MOV R7,A0027E500MOV A,c10029C3CLR C002A9F SUBB A,R7002B5003JNC?C0004002D E4CLR A002E F500MOV c1,A;SOURCE LINE#100030?C0004:003022RET;FUNCTION main(END)CODE SIZE = 63 Bytes CODE SIZE = 49 BytesINTVECTOR/NOINTVECTOR缩写IV/NOIV参数对中断矢量表一个可选的偏移在括号中缺省INTVECTOR0µVision2控制Options - C x51 – Misc controls:enter the directive说明INTVECTOR命令指示编译器对要求的函数产生中断矢量如果矢量表不从0开始需输入一个偏移用本命令编译器产生一个中断矢量入口根据ROM命令指定的程序存储区用AJMP或LJMP指令跳转NOINTVECTOR命令禁止产生中断矢量表这也许用户用别的编程工具提供中断矢量编译器通常用一个3字节跳转指令LJMP产生一个中断矢量矢量用绝对地址表示(interval × n) + offset + 3,这里n中断号interval INTERV AL命令的参数缺省为8offset INTVECTOR命令的参数缺省为0参考INTERV AL。

C语言GNU编译器详解

C语言GNU编译器详解

C语言GNU编译器详解在计算机科学领域中,编译器是一种将高级语言代码转化为机器语言的工具。

作为一门广泛应用的编程语言,C语言的GNU编译器(GNU Compiler Collection,简称GCC)在软件开发过程中扮演着重要的角色。

本文将对C语言GNU编译器进行详细解析,帮助读者更好地理解和利用该工具。

一、C语言GNU编译器概述C语言GNU编译器是自由软件基金会(Free Software Foundation)开发的一款编译器集合,旨在为多种计算机平台提供高质量、高效的编译器支持。

它不仅适用于C语言,还可编译C++、Objective-C、Fortran等多种编程语言。

C语言GNU编译器的主要组成部分包括前端(Frontend)和后端(Backend)。

前端负责将源代码转化为GCC内部的一种中间表示形式,而后端则将中间表示形式转化为目标平台的机器码。

二、C语言GNU编译器的重要功能1. 编译:C语言GNU编译器可以将C语言源代码编译成可执行文件。

它支持多种优化选项,可以提升程序的执行效率和性能。

2. 调试支持:GCC提供了丰富的调试功能,如生成调试符号表、支持断点设置、变量追踪等。

这些功能有助于程序员快速定位和修复代码中的错误。

3. 代码优化:GCC具备强大的代码优化能力,可以在编译过程中对源代码进行各种优化,使得生成的机器码更加高效、紧凑,并且减少执行时间和内存占用。

4. 多平台支持:C语言GNU编译器可在不同的操作系统和架构下使用,如Linux、Windows、MacOS等。

它支持多种目标平台,如x86、ARM等。

三、C语言GNU编译器使用示例为了更好地理解C语言GNU编译器的使用方法,以下演示了一个简单的示例:```c#include <stdio.h>int main() {printf("Hello, World!\n");return 0;}```上述代码为经典的Hello, World!程序。

编译原理—chapter1

编译原理—chapter1

词法分析器
id, 1 op , = id, 2 op , + id, 3 op , num, 60
1. 1 编译器概述
表达式的语法特征
• 任何一个标识符都 是表达式 • 任何一个数都是表 达式 • 如 果 e1 和 e2 都 是 表 达式,那么 e1 + e2 e1 * e2 (e1) 也都是表达式
高级语言设计、计算机系统结构的优化、新型计 机系统结构设计、程序翻译、 提高软件开发效率的工具 、高可信软件
经 典 书 籍
1、Compilers: Principles,Techniques,and Tools 2、Advanced Compiler Design and Implementation 3、Modern Compiler Implementation in ML
1.2 编译器技术的应用
• 高级语言的实现
– 高级编程语言易于编程,但程序运行较慢 – 低级语言编程时可实施更有效的控制方式,得 到更有效的代码,但难编写、易出错、难维护 – 流行编程语言的大多数演变都是朝着提高抽象 级别的方向 – 每一轮编程语言新特征的出现都刺激编译器优 化的新研究
1.2 编译器技术的应用
目标机器代码
1. 1 编译器概述
源程序 词法分析器
阶段分组 •遍
独立于机器的代码优化器
语法分析器 语义分析器 中间代码生成器 目标机器代码 代码生成器
依赖于机器的代码优化器
编译器的发展历史
• • • • • • • First compiler for A-0, Grace Hopper, 1952. Fortran Compiler, John Backus, IBM, 1957. COBOL Compiler, 1960 LISP Compiler by Hart and Levin, MIT, 1962 Compilers for Pascal and C , the early 1970s Compiler for Microsoft C 1.0, 1982 Compiler for Visual C++ 1.0, 1992

