第四章纵断面设计1
第4章纵断面设计
(三)凹形竖曲线最小半径和最小长度
设置凹竖曲线的主要目的是缓和行车时的离心力
Lmin
2.当L>ST:
h1
d12 2R
,则d1
2Rh1
h2
d
2 2
2R
,则d
2
2Rh2
ST d1 d2 2R ( h1 h2 )
R
ST2
2( h1 h2 )
最小长度:
Lmin 2(
S 2
S 2
h1 h2 )2 4
最小半径:
Rmin
Lmin
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
山区公路可缩短里程,降低造价。
各级公路最大纵坡的规定(表4-3)
设计速度 (km/h)
120 100 80 60 40 30 20
最大纵坡(%)
345
6
7
8
9
城市道路最大纵坡约为按公路设计速度计算的最大纵坡 减少1%
1. 设计速度为120km/h、l00km/h、80km/h 的高速公路受地形条件或其他特殊情况限制时, 经技术经济论证,最大纵坡值可增加1%。
最小合成坡度不宜小于0.5%。
当合成坡度小于0.5时,应采取综合排水措施,以 保证路面排水畅通。
3. 合成坡度指标的控制作用 : 控制陡坡与急弯的重合; 平坡与设超高平曲线的配合问题。
当陡坡与小半径平曲线重合时,在条件许可的情 况下,以采用较小的合成坡度为宜。
▪ 特别是下述情况,其合成坡度必须小于8%。
一、纵坡设计的一般要求
1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵 坡应具有一定的平顺性,起伏不宜过大和过于频繁。
隧道工程4-2-1 隧道平纵横断面设计
第4页
2.隧道坡道形式
一般可采用单面坡或人字坡。
第5页
2.隧道坡道形式
两种不同的坡型适用于不同的隧道。
对位于紧坡地段,要争取高程的区段上 的隧道、位于越岭隧道两端展线上的隧道、 地下水不大的隧道,或是可以单口掘进的 短隧道,可以采用单面坡型;
第6页
2.隧道坡道形式
两种不同的坡型适用于不同的隧道。
第12页
3.隧道坡度大小
高速铁路中,由于行车速度快,对 于坡道的最大坡率做出了要求,正线 的最大坡度,一般条件下不应大于 20‰,困难条件下,经技术经济比较, 不应大于30‰。动车组走行线的最大 坡度不应大于35‰。
第13页
谢 谢!
第14页
第9页
3.隧道坡度大小
m的取值
第10页
3.隧道坡度大小
洞口外一段距离内,也要考虑相应的折 减。 当列车的机车一旦进入隧道,空气阻力 就增加,黏着系数也开始减少。所以在上 坡进洞前半个远期货物列车长度范围内, 也要按洞内一样予以折减。
第11页
3.隧道坡度大小
除了最大坡度的限制以外,还要限制最 小坡度。因为隧道内的水全靠排水沟向外 流出。《铁路隧道设计规范》规定,隧道 内线路不得设置平坡,最小的允许坡度不 宜小于3‰。
《铁路隧道》
第4章 隧道平纵横断面设计
• 第一节 隧道平面设计 • 第二节 隧道纵断面设计
• 第三节 隧道横断面设计
第2页
学习重点
• 隧道坡道形式及坡度大页
1.隧道纵断面概述
隧道纵断面是中心线展直后在垂直面上 的投影。纵断面设计主要包括隧道内线路 的坡道形式、坡度大小和折减、坡段长度 和坡段间的衔接等内容。
对于长大隧道、越岭隧道、地下水丰富 而抽水设备不足的隧道,宜采用人字坡型。
《纵断面设计》课件
调整结构:根据桥梁类型和材料调整结构
调整材料:根据桥梁类型和施工条件调整 材料
调整施工方法:根据桥梁类型和现场条件 调整施工方法
PART SIX
案例名称:北京地 铁10号线
设计特点:采用纵 断面设计,提高乘 客舒适度
设计难点:如何平 衡乘客舒适度与运 营效率
设计成果:成功解 决了设计难点,提 高了乘客满意度和 运营效率
PPT,a click to unlimited possibilities
汇报人:PPTBiblioteka CONTENTSPART ONE
PART TWO
纵断面设计是道路、 铁路、管道等线性 工程的重要组成部 分
纵断面设计是指在 平面图上表示出沿 线地形、地貌、地 质等特征
纵断面设计需要考 虑沿线的地形、地 貌、地质、水文等 因素
挡土墙:用于支撑和保护边坡,防止滑 坡和坍塌
排水设施:用于排除地表水和地下水, 防止积水和侵蚀
挡土墙类型:包括重力式、悬臂式、扶 壁式等
排水设施类型:包括排水沟、排水管、 排水井等
挡土墙和排水设施的设计原则:安全、 经济、美观、环保
挡土墙和排水设施的施工要点:材料选 择、施工工艺、质量控制等
PART FOUR
