(完整版)STM32F103通用教程
在KeiluVision4MDK下配置开发STM32F103Z完整教程
在KeiluVision4MDK下配置开发STM32F103Z完整教程环境搭建:1、安装 Keil uVision4 MDK略2、安装 J-Link安装 Setup_JLinkARM_V4501.exe 驱动时,会弹出【SEGGER J-Link DLL Updater V4.501 】对话框,不要选择 Keil 直接点击OK即可,因为Keil对⽀持M3内核SW接⼝采⽤了JL2CM3.dll 这个⽂件,该⽂件的版本号是和该⽬录下Jlink驱动版本号配套的,不要擅⾃改变他们,否则不能使⽤。
建⽴⼯程:1、在桌⾯上建⽴⼀个⽂件夹【MyStm32】⽂件夹2、在【MyStm32】⽂件夹下建⽴【USER】、【FWlib】、【CMSIS】、【Output】、【Listing】⽂件夹。
【USER】:存放⽤户⾃定义的应⽤程序【FWlib】:存放库⽂件【CMSIS】:存放M3系列单⽚机通⽤的⽂件【Output】:存放编译器编译后输出的⽂件【Listing】:编译器编译过程中产⽣的⽂件3、将STM32F10x_StdPeriph_Lib_V3.5.0\Libraries\STM32F10x_StdPeriph_Driver 的【inc】跟【src】这两个⽂件夹拷贝到【FWlib】。
【inc】、【src】⽚上外设驱动的源⽂件和头⽂件。
4、\STM32F10x_StdPeriph_Lib_V3.5.0\Project\STM32F10x_StdPeriph_Template 下的main.c、stm32f10x_conf.h、stm32f10x_it.h、stm32f10x_it.c 、system_stm32f10x.c 拷贝到【USER】stm32f10x_conf.h:配置⽂件stm32f10x_it.h、stm32f10x_it.c:中断函数⽂件。
system_stm32f10x.c:ARM公司提供的符合CMSIS标准的库⽂件5、STM32F10x_StdPeriph_Lib_V3.5.0\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F10x\startup的【arm】⽂件夹的拷贝到 MyStm32\CMSIS\startup。
野火STM32F103-MINI开发板用户手册
第1章整板硬件测试本章针对第一次使用本产品的用户,讲解如何对开发板进行首次开机测试。
我们所有出厂的开发板均烧录有程序且已测试,收到板子后您也可直接使用这个程序重新测试。
图 1-1 秉火F103-MINI开发板整体外观1.1 开机测试为简便起见,初次使用,不外接任何扩展模块,只要确认开发板带有液晶屏即可。
(1)使用USB线连接开发板与电脑。
开发板左侧有两个Mini USB接口,注意这里我们要接的是靠上的那个标有“USB 转串口”的接口。
(2)连接好后打开电源开关,板子左下角的红色电源指示灯亮,稍等片刻,液晶屏亮起,显示GUI界面。
图 1-2接上电源线,打开电源开关图 1-3 开机后的液晶界面截图进入主界面后,说明开发板功能正常,您可随意尝试打开各个APP,自行把玩。
当然,有很多APP是需要扩展硬件模块才可以正常使用的,所以打开后提示错误请放心,并不是开发板的问题,只是板子没有连接支持该APP的硬件模块。
特别地,其中的“USB”应用是没有实现功能的,仅为了对齐桌面的图标,用户可片自行编程增加应用功能。
可能遇到的简单故障排查:(1)打开开关后电源灯不亮。
❑检查USB线连接。
❑重复多次打开电源开关。
❑更换USB线。
❑把USB线接到另一个标有“USB Device”的接口。
(2)电源灯亮,液晶屏无现象或显示的不是以上截图的界面。
❑可能是液晶屏接触不良,把液晶屏拆下来,重新接上。
❑确认没有自行给开发板下载过其它程序,若下载过其它程序,请重新给开发板下载配套资料里的出厂测试程序。
❑使用万用表检查USB线供电的电压,在4.2-5.5V 范围可认为电压正常。
若遇到问题无法解决,请联系我们。
1.2 APP使用说明在主界面下,点击APP的图标即可运行,而在APP界面下触摸开发板的“电容按键”可返回主界面,同时蜂鸣器会响一下,也可直接点击APP右上方的“x”返回主界面。
下面对各个APP的使用方式进行说明。
1.LED点击主界面图标可打开LED应用界面,见图 1-4。
stm32f103中文手册[13]
stm32f103中文手册一、概述高性能的ARM 32位Cortex-M3CPU,主频可达72MHz,具有单周期乘法和硬件除法指令,支持嵌套向量中断控制器(NVIC)和嵌入式跟踪宏单元(ETM)。
高密度的存储器资源,包括64KB至512KB的闪存,20KB至64KB的SR AM,以及可选的2KB的备份SRAM。
丰富的外设资源,包括12个通用定时器,2个高级定时器,3个同步串行接口(SPI),2个I2C接口,5个USART接口,1个USB全速设备接口,1个CAN接口,2个DAC转换器,2个12位ADC转换器,以及多达80个G PIO引脚。
灵活的时钟控制系统,支持4种内部时钟源和4种外部时钟源,以及多种预分频器和倍频器。
低功耗模式,包括睡眠模式、停止模式和待机模式,以及电压监测和温度传感器功能。
先进的调试和编程功能,支持JTAG和SWD接口,以及串行线调试(SWV)和串行线跟踪(SWO)功能。
二、引脚定义stm32f103的引脚定义如下图所示:![stm32f103引脚图](^4^)其中:VDDA和VSSA分别为模拟电源正负极。
VDD和VSS分别为数字电源正负极。
NRST为复位引脚。
BOOT0和BOOT1为启动模式选择引脚。
PA0至PA15为端口A的16个GPIO引脚。
PB0至PB15为端口B的16个GPIO引脚。
PC0至PC15为端口C的16个GPIO引脚。
PD0至PD15为端口D的16个GPIO引脚(仅144引脚封装有)。
PE0至PE15为端口E的16个GPIO引脚(仅144引脚封装有)。
OSC_IN和OSC_OUT为外部晶振输入输出引脚。
JTMS/SWDIO、JTCK/SWCLK、JTDI、JTDO/TRACESWO、JNTRST分别为JTAG/SWD接口的5个信号线。
PB6/PB7/PB8/PB9/PB10/PB11分别可作为I2C1/I2C2接口的SCL/SDA 信号线。
PA4/PA5/PA6/PA7/PB12/PB13/PB14/PB15分别可作为SPI1/SPI2接口的NSS/SCK/MISO/MOSI信号线。
STM32F103编程入门
STM32F103单片机编程入门一款单片机入门,至少四样:时钟、端口、定时、串口、中断。
系统时钟RCC系统内部有8M_RC晶振和32678Hz_RC晶振有大约2%的温飘。
当外部有8M晶振时,自动选择外部晶振,失效时自动切换成内部。
程序自动倍频成72M。
如果用于通信最好加个外部晶振。
判断是否使用外部晶振的方法:短接外部晶振引脚观察工作情况。
分为两个桥,对应不同的外设,每个外设又可以单独设定时钟。
初步学习,先不用单独设定,均选用系统时钟72M。
可根据情况做一步分频。
用到某外设时,配置RCC(打开外设时钟),一般只有一句指令。
一般临时查找。
呵呵,我也没找到好办法。