编译器的发展简介

编译器的发展简介

编译器的发展简介编译器就是将“高级语言”翻译为“机器语言(低级语言)”的程序。

一个现代编译器的主要工作流程:源代码(source code) →预处理器(preprocessor) →编译器(compiler) →汇编程序(assembler) →目标代码(object code) →链接器(Linker) →可执行程序(executables)。

编译器将源程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。

源代码一般为高级语言(High-level language),如Pascal、C、C++、C#、Java等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。

上世纪50年代,IBM的John Backus带领一个研究小组对FORTRAN语言及其编译器进行开发。

但由于当时人们对编译理论了解不多,开发工作变得既复杂又艰苦。

与此同时,Noam Chomsky开始了他对自然语言结构的研究。

他的发现最终使得编译器的结构异常简单,甚至还带有了一些自动化。

Chomsky的研究导致了根据语言文法的难易程度以及识别它们所需要的算法来对语言分类。

正如现在所称的Chomsky架构(Chomsky Hierarchy),它包括了文法的四个层次:0型文法、1型文法、2型文法和3型文法,且其中的每一个都是其前者的特殊情况。

2型文法(或上下文无关文法)被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。

分析问题(parsing problem,用于上下文无关文法识别的有效算法)的研究是在60年代和70年代,它相当完善的解决了这个问题。

现在它已是编译原理中的一个标准部分。

有限状态自动机(Finite Automaton)和正则表达式(Regular Expression)同上下文无关文法紧密相关,它们与Chomsky的3型文法相对应。

《编译原理》教学大纲

《编译原理》教学大纲

《编译原理》教学大纲一、课程概述编译原理是计算机科学与技术专业的一门重要课程,也是软件工程领域的基础课程之一、本课程通过对编译器的原理和实现技术的学习,使学生掌握编译器的设计和实现方法,培养学生独立解决实际问题的能力。

二、教学目标1.理解编译器的基本原理和工作流程;2.掌握常见编译器的构建方法和技术;3.能够设计和实现简单的编译器;4.培养分析和解决实际问题的能力。

三、教学内容和教学进度1.第一章:引论1.1编译器的定义和分类1.2编译器的基本工作流程2.第二章:词法分析2.1编译器的基本结构2.2词法单元的定义和识别方法2.3正则表达式和有限自动机3.第三章:语法分析3.1语法分析的基本概念3.2语法规则的定义和表示方法3.3自顶向下的语法分析方法3.4自底向上的语法分析方法4.第四章:语义分析4.1语义分析的基本概念4.2属性文法和语法制导翻译4.3语义动作和符号表管理5.第五章:中间代码生成5.1中间代码的定义和表示方法5.2基本块和控制流图5.3三地址码的生成方法6.第六章:优化6.1优化的基本概念和原则6.2常见的优化技术和方法6.3编译器的优化策略7.第七章:目标代码生成7.1目标代码生成的基本原理7.2目标代码的表示方法和存储管理7.3基本块的划分和目标代码生成算法8.第八章:附加主题8.1解释器和编译器的比较8.2面向对象语言的编译8.3并行编译和动态编译四、教学方法1.理论教学与实践相结合,注重教学案例的分析和实践;2.引导学生主动探索,注重培养学生的自主学习能力;3.激发学生的兴趣,鼓励学生提问和讨论。

五、考核方式1.平时成绩:包括课堂测验、作业和实验报告等;2.期末考试:闭卷笔试,主要考查学生对编译原理的理论知识和实践能力的掌握程度。

六、参考教材1.《编译原理与技术》(第2版),龙书,机械工业出版社,2024年2.《现代编译原理-C语言描述》(第2版),谢路云,电子工业出版社,2024年七、参考资源1. 实验环境:Dev-C++、gcc、llvm等2.相关网站:编译原理教学网站、编译器开源项目等八、教学团队本课程由计算机科学与技术学院的相关教师负责教学,具体安排详见教务处发布的教学计划。