确定设计高程的目的:保证道路、桥梁、隧道等设施的安全性和稳定性 设计高程的确定方法:根据地形、地质、水文等条件进行计算和选择 设计高程的确定原则:满足交通需求,保证行车安全,保护环境 设计高程的确定步骤:收集资料、分析计算、选择方案、确定高程
确定纵坡:根据道路等级、设计速度、地形地貌等因素确定纵坡 确定竖曲线:根据道路等级、设计速度、地形地貌等因素确定竖曲线 设计纵断面:根据纵坡和竖曲线设计纵断面 优化纵断面:根据交通量、地形地貌等因素优化纵断面
道路勘测1-4章简答题答案
道路勘测设计复习第一章绪论1.交通运输方式哪些,优缺点P1方式:铁路,道路,水运,航空,管道优缺点;❶铁路优点运程远,运量大,连续性强,成本较低,速度较高缺点建设周期长,投资大❷水运优点通过能力高,运量大,耗能少,成本低,投资少缺点受自然条件限制大,连续性较差,速度慢❸航空运输优点速度快,运距短缺点运量小成本高❹管道运输优点连续性强,成本低,安全性好,损耗少,限制少缺点仅限于油,气,水等货物❺道路运输优点运输机动灵活,中转少,受固定交通设施限制少,批量不限,货物送达速度快,覆盖面广2、道路运输的特点,优缺点各是什么?优点:❶机动灵活❷直达,减少货损❸投资较灵活,社会效益高❹适用性强缺点:❶运输成本偏高❷环境较大污染,治理相对困难❸事故多,损失大3、我国公路建设与发达国家相比,差距表现在哪些方面?差距体现在:❶公路数量少,网络化程度低❷质量差,等级低❸公路测设与施工技术水平落后❹交通及运输经营管理技术落后❺社会整体素质有待进一步提高4、7918公路网,什么意思?7条首都放射线,9条南北纵向高速公路线,18条东西横向告诉公路线第2章道路技术标准与设计依据1、公路分级依据是什么?满足经济发展,规划交通量,路网建设及功能2、城市道路分为哪四类?❶快速路❷主干路❸次干路❹支路3、道路工程基本建设程序的三个阶段是什么?规划与研究阶段,设计及建设阶段,生产运营阶段4、可行性研究的任务是什么?在充分调查研究,评价预测和必要的勘测工作基础上,对项目建设的必要性,经济合理性,技术可行性,实施可能性,提出综合的研究论证报告5、公路工程基本建设项目包括哪三个阶段?各个阶段的目的分别是什么?❶初步设计目的:确定设计方案❷技术设计目的:对重大,复杂的技术问题进一步落实设计方案❸施工图设计目的:对批准的推荐方案进行详细设计以满足施工的要求6、影响道路设计的自然因素有哪些?简述这些自然因素分别对道路设计有什么影响。
自然因素:地形,气候,水文,水文地质,地质,土壤,植被地形影响道路技术标准和指标气候影响地面水数量,地下水位高度,路基水温状况,及泥泞期,冬季积雪和冰冻期路面使用质量水文影响排水结构物数量大小水文地质情况决定含水层厚度,位置,地基边坡稳定性地质构造决定地基和附近岩层稳定性,有无坍塌,碎落崩塌可能,施工难易程度,筑路材料质量土壤影响地基尺寸形状,路面类型结构确定植被影响暴雨径流,水土流失程度,路线布设7、作为道路设计依据的车辆分为哪三类?❶小客车❷载重汽车❸鞍式列车8、什么是设计速度,设计速度影响哪些道路设计指标的确定?设计速度定义:当气候条件良好,交通密度小,汽车运行只受道路本身条件影时,中等驾驶技术的驾驶员能保持安全顺适行驶的最大行驶速度影响指标:道路曲线半径,超高,视距,也影响车道宽度,中间带宽度,路肩宽度9、什么是道路通行能力,什么是设计通行能力?P15道路通行能力:某一路段所能承受的最大交通量,也称道路容量,单位(辆/小时)设计通行能力:道路交通运行状态保持某一设计服务水平时,单位时间内道路上某一路段可以通过最大车辆数10、什么是公路网,公路网的主要功能是什么,城市道路网的主要功能是什么?公路网:按一定要求或规律连接区域内诸点间公路连线的集合,形成一个有机整体的公路系统主要功能:满足区域内外交通需求,承担城市间运输联系;维持区域内交通的通畅,保证交通运输的快速和高效益;确保交通安全和提供优质运输服务;维护生态平衡,防止水土流失,注意环境保护,方便人民生活第3章平面设计1、什么是路线,汽车行驶对路线的要求分为哪几个方面?P23路线:道路中线的空间位置要求:❶保证汽车在道路上行驶的稳定性❷尽可能提高汽车速度❸保证道路上行车连续❹尽量满足行车舒适2、*平面线形三要素是什么?