GPIO:RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE);USART:RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);Timer2:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE);端口GPIO端口配置思路:1,先定义一个结构体配置成员参数值,类型是GPIO_InitTypeDef,下划线是结构体名;结构体名是GPIO_InitStructure:名称可以自定义。
在后面利用参数初始化函数时要一致。
2,打开相对应的端口时钟RCC。
3,声明要配置的管脚,可以用“|”复选4,配置模式,4种输入,4种输出5,配置管脚频率,一般都是50Mhz6,最后调用函数GPIO_Init(GPIOA, &GPIO_InitStructure);第2个参数是,结构体地址指针。
Eg:GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;GPIO_InitStructure.GPIO_Mode =GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOC, &GPIO_InitStructure);一、串口USART串口配置思路:1,定义结构体,类型是USART_InitTypeDef;2,打开串口时钟,可以选择和端口GPIO一起3,设置波特率,—————省去了复杂的烦人的计算4,设置字长。
stm32f103标准库例程
stm32f103标准库例程一、概述本文档旨在为STM32F103标准库的使用者提供一个完整的例程,帮助初学者快速了解和掌握STM32F103标准库的使用方法。
本例程涵盖了STM32F103标准库的基本概念、常用外设的使用方法以及代码编写规范。
STM32F103标准库是STMicroelectronics公司为STM32F103系列微控制器提供的软件开发库。
该库提供了一系列的嵌入式软件工具和API,简化了STM32F103系列微控制器的软件开发过程,缩短了开发周期。
三、例程内容1. 外设配置及初始化在编写代码之前,需要对STM32F103标准库所支持的外设进行配置和初始化。
本例程将介绍如何配置和初始化常用的外设,如GPIO、UART、SPI、I2C等。
2. 代码编写规范为了提高代码的可读性和可维护性,本例程将介绍STM32F103标准库的代码编写规范,包括变量命名规则、注释规范、代码缩进和排版等。
3. 常用函数示例本例程将提供一些常用的函数示例,包括GPIO输出、UART发送和接收、SPI 传输、I2C通信等。
这些示例代码将帮助您更好地理解如何使用STM32F103标准库。
4. 串口通信示例本例程将提供一个串口通信的示例代码,包括串口初始化、数据发送和接收等操作。
通过这个示例,您可以了解如何使用STM32F103标准库实现串口通信功能。
四、代码示例以下是一个简单的STM32F103标准库代码示例,用于控制LED灯的闪烁:```c#include "stm32f10x.h"#include "stm32f10x_std_lib.h"void LED_Init(void) {GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);}void main(void) {LED_Init();while(1) {GPIO_SetBits(GPIOA, GPIO_Pin_0); // 亮起LED灯delay(500); // 延时500msGPIO_ResetBits(GPIOA, GPIO_Pin_0); // 熄灭LED灯delay(500); // 延时500ms}}```五、总结本文档为STM32F103标准库提供了一个完整的例程,涵盖了外设配置及初始化、代码编写规范、常用函数示例以及串口通信示例等内容。
(完整版)STM32F103通用教程
STM32F103_使用心得IO端口输入输出模式设置:...........;Delay延时函数:..............;IO端口使用总结:...............;IO口时钟配置:................;初始化IO口参数:...............;注意:时钟使能之后操作IO口才有效!......;IO端口输出高低电平函数:...........;IO的输入IO端口输入输出模式设置: (1)Delay延时函数: (2)IO端口使用总结: (2)IO口时钟配置: (2)初始化IO口参数: (2)注意:时钟使能之后操作IO口才有效! (2)IO端口输出高低电平函数: (2)IO的输入和输出宏定义方式: (3)读取某个IO的电平函数: (3)IO口方向切换成双向 (3)IO 口外部中断的一般步骤: (3)内部ADC使用总结: (4)LCDTFT函数使用大全 (5)TFTLCD使用注意点: (5)IO端口宏定义和使用方法: (6)Keil使用心得: (6)ucGUI移植 (6)DDS AD9850测试程序: (6)ADC 使用小结: (7)ADC测试程序: (9)DAC—tlv5638测试程序 (9)红外测试程序: (9)DMA使用心得: (9)通用定时器使用: (9)BUG发现: (10)编程总结: (10)时钟总结: (10)汉字显示(外部SD卡字库): (11)字符、汉字显示(内部FLASH) (12)图片显示: (16)触摸屏: (17)引脚连接: (19)IO端口输入输出模式设置:Delay延时函数:delay_ms(u16 nms);delay_us(u32 nus);IO端口使用总结:1)使能IO 口时钟。
调用函数为RCC_APB2PeriphClockCmd()。
2)初始化IO 参数。
调用函数GPIO_Init();3)操作IO。
IO口时钟配置:RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);初始化IO口参数:注意:时钟使能之后操作IO口才有效!GPIO_InitTypeDefGPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); //上拉输入GPIO_InitTypeDefGPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //LED0-->PA.8 端口配置 //推挽输出技巧:如果为同一端口的不同引脚,可以使用或运算,如GPIO_InitStructure.GPIO_Pin =GPIO_Pin_13|GPIO_Pin_15;IO端口输出高低电平函数:GPIO_SetBits(GPIOA,GPIO_Pin_8|GPIO_Pin_9); //PA.8 输出高GPIO_ResetBits(GPIOA,GPIO_Pin_8);GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitActionBitVal);//可以输出1,也可以输出0GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);//整体输出一个值IO的输入和输出宏定义方式:#define DATAOUT(x) GPIOB->ODR=x; //数据输出#define DATAIN GPIOB->IDR; //数据输入#define