编译原理王生原(第一章)

编译原理王生原(第一章)

目标代码生成
目标代码表示形式
编译器需要将中间代码转换 为目标机器代码,以便在计 算机上运行。
目标代码优化
编译器可以使用各种技术进 行目标代码的优化,如指令 选择、寄存器分配等。
指令生成方法
编译器可以使用模板匹配等 技术生成目标机器指令。
总结
1
词法分析
将程序代码分解成一系列令牌或词法单元
2
语法分析
编译过程概述
编译过程由三个阶段组成:词法分析、语法分析和语义分析。在生成中间代码和目标代码之 前,还需要进行一些优化。
词法分析
目的和原理
将程序代码分解成一系列令牌或词法单元,以便进 行进一步的分析和转换。
识别标识符和关键字
编译器需要识别代码中的标识符和关键字,以便进 行进一步的语法分析。
识别常量
编译器需要将数字和字符串等常量识别并转换为内 部表示形式。
类型检查
编译器需要检查代码中的类型 错误,并将其转换为中间代码 表示形式。
处理语义错误
编译器需要对语义错误进行处 理,如输出错误消息或修复错 误。
中间代码生成
中间代码表示形式
编译器需要将语法树转换为中间代码表示形式,以 便进行后续优化可以使用各种技术进行中间代码的生成和优 化,如常量折叠、复写传播等。
语法分析
1 目的和原理
将词法单元组成的序列转换为语法分析树或语法树,以便进一步分析和转换代码。
2 生成语法规则
编译器需要根据语法规则生成语法分析树,以便进一步处理和转换代码。
3 生成语法树
编译器需要将语法树转换为中间代码表示形式,以便进一步优化和转换代码。
语义分析
目的和原理
检查代码中的语义错误,如类 型不匹配、未定义的变量等, 并生成符号表以便后续处理。

编译原理(第一章)

编译原理(第一章)

语法分析器通常采用自顶向下的分析 方法,从源代码的起始位置开始,逐 步向下解析,直到找到完整的语法结 构或遇到语法错误。
语法分析是编译器的基础,它决定了 源代码的结构和含义,并为编译器提 供了理解和处理源代码的框架。
语法分析的任务
确定词法单元
语法分析器需要将源代码分解 成一个个的词法单元或符号, 如关键字、标识符、运算符等
对优化后的代码进行评估,包括性能测试、空间占用测试 等,以确定优化的效果是否达到预期目标。
THANKS FOR WATCHING
感谢您的观看
优化的分类
根据优化涉及的方面不同,优 化可以分为局部优化和全局优 化。
局部优化是指在单个函数或代 码块范围内进行的优化,通常 关注单个语句或表达式的优化。
全局优化是指在程序的全局范 围内进行的优化,通常关注函 数或模块之间的优化,以提高 整个程序的性能。
优化技术
在此添加您的文本17字
常见的优化技术包括常量折叠、死代码消除、循环展开、 循环优化、函数内联等。
在此添加您的文本16字
常量折叠是指在编译过程中将常量表达式的结果进行计算 并替换掉原来的表达式,以减少程序运行时的计算量。
在此添加您的文本16字
死代码消除是指删除程序中永远不会被执行到的代码,以 减少程序的空间占用和提高程序的运行效率。
在此添加您的文本16字
循环展开是指将循环体中的代码复制到循环外部,以减少 循环次数和减少循环开销。

识别语法结构
语法分析器需要识别出源代码 中的各种语法结构,如表达式 、语句、程序等。
建立语法树
语法分析器需要将识别的语法 结构按照一定的规则组织起来 ,形成一棵语法树。
语义检查
语法分析器在识别语法结构的 同时,还需要进行一些语义检 查,如类型检查、变量声明等

《编译原理》总复习-07级

《编译原理》总复习-07级

《编译原理》总复习-07级第一章编译程序的概述(一)内容本章介绍编译程序在计算机科学中的地位和作用,介绍编译技术的发展历史,讲解编译程序、解释程序的基本概念,概述编译过程,介绍编译程序的逻辑结构和编译程序的组织形式等。