为什么平面设计要引入“缓和曲线”?P25三要素:直线,圆曲线,缓和曲线引入缓和曲线原因:❶线形曲率连续❷符合行驶轨迹特性和高速行驶要求❸视觉上显性平顺,诱导驾驶员视线,路线更容易识别3、*道路平面线形设计的内容是什么?P28合理确定各线形要素的几何参数,保持线形的连续性和均衡性,是直线和曲线合理搭配,注意使线形与地形,地物,环境和景观等协调4、采用直线设计的优缺点分别是什么?P28优点:❶两点间直线最短,造价低❷笔直道路给人短捷,直达的良好印象❸汽车行驶受力简单,方向明确,驾驶操作简易❹方便测定方向距离缺点:❶地形较大起伏地区,直线线形难以与地形相协调❷过长直线易使驾驶员单调疲倦,目测汽车距离困难,产生急躁情绪,时间感速度感钝化,易引发事故5、直线最大长度怎么确定?P29❶长直线最大长度:日德:20V(V设计车速单位KM/H),前苏联8KM,美国3MILE,我国:城镇附近大于20V可接受,景色单调地点控制在20V以内❷短直线最大长度:L≤(A1+A2)/40(M),两圆曲线半径只比不宜过大R1/R2=1-1/3(R1,R2大小圆半径,A1,A2大小圆缓和曲线参数)6、*在什么情况下要考虑直线的最小长度,关于直线最小长度,规范是如何规定的?P29,30❶同向曲线中间直线较短时,易引起反弯错觉,形成断背曲线;❷反向曲线考虑转弯方向相反,超高和加宽缓和需要,驾驶人员操作方便;规范中:❶同向曲线设计速度大于60KM/H时,L≥6V,低速路放宽条件,条件受限时同向曲线改为大半径曲线或C形曲线,卵形曲线,复曲线❷反向曲线V≥60KM/H时,L≥2V,不满足条件时,直接连接S形曲线7、运用直线线形有哪些注意事项?P30,P31❶平坦地区,宽阔河谷地带;城镇及近郊道路;长大桥梁隧道路段;路线交叉点附近;双车道公路超车地段用直线❷考虑地形,地貌,地物,驾驶人员心理感受❸避免长直线,不得已时变化纵断面,改变路测环境避免疲劳❹长直线尽头不应布设小半径平曲线,条件限制时进行理论验算❺将直线视为圆曲线缓和曲线同等线元❻高速公路对长直线宜有意设置曲线代替,双车道公路维持直线设计❼不得已采用长直线时,对应纵坡不宜过大,改善两侧风景;设置标志,增大路面抗滑力确保行车安全8、圆曲线特点P31❶任一点曲率半径R=常数,曲率1/R=常数❷任一点在不断改变方向❸有利于司机集中精力驾驶,不易疲劳❹汽车受离心力作用❺视距条件较差,易发生事故9、*横向力过大对于行车的不利影响P32❶危及行车安全❷增加驾驶操作困难❸增加燃料消耗和轮胎磨损❹旅行不舒适10、*公式(3-7)、(3-10)计算R=V*V/(127(μ±ih))(3-7)R-圆曲线半径V-行车速度μ-横向力系数ih-超高横坡度R=V*V/(127(φh±ih))(3-10)R-圆曲线半径V-行车速度φh-路面与轮胎之间的横向摩阻系数ih-超高横坡度11、什么是极限最小半径?P33,不设超高的最小半径原因是什么?P34极限最小半径:各级公路在采用允许最大超高和允许的横向摩阻系数情况下,能保证汽车安全行驶的最小半径原因:当平曲线半径较大时,离心力的影响就较小,路面摩阻力就可以保证汽车有足够的稳定性,可以不设超高12、设计圆曲线时,确定圆曲线半径应遵循的原则。
第四章纵断面设计
重庆交通大学
第4章 纵断面设计
§4.1 概述 §4.2 纵坡设计 §4.3 竖曲线设计 §4.4 高等级道路上的爬坡车道 §4.5 平、纵面线形组合设计 §4.6纵断面设计方法与纵断面设计图
§4.1 概述
(1)基本概念
1)纵断面(vertical)-----用一曲面沿道路中线竖直剖
坡度的旋转轴为爬坡车道内侧边缘线。 2)位于直线路段时,其横坡度的大小同于主线路拱坡
度,均采用直线式横坡。
爬坡车道的超高坡度
表4—15
主线的超高坡度(%) 10 9 8 7 6 5 4 3 2
爬坡车道超高坡度 5
(%)
4
32
§4.4 高等级道路上的爬坡车道
2.爬坡车道的设计
(3)平面布置与长度
总长度由起点处渐变段长度L1、爬坡车道的长 度L和终点处附加长度L2(见表4.16)组成。
2)凸型竖曲线极限最小半径
①从失重不致过大考虑
RV2 3 .6
(4 -14)
②从保证纵面行车视距考虑:
a. 视距s≤L(竖曲线长度)
Rm in
S2 3.98
( 4 -16)
b.s>L
2s 3.98
Rmin 2
(4 -17)
经比较,式(4-16)的计算结果较小,故作为标准的制定依据。
能力时。 4)经综合分析认为设置爬坡车道比降低纵坡经济合理
时。
§4.4 高等级道路上的爬坡车道
2.爬坡车道的设计
(1)横断面组成 爬坡车道设于上坡方向主线行车道右侧,宽度
一般为3.5m,包括设于其左侧路缘带的宽度0.5m。
§4.4 高等级道路上的爬坡车道
第四章纵断面设计1
K5+100.00:位于下半支
①按竖曲线终点分界计算:
横距x2= 5100.00 – 4940.00=160m
竖距
y2
x22 2R