DATAOUT(DataValue){GPIO_Write(GPIOB,(GPIO_ReadOutputData(GPIOB)&0xff00)|(DataValu e&0x00FF));} //PB0~7,作为数据线读取某个IO的电平函数:(一) 读出一个IO口电平GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)#define KEY0 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_13) //PA13#define KEY1 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_15) //PA15#define KEY2 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)(二) 读出某个IO口的全部电平GPIO_ReadInputData(GPIOC)IO口方向切换成双向IIC里面的一个实例#define SDA_IN() {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=8<<12;} //PC12#define SDA_OUT() {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=3<<12;}IO 口外部中断的一般步骤:1)初始化IO 口为输入。
stm32f103中文手册[7]
stm32f103中文手册1. 概述stm32f103是一款高性能、低功耗、高集成度的32位微控制器,基于ARM Cortex-M3内核,支持Thumb-2指令集,具有72MHz的主频和64KB至512KB的闪存。
stm32f103具有丰富的外设资源,包括多种通信接口、定时器、模数转换器、DMA控制器、触摸感应控制器等,能够满足各种复杂的应用需求。
stm32f103还具有多种低功耗模式,能够实现动态电源管理,降低系统功耗。
stm32f1 03采用多种封装形式,适用于不同的应用场合。
2. 引脚定义stm32f103的引脚定义如图1所示。
stm32f103的引脚分为四类:电源引脚、复位引脚、晶振引脚和功能引脚。
电源引脚包括VDD、VSS、V DDA和VSSA,分别提供数字电源、数字地、模拟电源和模拟地。
复位引脚包括NRST和BOOT0,分别用于复位芯片和选择启动模式。
晶振引脚包括OSC_IN和OSC_OUT,分别连接外部晶振的输入和输出端。
功能引脚包括多达80个可编程的通用输入输出(GPIO)引脚,以及一些专用功能引脚,如JTAG/SWD调试接口、USB接口等。
![图1 stm32f103引脚定义](^4^)图1 stm32f103引脚定义3. 系统架构ARM Cortex-M3内核:是stm32f103的核心部分,负责执行程序指令,处理数据和中断等。
存储器:包括闪存(Flash)、静态随机存储器(SRAM)和备份寄存器(Backupregisters),分别用于存储程序代码、数据和备份数据等。
外设总线:包括总线矩阵(Bus matrix)、总线桥(Bus bridge)和外设总线(Peripheralbus),分别用于连接内核、存储器和外设等。
时钟和复位控制:包括时钟树(Clocktree)、复位控制器(Reset controller)和电源管理单元(Power managementunit),分别用于提供时钟信号、复位信号和电源管理等。
STM32F103中文教程及参考手册
时钟控制寄存器(RCC_CR) ---------------------------------------------------------42 时钟配置寄存器(RCC_CFGR) -----------------------------------------------------43 时钟中断寄存器 (RCC_CIR) -------------------------------------------------------46 APB2 外设复位寄存器 (RCC_APB2RSTR) -------------------------------------48 APB1 外设复位寄存器 (RCC_APB1RSTR) -------------------------------------50 AHB外设时钟使能寄存器 (RCC_AHBENR) -----------------------------------52 APB2 外设时钟使能寄存器(RCC_APB2ENR) ---------------------------------53 APB1 外设时钟使能寄存器(RCC_APB1ENR) ---------------------------------54 备份域控制寄存器 (RCC_BDCR) -------------------------------------------------56 控制/状态寄存器 (RCC_CSR)------------------------------------------------------57
3.3
低功耗模式 --------------------------------------------------------------------------------- 26
stm32f103中文手册[14]
stm32f103中文手册一、概述stm32f103c8/cb:64KB或者128KB闪存,20KBSRAM,48引脚或者64引脚LQFP封装。
stm32f103r8/rb:64KB或者128KB闪存,20KBSRAM,64引脚LQFP封装。
stm32f103v8/vb:64KB或者128KB闪存,20KBSRAM,100引脚LQFP封装。
stm32f103rc/rd/re:256KB或者384KB或者512KB闪存,48KB或者64KB SRAM,64引脚或者100引脚LQFP封装。
stm32f103vc/vd/ve:256KB或者384KB或者512KB闪存,48KB或者64KB SRAM,100引脚或者144引脚LQFP封装。
stm32f103zc/zd/ze:256KB或者384KB或者512KB闪存,48KB或者64KB SRAM,144引脚LQFP封装。
stm32f103的主要特性如下:72MHz的主频,1.25 DMIPS/MHz的性能。
从32KB到512KB的闪存容量,从20KB到64KB的SRAM容量。
从37到112个GPIO引脚,支持多种工作模式和中断功能。
从3到7个定时器,支持多种工作模式和中断功能。
从2到3个12位ADC,支持多种触发模式和DMA传输功能。
从2到3个SPI接口,支持全双工和单向通信模式。
从2到3个I2C接口,支持标准模式和快速模式。
从3到5个USART接口,支持同步和异步通信模式。
一个USB 2.0全速设备接口,支持12Mbps的数据传输速率。
一个CAN 2.0B接口,支持标准帧和扩展帧格式。
一个SDIO接口,支持SD卡和MMC卡的读写操作。
一个RTC实时时钟模块,支持日历功能和闹钟功能。
一个CRC循环冗余校验模块,支持多种多项式计算方式。
多种低功耗模式,包括睡眠模式、住手模式和待机模式。