(二)本章重点编译(程序),解释(程序),编译程序的逻辑结构。

(三)本章难点编译程序的生成。

(四)本章考点全部基本概念。

编译程序的逻辑结构。

(五)学习指导引论部分主要是解释什么是编译程序以及编译的总体过程。

因此学习时要对以下几个点进行重点学习:翻译、编译、目标语言和源语言这几个概念的理解;编译的总体过程:词法分析,语法分析、语义分析与中间代码的生成、代码优化、目标代码的生成,以及伴随着整个过程的表格管理与出错处理。

第三章文法和语言课外训练(一)内容本章是编译原理课程的理论基础,主要介绍与课程相关的形式语言的基本概念,包括符号串的基本概念和术语、文法和语言的形式定义、推导与归约、句子和句型、语法分析树和二义性文法等定义、文法和语言的Chomsky分类。

(二)本章重点上下文无关文法,推导,句子和句型,文法生成的语言,语法分析树和二义性文法。

(三)本章难点上下文无关文法,语法分析树,文法的分类。

(四)本章考点上下文无关文法的定义。

符号串的推导。

语法分析树的构造。

(五)学习指导要构造编译程序,就要把源语言用某种方式进行定义和描述。

学习高级语言的语法描述是学习编译原理的基础。

上下文无关文法及语法树是本章学习的重点。

语法与语义的概念;程序的在逻辑上的层次结构;文法的定义,文法是一个四元组:终结符号集,非终结符号集,开始符号、产生式集;与文法相关的概念,字符,正则闭包,积(连接),或,空集,产生式,推导,直接推导,句子,句型,语言,最左推导,最右推导(规范推导);学会用文法来描述语言及通过文法能分析该文法所描述的语言;语法树及二义性的概念、能通过画语法树来分析一个文法描述的语言是否具有二义性;上下文无关文法的定义和正规文法的定义,能判断一个语言的文法是哪一类文法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13 /34
编译器的功能结构图
表 处 理源 程 序 Nhomakorabea词 法 分 析
语 法 分 析
语 义 分 析
中 间 代 码 生 成
中 间 代 码 优 化
目 标 代 码 生 成
目 标 程 序
错 误 处 理
词法分析( 词法分析(Lexical Analysis) 依循语言的词法规则,扫描源程序的字符串, 依循语言的词法规则,扫描源程序的字符串, 识别每一个单词, 识别每一个单词,并将其表示成所谓的机内表 示TOKEN(词法记号)形式。 (词法记号)形式。 例:position=initial+rate*60 (id,1)(=)(id,2)(+)(id,3)(*)(60)
position Initail rate
语法分析( 语法分析(Syntax Analysis) 依据语言的语法规则,将单词的Token Token序 依据语言的语法规则,将单词的Token序 列分解成各类语法短语, 列分解成各类语法短语,确定整个输入 串是否构成一个语法上正确的程序。 串是否构成一个语法上正确的程序。 通常用语法树的形式表示
广东商学院信息学院
库文件
5 /34
基本概念
机器语言:能够被计算机的硬件系统直 机器语言 接执行的指令程序。 汇编语言:将硬件指令用一些助记符表 示。如ADD表示加法操作, SUB表示减法操作等等 高级语言:使用便于理解的自然语言。
语言处理程序
解释程序( 解释程序(器):接受所输入的用程序 语言(源语言)编写的程序(源程 序),然后直接解释执行源程序。 相当于源程序的抽象执行机,是语 言的实现系统。
符号表管理( 符号表管理(Symbol-Table Management) 保存有关源程序构造的各种信息的数 据结构。 据结构。 为了合理的管理表格(构造、查找、 为了合理的管理表格(构造、查找、 更新), ),设立一些专门子程序称为表格 更新),设立一些专门子程序称为表格 管理程序负责管理表格。 管理程序负责管理表格。 错误处理( 错误处理(Error Detection and Reporting) 各个阶段还存在着错误处理模块, 各个阶段还存在着错误处理模块 , 当 有错误出现时, 有错误出现时 , 由相应的错误处理模块 给出解决方案, 给出解决方案 , 使得编译器能够继续进 行下去。 行下去。