1602 6.40 2 2000
切线高程 = 427.68 + 0.05×(5100.00 - 5030.00)
= 431.18m
设计高程 = 431.18 – 6.40 = 424.78m
R=3000
R=∞
60m
R=1000
R=∞
图4-12
2、平曲线与竖曲线大小应保持均衡
平曲线与竖曲线其中一方大而平缓,那 么另一方就不要形成多而小。一个长的平曲 线内有两个以上的竖曲线,或一个大的竖曲 线含有两个以上的平曲线,看上去都非常别 扭,如图4-13所示。根据德国的统计资料, 当平曲线半径小于1000m时,竖曲线半径大约 为平曲线半径的10~20倍为好。
(1)要避免使凸形竖曲线的顶部与反向平 曲线的拐点重合。否则,宜出现扭曲的外 观,会使驾驶员操纵失误,产生交通事故;
(2)要避免使凹形竖曲线的底部与反向平 曲线的拐点重合。否则,也宜出现扭曲的 外观,会使路面排水困难,产生积水;
(3)小半径竖曲线不宜与缓和曲线相重合。对凸 形竖曲线引导性差,事故率较高;对凹形竖曲线, 路面排水不良;
3、暗、明弯与凸、凹竖曲线
暗弯与凸形竖曲线组合,以及明弯与凹形 竖曲线组合较为合理,且给人一种平顺舒适的 感觉。平曲线与竖曲线重合是一种理想的组合, 但由于地形等条件限制,这种组合并不是总能 争取得到的。如果平曲线的中点与竖曲线的顶 (底)点位置错开距离不超过平曲线长度的四 分之一时,效果仍然令人满意。但是,如果错 位过大或大小不均衡,就会出现视觉效果很差 的线形。
第四章纵断面设计
第四章纵断面设计第一节概述沿着道路中线竖直剖开,然后在展开即为路线纵断面,见图4-1。
由于自然因素的影响以及经济性的要求,路线纵断面总是一条有起伏的空间线。
一、纵断面设计主要任务与目的纵断面设计主要任务就是根据汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等,研究起伏空间线的几何构成与要素,以便达到行车安全迅速、运输经济合理及乘客舒适的目的。
二、地面线与设计线纵断面图是道路纵断面设计的主要成果,也是道路设计的重要技术文件之一。
把道路纵断面图与平面图结合起来,就能准确地定出道路的空间位置。
在纵断面图上有两条主要的线:一条是地面线,另一条是设计线。
1 地面线它是根据中线上各桩点的高程而点绘的一条不规则的折线,反映了地面的起伏与变化情况。
2 设计线它是综合考虑技术、经济和美学等诸因素之后,人为定出的一条具有规则形状的几何线,反映了道路的起伏变化情况。
纵断面设计线是由直线和竖曲线组成的。
(1)直线(均匀坡度线)直线有上坡和下坡之分,是用高差和水平长度表示的。
105(2)竖曲线在直线的坡度转折处为平顺过渡要设置竖曲线,按坡度转折形式不同,竖曲线有凹有凸,其大小用半径和水平长度表示。
第二节纵坡及坡长设计一、纵坡设计的一般要求为使纵坡设计经济合理,必须在全面掌握勘测资料的基础上,经过综合分析、反复比较定出设计纵坡。
纵坡设计的一般要求为:1纵坡设计必须满足《标准》的各项规定;2应具有一定的平顺性,起伏不宜过大和过于频繁。
为保证车辆能以一定速度安全、顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大或过于频繁。
尽量避免采用极限纵坡值,合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。
连续上坡和下坡路段,应避免设置反坡段。
3 纵坡设计应对沿线的地形、地下管线、地质、水文、气候、排水等方面综合考虑,视具体情况妥善处理,以保证道路的稳定与畅通。
4 纵坡设计应考虑填挖平衡,减少借方和废方,以降低工程造价和节省用地。
《纵断面设计 》课件
遵循相关设计规范和标准,如公路工程勘 察设计规范、公路交通工程规划设计通则 等。
纵断面设计的实际操作
纵断面设计的重要性
良好的纵断面设计能够提高道 路的通行能力和安全性,减少 事故发生的可能。
纵断面设计的实际案 例
介绍一些成功的纵断面设计案 例,如在山区建设的公路项目。
纵断面设计的数据处 理
纵断面设计的定义
纵断面设计包括路线选择、路基、设计速度和土石方等纵断面设计能够提高道路的通行能力、安全性和舒适性,同时也能减少对环境的破坏, 并节约建设成本。
纵断面设计的基本要素
设计要素的概 述
纵断面设计包括路线 选择、路基、设计速 度和土石方等要素的 综合设计。
《纵断面设计 》PPT课件
本PPT课件旨在介绍纵断面设计的概念、基本要素、技术方法、实际操作、应 用与发展以及未来趋势,以帮助大家更好地了解和应用这一领域。