多种时钟源选择,包括内部RC振荡器、外部晶振、PLL锁相环等。
多种复位源选择,包括电源复位、软件复位、看门狗复位等。
STM32f103寄存器说明书
CRC寄存器(一种算法,用以确认发送过程中是否出错)数据寄存器:CRC_DR可读写,复位值:0xFFFF FFFF;独立数据寄存器:CRC_IDR临时存放任何8位数据;控制寄存器:CRC_CR只零位可用,用于复位CRC,对其写1复位,由硬件清零;PWR电源控制(控制和管理电源)电源控制寄存器:PWR_CR控制选择系统的电源电源控制/状态寄存器:PWR_CSR睡眠或待机模式电源控制BKP备份寄存器(用以控制和管理备份数据)备份数据寄存器x:BKP_DRx (x = 1 … 10) 10个16位数据寄存器用以存储用户数据RTC时钟校准寄存器:BKP_RTCCR控制实时时钟的运行备份控制寄存器:BKP_CR控制选择清除备份数据的类型备份控制/状态寄存器:BKP_CSR对侵入事件的控制RCC寄存器(时钟的选择、复位、分频)时钟控制寄存器(RCC_CR)各时钟状态显示时钟配置寄存器(RCC_CFGR)时钟分频时钟中断寄存器(RCC_CIR)控制就绪中断使能与否APB2外设复位寄存器(RCC_APB2RSTR) APB1外设复位寄存器(RCC_APB1RSTR) 复位APB各功能寄存器AHB外设时钟使能寄存器(RCC_AHBENR) AHB时钟使能控制APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设时钟使能寄存器(RCC_APB1ENR) APB1时钟使能控制备份域控制寄存器(RCC_BDCR)备份域时钟控制控制/状态寄存器(RCC_CSR)复位标志寄存器AHB外设时钟复位寄存器(RCC_AHBRSTR) 复位以太网MAC模块时钟配置寄存器2(RCC_CFGR2)时钟选择与分频GPIO寄存器(设置端口的功能)端口配置低寄存器(GPIOx_CRL) (x=A..E)端口配置高寄存器(GPIOx_CRH) (x=A..E)端口输入数据寄存器(GPIOx_IDR) (x=A..E)只读数据,读出IO口的状态端口输出数据寄存器(GPIOx_ODR) (x=A..E) 可读可写端口位设置/清除寄存器(GPIOx_BSRR) (x=A..E)端口位清除寄存器(GPIOx_BRR) (x=A..E)将某一端口清零端口配置锁定寄存器(GPIOx_LCKR) (x=A..E) 用于保护端口配值AFIO寄存器(将端口重映射到其它端口用以端口的第二功能)事件控制寄存器(AFIO_EVCR)选择时间输出端口与引脚复用重映射和调试I/O配置寄存器(AFIO_MAPR) 各寄存器功能引脚重映射选择外部中断配置寄存器1(AFIO_EXTICR1)外部中断配置寄存器2(AFIO_EXTICR2)外部中断配置寄存器3(AFIO_EXTICR3) 外部中断配置寄存器4(AFIO_EXTICR4) 外部中断引脚重映射选择EXTI 寄存器(外部中断控制器)中断屏蔽寄存器(EXTI_IMR)用于屏蔽或开放某一引脚的中断请求事件屏蔽寄存器(EXTI_EMR)用于屏蔽或开放某一引脚的事件上升沿触发选择寄存器(EXTI_RTSR) 禁止或允许某一引脚的上升沿触发下降沿触发选择寄存器(EXTI_FTSR) 禁止或允许某一引脚的下降沿触发软件中断事件寄存器(EXTI_SWIER) 控制某引脚的软件中断挂起寄存器(EXTI_PR)显示某线的引脚有无触发请求DMA寄存器(脱离cpu的传输模式)DMA中断状态寄存器(DMA_ISR)中断情况标志器DMA中断标志清除寄存器(DMA_IFCR) 手动清除标志位DMA通道x配置寄存器(DMA_CCRx)(x = 1…7)传输控制寄存器DMA通道x传输数量寄存器(DMA_CNDTRx)(x = 1…7)数据传输剩余数量存储器DMA通道x外设地址寄存器(DMA_CPARx)(x = 1…7)设置数据传输外设源或目标地址DMA通道x存储器地址寄存器(DMA_CMARx)(x = 1…7)设置存储器地址ADC寄存器(模数转换器)ADC状态寄存器(ADC_SR)AD转换标志寄存器ADC控制寄存器1(ADC_CR1)ADC控制寄存器2(ADC_CR2)设置AD转换的各种功能ADC采样时间寄存器1(ADC_SMPR1)ADC采样时间寄存器2(ADC_SMPR2)某通道选择固定的采样时间ADC注入通道数据偏移寄存器x (ADC_JOFRx)(x=1..4) 设置数据偏移量ADC看门狗高阀值寄存器(ADC_HTR)设置模拟看门狗的阀值高限ADC看门狗低阀值寄存器(ADC_LRT)设置模拟看门狗的阀值低限ADC规则序列寄存器1(ADC_SQR1)ADC规则序列寄存器2(ADC_SQR2)ADC规则序列寄存器3(ADC_SQR3)设置ADC顺序ADC注入序列寄存器(ADC_JSQR)ADC 注入数据寄存器x (ADC_JDRx) (x= 1..4)ADC数据结果寄存器ADC规则数据寄存器(ADC_DR)DAC寄存器(数模转换器)DAC控制寄存器(DAC_CR)DAC软件触发寄存器(DAC_SWTRIGR)DAC通道1的12位右对齐数据保持寄存器(DAC_DHR12R1) DAC通道1的12位左对齐数据保持寄存器(DAC_DHR12L1) DAC通道1的8位右对齐数据保持寄存器(DAC_DHR8R1) DAC通道2的12位右对齐数据保持寄存器(DAC_DHR12R2) DAC通道2的12位左对齐数据保持寄存器(DAC_DHR12L2) DAC通道2的8位右对齐数据保持寄存器(DAC_DHR8R2)双DAC的12位右对齐数据保持寄存器(DAC_DHR12RD)双DAC的12位左对齐数据保持寄存器(DAC_DHR12LD)双DAC的8位右对齐数据保持寄存器(DAC_DHR8RD) DAC通道1数据输出寄存器(DAC_DOR1)DAC通道2数据输出寄存器(DAC_DOR2)TIM1和TIM8寄存器(高级的定时计数寄存器)TIM1和TIM8控制寄存器1(TIMx_CR1)TIM1和TIM8控制寄存器2(TIMx_CR2)TIM1和TIM8从模式控制寄存器(TIMx_SMCR)TIM1和TIM8 DMA/中断使能寄存器(TIMx_DIER) TIM1和TIM8状态寄存器(TIMx_SR)TIM1和TIM8事件产生寄存器(TIMx_EGR)TIM1和TIM8捕获/比较模式寄存器1(TIMx_CCMR1) TIM1和TIM8捕获/比较模式寄存器2(TIMx_CCMR2) TIM1和TIM8捕获/比较使能寄存器(TIMx_CCER) TIM1和TIM8计数器(TIMx_CNT)TIM1和TIM8预分频器(TIMx_PSC)TIM1和TIM8自动重装载寄存器(TIMx_ARR)TIM1和TIM8重复计数寄存器(TIMx_RCR)TIM1和TIM8捕获/比较寄存器1(TIMx_CCR1)TIM1和TIM8捕获/比较寄存器2(TIMx_CCR2)TIM1和TIM8捕获/比较寄存器3(TIMx_CCR3)TIM1和TIM8捕获/比较寄存器(TIMx_CCR4)TIM1和TIM8刹车和死区寄存器(TIMx_BDTR)TIM1和TIM8 