广东商学院信息学院
12 /34
编译器内部结构
1.2 编译程序的组织结构:
典型的编译过程一般可划分成 词法分析、语法分析、语义分析、中间 代码生成,代码优化和目标代码生成六 个阶段,每个阶段将源程序的一种表示 形式转换成另一种表示形式,各个阶段 进行的操作在逻辑上是紧密连接在一起 的。如下图示:
广东商学院信息学院
8 /34
解释器和编译器特点
解释器通常能够在大多数类型的计算机上运行; 解释器通常能够在大多数类型的计算机上运行; 而编译器产生的目标代码只能在所选类型的计算 机上运行。解释器更加通用。 机上运行。解释器更加通用。 基于解释执行的程序可以动态修改自身, 基于解释执行的程序可以动态修改自身, 而基于编译执行的程序则需要动态编译技 难度较大。 术,难度较大。 基于解释方式有利于人机交互。 基于解释方式有利于人机交互。 执行速度。解释器执行速度要慢。 执行速度。解释器执行速度要慢。 空间开销。 解释器需要保存的信息较多, 空间开销。 解释器需要保存的信息较多, 空间开销大 二者实现技术相似。 二者实现技术相似。
广东商学院信息学院
19 /34
扫描遍数
遍:对源程序或源程序的中间表示形 式从头到尾扫描一次,生成新的中间结 式从头到尾扫描一次, 果或目标程序 一遍扫描结构:直接产生目标码,速度 一遍扫描结构 快,但算法不清晰,不便于优化。 多遍扫描结构:层次分明,结构清晰, 多遍扫描结构 易于掌握。 特点: 特点:便于优化,移植,修改。 大型语言宜采用多遍扫描
3 /34
一般程序 VS 编译程序
一般程序: 输入对象是数据或文 本等,输出是计算结 果、文本或图形等。 编译程序: 输入对象是整个源程 序,输出结果是另一 个程序-即目标机程 序。
广东商学院信息学院
4 /34
高 级 语 言 程 序 到 可 执 行 代 码 的 转 换 过 程
需预处理的源程序 预处理器 经过预处理的源程序 编译程序 目标汇编程序 汇编程序 可重定位的目标代码 连接/ 连接/装配程序 绝对目标代码
广东商学院信息学院
25 /34
编译程序的实现途径(二)
自展法 自我扩展,自己编写自己的编译器。
实现语言L: 1.选择其子语言L1,并用低级语言写L1的编译程序; 2.扩充L1语言成L2:L1高级语言写L2的编译程序; 3.如此下去直到写L语言的编译程序。
编译程序的实现途径(一)
预处理方法
用于语言的扩充。设已有L语言的编译器,其扩 充语言L1的编译器可通过语言转换程序将L1程序转 换为L程序,利用L的编译器,从而实现L1的编译器。
移植法
同一语言的编译器在不同机器间的移植。方法: 同一语言的编译器在 a 目标代码的转换 b 修改中间代码到目标代码的转换
语言处理程序
翻译程序( 翻译程序(器):接受某种语言的源语 言程序后,将它改造成另一种逻辑 上等价的目标语言程序。
广东商学院信息学院
1 /34
翻译程序(器) 翻译程序(
翻译程序( 接受某种语言的源语言程序后, 翻译程序 (器) : 接受某种语言的源语言程序后 , 将它改造成另一种逻辑上等价的目标语言程序。 将它改造成另一种逻辑上等价的目标语言程序 。
广东商学院信息学院
23 /34
编译程序的实现途径(一)
编译器设计中最重要的是性能,其次是可移植 编译器设计 性、可维护性,可扩展性等。 性能主要指编译器本身的质量,如编译可靠性、 编译速度、目标代码执行速度和所占用空间等。 编译器的设计涉及:一是源语言(输入),二 是目标语言(输出),三是实现语言(工具)。
解释程序 VS 编译程序
解释程序: 不同点: 解释器(Interpreter)是 源程序的一种执行系 统,它的输出是源程 序的执行结果。 编译程序: 编译程序是源程序 的一种转换系统,它 的输出是一个与源程 序的逻辑功能相当的 目标程序。
共同点:两者的输入,操作对象都是整个程序。
广东商学院信息学院