纵断面设计的概念和意义
纵断面设计是指在道路、铁路等交通工程中,根据地形条件和设计目标,在垂直方向上进行布置 和调整,以满足交通需求和工程要求。
路线选择要素
考虑地形、交通需求 和经济因素,选择最 佳路线。
路基要素
确定道路的纵向坡度 和横向曲线,确保交 通畅通和行车安全。
设计速度要素
根据道路等级和交通 流量,确定设计速度。
纵断面设计的技术方法
1
纵断面设计的基本步骤
2
根据设计要求和数据分析结果,进行纵断
面设计。
3
确定纵断面的调查方法
通过地形测量、地质勘察等方法获取数据, 分析地貌特征和地质条件。
纵断面设计的总结
纵断面设计包括路线选择、路基、设计速度和土石方等要素的综合设计,其对交通工程的通行能力、安全性和 舒适性都起着重要的影响。 纵断面设计的应用前景广阔,未来的发展趋势将更加注重智能化和环境友好。
《道路工程》第4章 纵断面设计
6、缓和坡段
如前所述,凡大于理想的最大纵披i1的坡度均属陡 坡。在纵断面设计中,当陡坡大于限制坡长时,应 设<3%的缓和坡段,其长度应大于最小坡长。
7、平均纵坡
定义:某段路线高差与水平距离之比。i平=H/L(%)
作用: ①.衡量纵断面线型质量。 ②.可供放坡定线参考。
规定:①.越岭线高差200~500m时,取5.5%为宜。 ②.越岭线高差>500m时,取5.0%为宜。 ②.任何连续3km内,i平≤5.5%。 ④.要考虑公路编辑等课件级影响。
编辑课件
四、爬坡车道
2.设置条件
城市道路: ①.快速路及V≥60km/h的主干道,i>5%的路段。 ②.大车V下降,80→50、 60→40 ③. 上坡路段混入大型车辆的干扰降低通行能力时。 ④.经综合分析认为设置爬坡车道比降低纵坡经济
合理时。爬坡车道宽3.5m。
编辑课件
3.爬坡车道横断面设计
➢ 爬坡车道设于上坡方向正线行车道右侧。 ➢爬坡车道宽度一般为3.5m(含左侧路缘带宽度0.5m。 ➢爬坡车道的路肩和正线一样仍由硬、土路肩组成。 ➢由于爬坡车道上车的速度较低,硬路肩宽度可不按正 线设计,一般取1.0m。土路肩宽度以按正线要求设计。 ➢长而连续的爬坡车道路肩窄,右侧应设紧急停车带
编辑课件
最大纵坡的总结:
A,城市道路为公路按设计车速的最大纵坡-1。 B,大、中桥≯4% C,非机动车≯ 2.5%,>2.5%时有坡长限制。 D,隧道≯3% E, 海拔:公路:2000m以上,i≯8%。
3000m以上,比正常值减1~3%。 F,高寒冰冻:公路:i≯8%, 城市道路:i≯6%
编辑课件
编辑课件
纵断面定义:沿着道路中心线竖直剖切开的断 面即为线路纵断面。 绘制纵断面的目的:主要反映路线的起伏、纵 坡以及与原地面的填挖情况。 纵断面设计:就是根据汽车的动力特性、道路 等级和自然地形,研究道路起伏的坡度和长度, 以便达到行车的安全、舒适迅速和经济合理的 目的。
第四章纵断面设计
4.2 纵坡及坡长设计
4.2 纵坡及坡长设计
4.2.1 纵坡设计的一般要求 (4)纵坡设计应尽量减少土石方和其他工程数量。 (5)山岭重丘区地形纵坡设计应考虑纵向填挖平衡,以减 少借方和废方。平原区应满足最小填土高度要求,以保证路 基稳定。
(6)高等级公路应考虑通道、农田水利等方面的要求,低 等级公路应注意考虑民间运输、农田机械等方面的要求。
第4章 纵 断 面 设 计
第4章 纵 断 面 设 计
4.1 概述
沿着道路中线竖直剖切后展开得到的断面为路线纵断面。 纵断面设计:在路线纵断面图上研究路线线位高度及坡 度变化情况的过程。
任务:研究纵断面线形的几何构成及其大小与长度。 依据:汽车的动力特性、道路等级、当地的自然地理条 件以及工程经济性等。
4.2 纵坡及坡长设计
4.2.2 最大纵坡 最大纵坡:是指在纵坡设计时各级道路允许使用的最大坡度。 影响因素:
汽车的动力特性:汽车在规定速度下的爬坡能力。 道路等级:等级高,行驶速度大,要求坡度阻力尽量小。 自然条件:海拔高程、气候(积雪寒冷等)。
4.2 纵坡及坡长设计
4.2.2 最大纵坡 最大纵坡:是指在纵坡设计时各级道路允许使用的最大坡度。 纵坡度大小的优劣: 坡度大:行车困难,上坡速度低,下坡较危险。 山区公路可缩短里程,降低造价。
4.2 纵坡及坡长设计
(3) 四级公路位于海拔2 000m以上或积雪冰冻地区的 路段,最大纵坡不应大于8%。 (4)对桥上及桥头路线的最大纵坡:
小桥和涵洞处纵坡应按路线规定采用; 大、中桥上纵坡不宜大于4%。 隧道内纵坡不应大于3%。
4.2 纵坡及坡长设计 4.2.3 高原纵坡折减
高原为什么纵坡要折减?