DMA控制寄存器(TIMx_DCR)TIM1和TIM8连续模式的DMA地址(TIMx_DMAR)TIMx寄存器(控制定时器)控制寄存器1(TIMx_CR1)控制寄存器2(TIMx_CR2)从模式控制寄存器(TIMx_SMCR)DMA/中断使能寄存器(TIMx_DIER)状态寄存器(TIMx_SR)事件产生寄存器(TIMx_EGR)捕获/比较模式寄存器1(TIMx_CCMR1)捕获/比较模式寄存器2(TIMx_CCMR2)捕获/比较使能寄存器(TIMx_CCER)计数器(TIMx_CNT)预分频器(TIMx_PSC)自动重装载寄存器(TIMx_ARR)捕获/比较寄存器1(TIMx_CCR1)捕获/比较寄存器2(TIMx_CCR2)捕获/比较寄存器3(TIMx_CCR3)捕获/比较寄存器4(TIMx_CCR4)DMA控制寄存器(TIMx_DCR)连续模式的DMA地址(TIMx_DMAR)TIM6和TIM7寄存器(基本定时计数器)TIM6和TIM7控制寄存器1(TIMx_CR1)TIM6和TIM7控制寄存器2(TIMx_CR2)TIM6和TIM7 DMA/中断使能寄存器(TIMx_DIER)TIM6和TIM7状态寄存器(TIMx_SR)TIM6和TIM7事件产生寄存器(TIMx_EGR)TIM6和TIM7计数器(TIMx_CNT)TIM6和TIM7预分频器(TIMx_PSC)TIM6和TIM7自动重装载寄存器(TIMx_ARR)RTC寄存器(实时时钟)RTC控制寄存器高位(RTC_CRH)RTC控制寄存器低位(RTC_CRL)16.4.3 RTC预分频装载寄存器(RTC_PRLH/RTC_PRLL) 16.4.4 RTC预分频器余数寄存器(RTC_DIVH / RTC_DIVL)RTC计数器寄存器(RTC_CNTH / RTC_CNTL) 16.4.6 RTC闹钟寄存器(RTC_ALRH/RTC_ALRL)IWDG寄存器(独立看门狗,用以监督系统硬件的正常运行)键寄存器(IWDG_KR)预分频寄存器(IWDG_PR)重装载寄存器(IWDG_RLR)状态寄存器(IWDG_SR)窗口看门狗(WWDG)寄存器(用以监督软件的正常运行)控制寄存器(WWDG_CR)配置寄存器(WWDG_CFR)状态寄存器(WWDG_SR)FSMC寄存器(可变静态存储控制器)NOR闪存和PSRAM控制器寄存器SRAM/NOR闪存片选控制寄存器1…4 (FSMC_BCR1…4)SRAM/NOR闪存片选时序寄存器1…4 (FSMC_BTR1…4) SRAM/NOR闪存写时序寄存器1…4 (FSMC_BWTR1…4)NAND闪存和PC卡控制器寄存器PC卡/NAND闪存控制寄存器2..4 (FSMC_PCR2..4) FIFO状态和中断寄存器2..4 (FSMC_SR2..4)通用存储空间时序寄存器 2..4 (FSMC_PMEM2..4)属性存储空间时序寄存器 2..4 (FSMC_PATT2..4)I/O空间时序寄存器4 (FSMC_PIO4)ECC结果寄存器2/3 (FSMC_ECCR2/3)SDIO寄存器(数据传输控制器)SDIO电源控制寄存器(SDIO_POWER) SDIO时钟控制寄存器(SDIO_CLKCR) SDIO参数寄存器(SDIO_ARG)SDIO命令寄存器(SDIO_CMD)SDIO命令响应寄存器(SDIO_RESPCMD) SDIO响应1..4寄存器(SDIO_RESPx) SDIO数据定时器寄存器(SDIO_DTIMER) SDIO数据长度寄存器(SDIO_DLEN)SDIO数据控制寄存器(SDIO_DCTRL SDIO数据计数器寄存器(SDIO_DCOUNT) SDIO状态寄存器(SDIO_STA)SDIO清除中断寄存器(SDIO_ICR)SDIO中断屏蔽寄存器(SDIO_MASK)SDIO FIFO计数器寄存器(SDIO_FIFOCNT) SDIO数据FIFO寄存器(SDIO_FIFO)USB寄存器(usb传输控制器)通用寄存器USB控制寄存器(USB_CNTR)USB中断状态寄存器(USB_ISTR)USB帧编号寄存器(USB_FNR)USB设备地址寄存器(USB_DADDR)USB分组缓冲区描述表地址寄存器(USB_BTABLE)端点寄存器USB 端点n寄存器(USB_EPnR), n=[0..7]缓冲区寄存器发送缓冲区地址寄存器n(USB_ADDRn_TX)发送数据字节数寄存器n(USB_COUNTn_TX)接收缓冲区地址寄存器n(USB_ADDRn_RX)接收数据字节数寄存器n(USB_COUNTn_RX)CAN 寄存器(控制寄存器)CAN控制和状态寄存器CAN主控制寄存器(CAN_MCR)CAN主状态寄存器(CAN_MSR)CAN发送状态寄存器(CAN_TSR)CAN接收FIFO 0寄存器(CAN_RF0R)CAN接收FIFO 1寄存器(CAN_RF1R)CAN中断使能寄存器(CAN_IER)CAN错误状态寄存器(CAN_ESR)CAN位时序寄存器(CAN_BTR)CAN寄存器发送标识符寄存器(CAN_TIxR) (x=0..2)发送数据长度和时间戳寄存器(CAN_TDTxR) (x=0..2)发送低字节数据寄存器(CAN_TDLxR) (x=0..2)发送高字节数据寄存器(CAN_TDHxR) (x=0..2)接收FIFO标识符寄存器(CAN_RIxR) (x=0..1)接收FIFO数据长度和时间戳寄存器(CAN_RDTxR) (x=0..1)接收FIFO低字节数据寄存器(CAN_RDLxR) (x=0..1)接收FIFO高字节数据寄存器(CAN_RDHxR) (x=0..1)CAN过滤器寄存器CAN 过滤器主控寄存器(CAN_FMR)CAN 过滤器模式寄存器(CAN_FM1R)CAN 过滤器位宽寄存器(CAN_FS1R)CAN 过滤器FIFO关联寄存器(CAN_FFA1R)CAN 过滤器激活寄存器(CAN_FA1R)CAN 过滤器组i的寄存器x (CAN_FiRx) (互联产品中i=0..27,其它产品中i=0..13;x=1..2)SPI和I2S寄存器(串行外设接口控制器)SPI控制寄存器1(SPI_CR1)SPI控制寄存器2(SPI_CR2)SPI 状态寄存器(SPI_SR)SPI 数据寄存器(SPI_DR)SPI CRC多项式寄存器(SPI_CRCPR)SPI Rx CRC寄存器(SPI_RXCRCR)SPI Tx CRC寄存器(SPI_TXCRCR)SPI_I2S配置寄存器(SPI_I2S_CFGR)SPI_I2S预分频寄存器(SPI_I2SPR)I2C寄存器(数据传输寄存器)控制寄存器1(I2C_CR1)控制寄存器2(I2C_CR2)自身地址寄存器1(I2C_OAR1)自身地址寄存器2(I2C_OAR2)数据寄存器(I2C_DR)状态寄存器1(I2C_SR1)状态寄存器2 (I2C_SR2)时钟控制寄存器(I2C_CCR)TRISE寄存器(I2C_TRISE)USART寄存器(通用同步异步收发器)状态寄存器(USART_SR)数据寄存器(USART_DR)波特比率寄存器(USART_BRR)控制寄存器1(USART_CR1)控制寄存器2(USART_CR2)控制寄存器3(USART_CR3)保护时间和预分频寄存器(USART_GTPR)OTG_FS控制和状态寄存器(数据传输控制器)OTG_FS全局寄存器OTG_FS控制和状态寄存器(OTG_FS_GOTGCTL)OTG_FS中断寄存器(OTG_FS_GOTGINT)OTG_FS AHB配置寄存器(OTG_FS_GAHBCFG)OTG_FS_USB配置寄存器(OTG_FS_GUSBCFG)OTG_FS复位寄存器(OTG_FS_GRSTCTL)OTG_FS控制器中断寄存器(OTG_FS_GINTSTS)OTG_FS中断屏蔽寄存器(OTG_FS_GINTMSK)OTG_FS接收状态调试读/OTG状态读和POP寄存器(OTG_FS_GRXSTSR / OTG_FS_GRXSTSP)OTG_FS接收FIFO长度寄存器(OTG_FS_GRXFSIZ)OTG_FS非周期性TX FIFO长度寄存器(OTG_FS_GNPTXFSIZ)OTG_FS非周期性TX FIFO/请求队列状态寄存器(OTG_FS_GNPTXSTS)OTG_FS通用控制器配置寄存器(OTG_FS_GCCFG)OTG_FS控制器ID寄存器(OTG_FS_CID)OTG_FS主机周期性发送FIFO长度寄存器(OTG_FS_HPTXFSIZ)OTG_FS设备IN端点发送FIFO长度寄存器(OTG_FS_DIEPTXFx)(其中x是FIFO的编号,x=1…4)主机模式下的寄存器OTG_FS主机模式配置寄存器(OTG_FS_HCFG)OTG_FS主机帧间隔寄存器(OTG_FS_HFIR)OTG_FS主机帧号/帧时间剩余寄存器(OTG_FS_HFNUM)OTG_FS主机周期性发送FIFO/请求队列寄存器(OTG_FS_HPTXSTS)OTG_FS主机所有通道中断寄存器(OTG_FS_HAINT)OTG_FS主机所有通道中断屏蔽寄存器(OTG_FS_HAINTMSK)OTG_FS主机端口控制和状态寄存器(OTG_FS_HPRT)OTG_FS主机通道x特性寄存器(OTG_FS_HCCHARx)(此处x代码通道号,x = 0...7)OTG_FS主机通道x中断寄存器(OTG_FS_HCINTx)(其中x代表通道号,x=0...7,)OTG_FS主机通道x中断屏蔽寄存器(OTG_FS_HCINTMSKx)(其中x为通道号,x=0...7) OTG_FS主机通道x传输长度寄存器(OTG_FS_HCTSIZx)(其中x为通道号,x=0...7)设备模式下的寄存器OTG_FS设备配置寄存器(OTG_FS_DCFG)OTG_FS设备控制寄存器(OTG_FS_DCTL)OTG_FS设备状态寄存器(OTG_FS_DSTS)OTG_FS设备IN端点通用中断屏蔽寄存器(OTG_FS_DIEPMSK)OTG_FS设备OUT端点通用中断屏蔽寄存器(OTG_FS_DOEPMSK)OTG_FS设备所有端点中断寄存器(OTG_FS_DAINT)OTG_FS所有端点中断屏蔽寄存器(OTG_FS_DAINTMSK)OTG_FS设备V BUS放电时间寄存器(OTG_FS_DVBUSDIS)OTG_FS设备V BUS脉冲时间寄存器(OTG_FS_DVBUSPULSE)OTG_FS设备IN端点FIFO空中断屏蔽寄存器(OTG_FS_DIEPEMPMSK)OTG_FS设备控制IN端点0控制寄存器(OTG_FS_DIEPCTL0)OTG设备端点x控制寄存器(OTG_FS_DIEPCTLx)(其中x为端点号,x=1…3)OTG_FS设备控制OUT端点0控制寄存器(OTG_FS_DOEPCTL0)OTG_FS设备OUT端点x控制寄存器(OTG_FS_DOEPCTLx)(其中x为端点号,x=1…3) OTG_FS设备端点x中断寄存器(OTG_FS_DIEPINTx)(其中x为端点号,x=0…3)OTG_FS设备端点x中断寄存器(OTG_FS_DOEPINTx)(其中x为端点号,x=0…3)OTG_FS设备IN端点0传输长度寄存器(OTG_FS_DIEPTSIZ0)OTG_FS设备OUT端点0传输长度寄存器(OTG_FS_DOEPTSIZ0)OTG_FS设备端点x传输长度寄存器(OTG_FS_DIEPTSIZx)(其中x为端点号,x=1…3) OTG_FS设备IN端点传输FIFO状态寄存器(OTG-FS_DTXFSTSx)(其中x为端点号,x=0…3)OTG_FS设备端点x传输长度寄存器(OTG_FS_DOEPTSIZx)(其中x为端点号,x=1…3) OTG_FS电源和时钟门控寄存器(OTG_FS_PCGCCTL)以太网寄存器(通信传输控制器)MAC寄存器以太网MAC设置寄存器(ETH_MACCR)以太网MAC帧过滤器寄存器(ETH_MACFFR)以太网MAC Hash列表高寄存器(ETH_MACHTHR)以太网MAC Hash列表低寄存器(ETH_MACHTLR)以太网MAC MII地址寄存器(ETH_MACMIIAR)以太网MAC MII数据寄存器(ETH_MACMIIDR)以太网MAC流控寄存器(ETH_MACFCR)以太网MAC VLAN标签寄存器(ETH_MACVLANTR)以太网MAC远程唤醒帧过滤器寄存器(ETH_MACRWUFFR)以太网MAC PMT控制和状态寄存器(ETH_MACPMTCSR)以太网MAC中断状态寄存器(ETH_MACSR)以太网MAC中断屏蔽寄存器(ETH_MAIMR)以太网MAC地址0高寄存器(ETH_MACA0HR)以太网MAC地址0低寄存器(ETH_MACA0LR)以太网MAC地址1高寄存器(ETH_MACA1HR)以太网MAC地址1低寄存器(ETH_MACA1LR)以太网MAC地址2高寄存器(ETH_MACA2HR)以太网MAC地址2低寄存器(ETH_MACA2LR)以太网MAC地址3高寄存器(ETH_MACA3HR)以太网MAC地址3低寄存器(ETH_MACA3LR)MMC寄存器以太网MMC控制寄存器(ETH_MMCCR)以太网MMC接收中断寄存器(ETH_MMCRIR)以太网MMC发送中断寄存器(ETH_MMCTIR)以太网MMC接收中断屏蔽寄存器(ETH_MMCRIMR)以太网MMC发送中断屏蔽寄存器(ETH_MMCTIMR)以太网MMC1次冲突后发送”好”帧的计数器寄存器(ETH_MMCTGFSCCR)以太网MMC1次以上冲突后发送”好”帧的计数器寄存器(ETH_MMCTGFMSCCR)以太网MMC发送”好”帧的计数器寄存器(ETH_MMCTGFCR)以太网MMC CRC错误接收帧计数器寄存器(ETH_ MMCRFCECR)以太网MMC对齐错误接收帧计数器寄存器(ETH_ MMCRFAECR)以太网MMC接收帧”好”单播帧计数器寄存器(ETH_ MMCRGUFCR)27.8.3。
stm32f103中文手册
stm32f103中文手册第一章综述1.1 STM32F103系列微控制器概述1.2 STM32F103系列微控制器特性1.3 STM32F103系列微控制器产品线第二章存储器2.1 存储器映射2.2 Flash存储器2.3 系统存储器2.4 备份寄存器2.5 静态随机存取存储器(SRAM)第三章外设3.1 复位和时钟控制(RCC)3.2 独立看门狗(IWDG)3.3 窗口看门狗(WWDG)3.4 嵌套向量中断控制器(NVIC)3.5 系统定时器(SysTick)...第一章综述1.1 STM32F103系列微控制器概述STM32F103系列微控制器是基于ARM® Cortex®-M3内核的高性能、低功耗、增强型单片机。
它们提供了从64KB到512KB Flash存储器和从20KB到64KBSRAM存储器的不同容量选择。
它们还集成了丰富的外设资源,包括USB 、CAN、11个定时器、3个ADC、13个通讯接口等。
STM32F103系列微控制器采用了先进的90nmNVM工艺技术,具有出色的电源效率。
它们支持多种低功耗模式,包括停机模式、待机模式、睡眠模式和停止模式。
它们还支持动态电压调节和动态频率调节,以进一步降低功耗。