高级语言源程序 数据 解释程序 (器) 计算结果
编译器和解释器
编译器和解释器的比较
编译器 解释器 规模较大 中小规模 机器代码(低级 数据结构(高级 低级) 高级) 机器代码 低级 数据结构 高级 硬件CPU 硬件 软件系统 相对较慢 相对较快
程序规模 内部形式 运行机构 运行速度
广东商学院信息学院
广东商学院信息学院
20 /34
编译器的伙伴程序
编辑器 (editor) 除一般的文本编辑功能 还可以对正在编辑的文本进行分析、 外,还可以对正在编辑的文本进行分析、 提示、自动提供关键字匹配等功能。 提示、自动提供关键字匹配等功能。 调试程序(debugger) 调试程序(debugger) 在被编译的程序中 判定执行错误的程序
编译器前端和后端
编译器:分析部分(前端)和综合部分(后端) 编译器:分析部分(前端)和综合部分(后端) 分析部分把源程序分解成多个组成要素, 分析部分把源程序分解成多个组成要素,并在这些 要素之上加上语法结构。 要素之上加上语法结构。 综合部分根据中间表示和符号表中的信息来构造目 标程序 编译器的前端:一般包括词法分析、语法分析、符号 编译器的前端:一般包括词法分析、语法分析、 表构造、语义分析、中间代码生成、 表构造、语义分析、中间代码生成、代码优化和错误 处理等。此部分工作的特点是不依赖于具体机器 不依赖于具体机器。 处理等。此部分工作的特点是不依赖于具体机器。 编译器的后端: 编译器的后端:主要是指中间代码到目标代码生成的 阶段。此部分紧密地依赖于中间代码和目标机 阶段。此部分紧密地依赖于中间代码和目标机
汇编程序:源语言为汇编语言, 汇编程序: 源语言为汇编语言 , 目标语言为机器语 言的翻译程序。 言的翻译程序。 编译程序( 源语言为高级语言, 编译程序 ( 器 ) : 源语言为高级语言 , 目标语言是 低级语言(汇编或机器语言)的翻译程序。 低级语言(汇编或机器语言)的翻译程序。
高级语言程序 (源程序) 源程序)
广东商学院信息学院
22 /34
编译器的伙伴程序
汇编器:处理对象是汇编代码, 汇编器:处理对象是汇编代码,而处理结果是 可重定位的机器代码。 可重定位的机器代码。 编译器一般不直接产生机器的目标代码, 编译器一般不直接产生机器的目标代码, 而是产生汇编语言代码或抽象机代码。 而是产生汇编语言代码或抽象机代码。 装配器:要运行可重定位的代码, 装配器:要运行可重定位的代码,必须先把需 要重定位诉地址全部修改为绝对地址。 要重定位诉地址全部修改为绝对地址。 工作:一是装入程序,二是连接编辑。 工作:一是装入程序,二是连接编辑。 连接程序(linker) 将不同的目标文件连接到一 连接程序 个可执行的文件中。 个可执行的文件中。 装入程序(loader) 将程序加载到内存 装入程序
编译程序 (器)
广东商学院信息学院
低级语言程序 (目标程序) 目标程序)
2 /34
编译器实际产生的代码
编译程序并不直接产生机器代码,即可执 行代码,而是产生汇编语言的目标代码。 汇编代码经汇编程序转换后,再由链接程 序(Linker)进行装配连接,才会产生真 正的可执行二进制代码。
广东商学院信息学院
16 /34
中间代码生成 Generate) (Intermediate Code Generate) 将源程序转换成一种称为中间代码的内 部表示形式。 部表示形式。中间代码是一种简单的含义 明确的记号系统。 明确的记号系统。 特点:易于产生,易于优化,且易于翻译成目标程序。 特点:易于产生,易于优化,且易于翻译成目标程序。 中间代码优化(Code Optimization) 中间代码优化( Optimization) 变换或改造中间代码, 变换或改造中间代码,使生成的目标代码 更为高效,即节省时间和空间。 更为高效,即节省时间和空间。 目标代码生成( Generation) 目标代码生成(Code Generation) 中间代码变换为特定机器上的绝对指令代码或可重 定位的指令代码或汇编指令代码。 定位的指令代码或汇编指令代码。
相关文档
最新文档