路线纵断面图构成:
第四章纵断面设计
若竖曲线长度过短,汽车行驶过竖曲线的时间也很短,会使驾驶员产生变坡很 急的错觉,乘客也会感觉不舒适。应限制汽车在竖曲线上的行驶时间不过短,即限 制竖曲线的最小长度。应满足3秒行程。
四、竖曲线半径选取
(1)尽可能取大半径,一般应大于一般最小半径,只在特殊困难地段才能采用 极限最小半径。
纵断面上两个坡段的转折处,为了便于行车用一段曲线来缓和,称为竖曲线。 竖曲线的形式可采用抛物线或圆曲线,在使用范围二者几乎没有差别。但抛物线在计 算上比圆曲线方便,因此设计中一般采用二次抛物线。
一、竖曲线要素的计算公式
i2,设它变们坡的点代相数临差用两纵坡表坡示度,分即别,为i1和i2 i1 当 为“+”时,表示凹形竖曲线;
经济性的控制点:山区 道路还有根据路基填挖平衡 控制路中心填挖值的标高点 。如图4-16。
⑶.试坡:以“控制点” 为依据,照顾多数“经济点 ”的原则,在这些点位间进 行穿插于取直,试定出若干 直坡线。(初定坡度线)
⑷.调整坡度线:检查各种指标的利用情况,对初定坡度线进行调整。如:最大纵坡 、最小纵坡、坡长限制、合成坡度、桥隧位置的坡度限制、交叉口限制、净空、平纵 线形组合等。
120 100 80 60 100 60 80 40 60 30 40 20
最大纵坡(%)
3
4 55 4 6 5 7 6 8 6 9
对桥上及桥头路线的最大纵坡: 大、中桥上纵坡不宜大于4%,紧接大、中桥桥头两端的引道纵坡应与桥上纵
坡相同。小桥涵不做特殊要求。 隧道部分路线纵坡:
隧道内纵坡不应大于3%,但短于50m的隧道其纵坡不受此限制;
段为设加宽、超高前的路基边缘标高。
⑵. 改建公路:一般按新建公路处理,也可视具体情况采用中线标高。
第四章施工放样数据的计算 (1)
线路圆曲线段平面坐标计算 1、计算中桩坐标
OR
F
L
ZY
ZY→F的平距p
和方位角α
线路圆曲线段平面坐标计算 1、计算中桩坐标
O
R RδδpL
F
δ
ZY
δ = l (弧度) 2R
P = 2R sin δ
JD
线路圆曲线段平面坐标计算
2、计算边桩坐标
切线方向
O
d左
R
RδδpL
δ
F 2δ
δ = l (弧度) 2R
左边桩5m 右边桩12m
K0+300 44933.570 80423.075 44933.827 80418.082
K0+600 45233.174 80438.487 45232.557 80450.472
线路直线段平面坐标计算 用AutoCAD画图进行计算 坐标系统如何处理?
测量上采用的平面直角坐标与数学上的 基本相似,但坐标轴互换,象限顺序相反。 数学中的公式可直接应用到测量计算中去。
数学平面直角坐标系
测量平面直角坐标系
4
线路直线段平面坐标计算
用AutoCAD画图进行计算
步骤: n将各点位x坐标与y坐标互换 n精确按坐标进行画图 n查询各点位坐标 n恢复原状:将结果x坐标与y坐标互换
线路直线段平面坐标计算
作业:
已知线路K0+000~K0+654.235处于直线 段,起点K0+000的坐标为 (44633.966,80407.663),终点坐标 为(45287.3372,80441.2738)计算整 百米桩中桩、左侧20m、右侧15m的桩位 坐标。
计算内容 n线路中桩 n线路边桩
纵断面设计PPT
(2)容许速度
V2称为容许速度,不同等级的道路容许速度应不同,其值一般 不小于设计速度的1/2~2/3(高速路取低限,低速路取高限)。
(3)不限长度的最大纵坡确定
根据V2可得D2,则
i2 D2 f
(六)最大纵坡
1.定义
指在纵坡设计时各级道路允许采用的最大坡度值。
2.作用
是道路纵断面设计的重要控制指标。在地形起伏较大地区, 直接影响路线的长短、使用质量、运输成本及造价。
(2)最小纵坡
应设置不小于0.3%的纵坡(一般情况下以采用不小于0.5%为 宜)。对于干旱地区,以及横向排水良好、不产生路面积水的路 段,也可不受此最小纵坡的限制。 高速公路的路面排水一般采用集中排水的方式,其直坡段或 半径大于不设超高最小半径的路堤路段的最小纵坡仍应不小于 0.3%。 在弯道超高渐变段上,当行车道外侧边缘的纵坡与超高附加 坡度(即超高渐弯率)方向相反时,设计最小纵坡不宜小于 ( )。
3). 合成坡度指标的控制作用 : n 控制陡坡与急弯的重合; n 平坡与设超高平曲线的配合问题。
n
当陡坡与小半径平曲线重合时,在条件许可的情
况下,以采用较小的合成坡度为宜。
特别是下述情况,其合成坡度必须小于8%。 ①在冬季路面有积雪结冰的地区; ②自然横坡较陡峻的傍山路段; ③非汽车交通比率高的路段。
n
n
(1)滚动阻力