STM32F103系列微控制器具有高度灵活性和可扩展性。
它们支持多种封装类型,从36引脚到144引脚不等。
它们还支持多种内部和外部时钟源,包括高速内部振荡器(HSI)、低速内部振荡器(LSI)、高速外部振荡器(HSE)、低速外部振荡器(LSE)和相位锁定环(PLL)。
它们还支持多种外部存储器接口,包括NOR Flash、SRAM、NAND Flash、SDIO等。
1.2 STM32F103系列微控制器特性---特性 ---描述 -------:-----:---------内核 ---ARM® 32位 Cortex®-M3CPU,最高72MHz运行频率,单周期乘法和硬件除法,嵌套向量中断控制器(NVIC)和系统定时器(SysTick) -------存储器 ---64KB到512KB Flash存储器,20KB到64KBSRAM存储器,512字节备份寄存器,可选的2KB系统存储器 -------电源管理 ---1.65V到3.6V电源电压范围,7uA待机模式,36uA停机模式,动态电压调节和动态频率调节 -------外设 ---USB 2.0全速设备接口,CAN2.0B接口,11个通用定时器,3个高级定时器,3个12位ADC,2个DAC,13个通讯接口(3个USART、4个UART、2个I2C、3个SPI、1个I2S),CR C计算单元,96位唯一ID -------调试和编程 ---SWD和JTAG接口,支持串行线调试(SWD)和串行线跟踪(SWO),支持Flash编程和调试 -------封装 ---36引脚到144引脚不同封装类型 ----1.3 STM32F103系列微控制器产品线STM32F103x8/xB:中等容量增强型单片机,具有64KB或128KB Flash存储器和20KBSRAM存储器。
STM32F103_永磁同步电机_PMSM_FOC软件库_用户手册_中文版
目录 1 工具 .......................................................... 7
1.1 工作环境 ...................................................................................................................... 7 1.2 软件工具 ...................................................................................................................... 7 1.3 源代码库 ...................................................................................................................... 8 1.3.1 更新 .................................................................................................................. 8 1.3.2 文件结构........................................................................................................... 8 1.4 自定义 STM32F103xx 系列工作区............................................................................... 8
STM32F103中文手册
2007年10月 第三版 第1页STM32F103x6STM32F103x8 STM32F103xB增强型,32位基于ARM 核心的带闪存、USB 、CAN 的微控制器7个定时器、2个ADC 、9个通信接口功能■ 核心− ARM 32位的Cortex™-M3CPU− 72MHz ,高达90DMips ,1.25DMips/MHz − 单周期硬件乘法和除法——加快计算 ■存储器− 从32K 字节至128K 字节闪存程序存储器 − 从6K 字节至20K 字节SRAM − 多重自举功能■时钟、复位和供电管理− 2.0至3.6伏供电和I/O 管脚− 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)、掉电监测器− 内嵌4至16MHz 高速晶体振荡器− 内嵌经出厂调校的8MHz 的RC 振荡器 − 内嵌40kHz 的RC 振荡器 − 内嵌PLL 供应CPU 时钟− 内嵌使用外部32kHz 晶体的RTC 振荡器 ■低功耗− 3种省电模式:睡眠、停机和待机模式 − VBAT 为RTC 和后备寄存器供电■2个12位模数转换器,1us 转换时间(16通道) − 转换范围是0至3.6V − 双采样和保持功能 − 温度传感器 ■ 调试模式− 串行线调试(SWD)和JTAG 接口 ■DMA− 7通道DMA 控制器− 支持的外设:定时器、ADC 、SPI 、I2C 和USART■多达80个快速I/O 口− 26/36/51/80个多功能双向5V 兼容的I/O 口 − 所有I/O 口可以映像到16个外部中断■ 多达7个定时器− 多达3个同步的16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM 或脉冲计数的通道− 16位6通道高级控制定时器− 多达6路PWM 输出 − 死区控制、边缘/中间对齐波形和紧急制动− 2个看门狗定时器(独立的和窗口型的) − 系统时间定时器:24位的、带自动加载功能的■ 多达9个通信接口− 多达2个I2C 接口(SMBus/PMBus)− 多达3个USART 接口,支持ISO7816,LIN ,IrDA 接口和调制解调控制− 多达2个SPI 同步串行接口(18兆位/秒) − CAN 接口(2.0B 主动) − USB 2.0全速接口 ■ ECOPACK ®封装(兼容RoHS )表一 器件列表 参 考基本型号STM32F103x6 STM32F103C6, STM32F103R6,STM32F103T6STM32F103x8 STM32F103C8, STM32F103R8,STM32F103V8, STM32F103T8STM32F103xB STM32F103RB, STM32F103VB,STM32F103C8初步信息1介绍本文给出了STM32F103xx增强型的订购信息和器件的机械特性。
(完整word版)基于KEIL的STM32F103系统的开发与调试
-->
调试中经常需要观察存储器,点相应图标
输入地址后即可显示后续的存储空间的内容。
在存储区间点击右键可以选择显示类型,如无符号32位
若修改代码,再按 退出调试界面。
图形界面中有时可以自由摆放所用的工具。
DEBUG时,左边是寄存器组信息,右边通常会出现“上面机器码与汇编-下面程序”结构。上方的黄箭头表时当前取指地址(PC值),下面的双三角表示即将执行的程序代码。
11、调试操作。从左到右:重启、执行、停止、单步、单行、返回、执行到当前行。单步是指按照指令的实际操作一步步执行;单行是指完成该指令所到实现的功能,并不关心该指令所导致的实际操作过程。