滚动阻力与汽车的总重力成正比,若坡道倾角为α 时,其值可用下式计算。 n Rf=Gfcosα n 由于坡道倾角α一般较小,认为cosα≈1,则 n Rf=Gf (N) n式中:R ——滚动阻力(N); f n G——车辆总重力(N); n f—— 滚动阻力系数,它与路面类型、轮胎结 构和行驶速度等有关,一般应由试验确定,在一定类 型的轮胎和一定车速范围内,可视为只和路面状况有 关的常数,见表3-4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三) 直线与纵断面的组合
在平坦地区,宜出现平面的长直线与纵面的 直坡线相配合,这对双车道道路超车较为方便。 但距离过长时,行车单独乏味,易疲劳,宜发生 交通事故。这时,可采用一次变坡的平、纵组合, 其中以包括一条凸形竖曲线为最好,而包括一条 凹形竖曲线次之。
直线中短距离内两次以上变坡是较差的组合, 会形成反复凸凹的“驼峰”和“凹陷”,看上去 既不美观也不连贯,宜使驾驶员的视线中断。因 此,只要路线有起伏,就不要一味采用直线,最 好使平面曲线随纵坡的变化略加转折,把平曲线 与竖曲线合理地组合。
2、
3、 选择组合得当的合成坡度,以利于路面排水 和行车安全。 4、 注意与周围环境相配合。如配合得好,可以 减轻驾驶员的疲劳和紧张程度,并可起到引导 视线的作用。
(二)平曲线与竖曲线的组合
1、平曲线与竖曲线应相互重合,且平曲线应 稍长于竖曲线 这种组合是使平曲线与竖曲线对应,最好 使竖曲线的起点和终点分别放在平曲线的两个 缓和曲线内,即所谓的“平包竖”。
1、视觉分析的意义 道路设计除应考虑自然条件、汽车行驶特 性以外,还要驾驶人员在心理和视觉上的反应 作为重要因素来考虑。汽车在道路上行驶时, 道路的线形、周围的景观、标志以及其它有关 信息,几乎都是通过驾驶人员的视觉感受到的。 因此,视觉是连接道路与汽车驾驶的重要媒介。
视觉分析具有如下意义:
保证道路空间线形的顺适性; 保证道路与周围环境的协调性; 保证行车的安全性;
ቤተ መጻሕፍቲ ባይዱ五节纵断面设计方法及纵断面图
一
、纵断面设计要点
纵断面设计的主要内容是确定路线合适的标 高、各坡段的纵坡度和坡长,并设计竖曲线。其 基本要求是纵坡均匀平顺、起伏和缓、坡长和竖 曲线长短适当平面与纵面组合设计协调、以及填 挖平衡等,主要注意以下问题。
(一)关于纵坡极限值的运用
纵坡坡度应控制在最大纵坡与最小纵坡之 间。最大纵坡在设计时不可轻易采用,并应留 有余地。在特殊情况下,如越岭线为争取高度、 缩短路线长度或避开艰巨工程等,才可以有条 件地采用。一般来讲,纵坡缓些为好,但为了 路面和边沟排水,最小纵坡应不低于0.3%~0.5%。
(二) 关于坡长
坡长是指纵断面两变坡点之间的上坡距离, 坡长应在最短坡长与最大坡长限制之间选取。坡 长不宜过短,实践证明,坡长以不小于计算行车 速度9S的行程为宜。对连续起伏的路段,坡度应 尽量小,坡长和竖曲线应争取到最小极限值的一 倍或两倍以上,避免锯齿形的纵断面。但不应超 过最大坡长限制。
(三) 各种地形条件下的纵坡设计 1 、对于平原地形,注意保证最小填土高度和最 小纵坡的要求。 2 、对于微丘地形,其纵坡应均匀平缓,应避免 过分迁就地形而使路线连续起伏,并应注意纵坡 的顺适性,不产生突变。
00 0 3 R=
60m
R=∞
R=1000
R=∞
图4-12
2、平曲线与竖曲线大小应保持均衡
平曲线与竖曲线其中一方大而平缓,那 么另一方就不要形成多而小。一个长的平曲 线内有两个以上的竖曲线,或一个大的竖曲 线含有两个以上的平曲线,看上去都非常别 扭,如图4-13所示。根据德国的统计资料, 当平曲线半径小于1000m时,竖曲线半径大约 为平曲线半径的10~20倍为好。
3、暗、明弯与凸、凹竖曲线
暗弯与凸形竖曲线组合,以及明弯与凹形 竖曲线组合较为合理,且给人一种平顺舒适的 感觉。平曲线与竖曲线重合是一种理想的组合, 但由于地形等条件限制,这种组合并不是总能 争取得到的。如果平曲线的中点与竖曲线的顶 (底)点位臵错开距离不超过平曲线长度的四 分之一时,效果仍然令人满意。但是,如果错 位过大或大小不均衡,就会出现视觉效果很差 的线形。
T L 180 90 2 2
T2 902 E 2.03 2R 2 2000
竖曲线起点桩号=(K5+030.00)- 90 = K4+940.00 竖曲线终点桩号=(K5+030.00)+ 90 = K5+120.00
2.计算设计高程
K5+000.00:位于上半支 横距x1=5000.00 – 4940.00=60m 竖距 x12 602 (改正值) y1 2 R 2 2000 0.90
作业: 某二级公路一路段有三个变坡点,详细资料如下: 变坡点桩号 设计高程 竖曲线半径 K12+450 172.513 5000 +950 190.013 4000 K13+550 173.513 3000 试计算K12+700~K13+300段50m间隔的整桩号的设计高程 值。
保证视觉的连续性。
2.视觉与车速的动态规律
驾驶员的注意力集中程度随车速的增加而增加; 驾驶员的心理紧张程度随车速的增加而增加; 驾驶员的注意力集中点和视距随车速的增大而增 大,对一些细节开始变得模糊不清; 驾驶员的视角随车速的增大而减小,高速驾驶时 一无法顾及两侧景象了。
二、道路平 纵线形组合设计
竖距
x2 2 1602 y2 6.40 2 R 2 2000
切线高程 = 427.68 + 0.05×(5100.00 - 5030.00)
= 431.18m
设计高程 = 431.18 – 6.40 = 424.78m
K5+100.00:位于下半支
②按变坡点分界计算:
横距= 5120.00 – 5100.00 =20m
透视图有一般有路线概略透视图、包含适当地形及地物的全景透视 图和经过渲染处理的真实感的透视图,这些透视图的作用各不相同, 绘制的难易程度也不相同,随着计算机技术的发展,原本是很困难 的工作也可以很轻松地完成。
1、
路线概略透视图
这种透视图只绘出道路中心线和路基路面的边线,一 般有五根线,这种透视图绘制简单迅速,目前一般CAD 系统均应具备此功能,主要是在进行平、纵、横设计 时实时检查使用,虽然简单但可以有效解决平纵组合 方面的问题,所以线位透视图也成为高等级公路初步 设计中的重要的文件之一。
视觉要求的最小竖曲线半径值 计算行车速度 (km/h) 120 100 80 60 40 表 4-20 竖曲线半径(m) 凸形 20000 16000 12000 9000 3000 凹形 12000 10000 8000 6000 2000
(五) 关于相邻竖曲线的衔接 相邻两个同向竖曲线,特别是同向凹曲线之 间,如直坡段不长应合并为单曲线或复合曲线, 这样要求对行车是有利的。 相邻反向竖曲线之间,中间最好插入一段直 坡段,以使增重与减重和缓过渡。若两竖曲线半 径接近最小极限值时, 插入的直坡段至少应为 计算行车速度3S的行程。但当两竖曲线半径较大 时,亦可直接连接。
3、 应能提供视觉的多样性,力求与周围的风 景自然地融为一体。充分利用湖泊、树木、水坝、 桥梁、高烟窗、或在路旁设臵一些设施,以消除 单调感,并使道路与自然密切配合。
4 、必要时可采用修整、植草皮、种树等措施 改善景观。
5 、 有条件时进行综合绿化。
用透视图来检查线形设计及组合情况
透视图法是根据道路的平面线形、纵断面线形及道路的横断面设 计资料,绘制出驾驶人员在不同桩号处注视前方道路时映入眼帘的 透视图,以此来判断路线平纵线形是否协调,道路与景观的配合是 否适当,曲线之间的连接是否平顺,道路的走向是否清楚,通视条 件是否良好等。如果检查中发现线形有缺点时,应对设计作某些修 改,使施工后的道路空间线形达到较为完美的程度。
2、
全景透视图
如果将道路两侧的地形绘制出来,就形成了全景透视 图,不仅能反映道路线形的优劣,而且可以检查与周 围景观的配合情况,随着数字地形模型的应用,道路 全景透视图的绘制已经比较方便了,图为一公路的全 景透视图。
3、 真实感的透视图
这种透视图的制作难度较大,需要先建立模型, 再进行渲染而成,主要应用于方案评价和汇报, 图为一公路的具有真实感的透视图。
竖距
x 22 202 y2 0.10 2R 2 2000
切线高程 = 427.68 - 0.04×(5100.00 - 5030.00) = 424.88m 设计高程 = 424.88 – 0.10 = 424.78m
某条道路变坡点桩号为K25+460.00,高程为 780.72m, ,竖曲线半径5000m 。 (1)判断凸凹性; (2)计算竖曲线要素; (3)计算竖曲线起点、K25+400.00、 K25+460.00、K25+500.00、终点的设计高 程。
(四) 平、纵线形组合与景观的协调配合
平、纵线形组合设计必须是在充分与自然景 观相配合的基础上进行。否则,即使线形组合满 足所有规定也不一定是良好设计。特别是高速公 路、一级公路,其线形组合设计与自然景观相配 合尤为重要。
1 、应在道路的规划、选线、设计、施工全过程 中重视景观要求。如对风景旅游区、自然保护区、 名胜古迹区、文物保护区和其它特殊地区等,一 般以绕避为主。 2 、尽量少破坏自然景观,避免深挖高填。比如, 对沿线的地貌、树林、池塘、湖泊等要少破坏; 对填挖路段,在横断面设计时要使边坡造型和绿 化与现有景观相适应,祢补由于填挖对自然景观 的破坏。
道路勘测设计
[ 例 4-3] :某山岭区一般二级公路,变坡点桩号为 k5+030.00 , 高程H1=427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。 试计算竖曲线诸要素以及桩号为 k5+000.00 和 k5+100.00 处的 设计高程。
解:1.计算竖曲线要素 ω=i2- i1= - 0.04-0.05= - 0.09<0,为凸形。 曲线长 L = Rω=2000×0.09=180m 切线长 外 距