4、运行环境选择。暂不选,按确定。
5、建立了一个空项目。
6、设置OPTION,右键点击TARTGET1
target 1'
7、构建软仿真环境,在Ddbug栏设置。
8、添加汇编文件startup.s
9、添加代码
10、先编译,再链接,最后调试。(底部有编译和链接信息,出错的话会提示)
微处理器系统原理与设计课程实践参考文档之
基于KEIL的STM32F103系统的开发与调试
1、建立工程
2、选择工作目录,输入项目名test1。
3、选择器件,选择STMicroelectronics的STM32F1 Series中的器件后确定。
对于KEIL5来说,若没有该器件,需要装PACKE,选择Pack Installer后选择相应PACK安装即可。
stm32f103中文手册[12]
stm32f103中文手册1. 概述72 MHz的主频,可达90 DMIPS的性能64 KB至512 KB的闪存,20 KB至64 KB的SRAM7个定时器,包括3个高级定时器和4个通用定时器2个12位模数转换器,每秒1 MSPS2个I2C接口,3个USART接口,2个SPI接口1个USB 2.0全速接口1个CAN 2.0B接口37至80个GPIO引脚,支持中断和唤醒功能3个12位数字摹拟转换器实时时钟,支持日历和闹钟功能4至16 MHz的晶振振荡器,内部8 MHz的RC振荡器,内部40 kHz的RC振荡器7种低功耗模式,包括待机模式、住手模式和睡眠模式单电源3.0 V至3.6 V或者双电源1.8 V至3.6 V工作电压工作温度范围为-40°C至+85°C或者-40°C至+105°C2. 引脚定义stm32f103有多种封装形式,包括LQFP64、LQFP100、LQFP144、BG A100等²。
不同封装形式的引脚数量和罗列方式不同,但引脚功能基本相同。
下表列出了stm32f103的引脚功能和描述:---引脚名称 ---引脚功能 ---引脚描述 -------:------: ---:------: ---:------: -------VSS ---接地 ---连接到电源地 -------VDD ---电源 ---连接到正电源 -------VDDA ---摹拟电源 ---连接到正电源 -------VSSA ---摹拟接地 ---连接到电源地 -------NRST ---复位 ---复位输入,低电平有效 -------BOOT0 ---引导模式选择 ---引导模式选择输入,高电平或者低电平 -------BOOT1 ---引导模式选择 ---引导模式选择输入,高电平或者低电平 -------OSC_IN ---晶振输入 ---连接到外部晶振或者时钟信号的输入端-------OSC_OUT ---晶振输出 ---连接到外部晶振或者时钟信号的输出端 -------PA0~PA15 ---端口A引脚 ---可编程I/O引脚,具有多种功能和特性 -------PB0~PB15 ---端口B引脚 ---可编程I/O引脚,具有多种功能和特性 -------PC0~PC15 ---端口C引脚 ---可编程I/O引脚,具有多种功能和特性 -------PD0~PD15 ---端口D引脚 ---可编程I/O引脚,具有多种功能和特性 -------PE0~PE15 ---端口E引脚 ---可编程I/O引脚,具有多种功能和特性 -------JTAG_TMS ---JTAG测试模式选择 ---JTAG接口的测试模式选择信号 -------JTAG_TCK ---JTAG测试时钟 ---JTAG接口的测试时钟信号 -------JTAG_TDI ---JTAG测试数据输入 ---JTAG接口的测试数据输入信号 -------JTAG_TDO ---JTAG测试数据输出 ---JTAG接口的测试数据输出信号 -------JTAG_TRST ---JTAG测试复位 ---JTAG接口的测试复位信号 ----3. 系统架构stm32f103的系统架构如下图所示³:![stm32f103系统架构](^4^)32位RISC架构,支持Thumb-2指令集3级流水线,支持分支预测和异常处理13个通用寄存器和1个程序计数器1个嵌套向量中断控制器(NVIC),支持多达60个中断源1个系统控制块(SCB),包含系统配置、控制和状态寄存器1个系统定时器(SysTick),提供一个24位递减计数器,可用于操作系统的节拍计时1个调试接入端口(DAP),支持JTAG和SWD两种调试协议闪存:是stm32f103的非易失性存储器,用于存储程序代码和数据。
stm32f103中文手册[10]
stm32f103中文手册一、概述stm32f103c8/cb:64KB或128KB闪存,20KBSRAM,48引脚或64引脚LQFP封装。
stm32f103r8/rb:64KB或128KB闪存,20KBSRAM,64引脚LQFP封装。
stm32f103v8/vb:64KB或128KB闪存,20KBSRAM,100引脚LQFP封装。
stm32f103rc/rd/re:256KB或384KB或512KB闪存,48KB或64KB SRAM,64引脚或100引脚或144引脚LQFP封装。
stm32f103vc/vd/ve:256KB或384KB或512KB闪存,48KB或64KB SRAM,100引脚或144引脚LQFP封装。
stm32f103zc/zd/ze:256KB或384KB或512KB闪存,48KB或64KB SRAM,144引脚LQFP封装。
stm32f103的主要特性如下:基于ARM Cortex-M3内核,主频可达72MHz。
内置嵌套向量中断控制器(NVIC),支持多达60个中断源和4个优先级。
内置多种存储器资源,包括闪存、SRAM、备份寄存器和选项字节。
内置多种外设资源,包括GPIO、ADC、DAC、定时器、PWM、I2C、S PI、USART、CAN、USB等。
支持多种时钟源和时钟控制模式,包括内部RC振荡器、外部晶振、PLL等。
支持多种低功耗模式和唤醒机制,包括待机模式、停止模式、睡眠模式等。
支持多种调试和编程接口,包括JTAG/SWD、串口引导加载等。
支持多种电源管理功能,包括电压监测、温度传感器、复位控制等。
二、系统架构stm32f103的系统架构如图1所示¹。
其主要组成部分包括:ARM Cortex-M3内核:负责执行指令和处理数据。
NVIC:负责管理中断请求和中断服务程序。
存储器总线:负责连接内核和存储器资源。
AHB总线:负责连接内核和高速外设资源。
APB1总线:负责连接内核和低速外设资源1。
STM32F103入门---点亮流水灯教程
STM32F103⼊门---点亮流⽔灯教程⼀、STM32简介STM32,从字⾯上来理解,ST 是意法半导体,M 是 Microelectronics 的缩写,32 表⽰32 位,合起来理解,STM32 就是指 ST 公司开发的 32 位微控制器。
在如今的 32 位控制器当中,STM32 可以说是最璀璨的新星,它受宠若娇,⼤受⼯程师和市场的青睐,⽆芯能出其右。
STM32 属于⼀个微控制器,⾃带了各种常⽤通信接⼝,⽐如 USART、I2C、SPI 等,可接⾮常多的传感器,可以控制很多的设备。
现实⽣活中,我们接触到的很多电器产品都有 STM32 的⾝影,⽐如智能⼿环,微型四轴飞⾏器,平衡车、移动 POST 机,智能电饭锅,3D 打印机等等。
STM32 有很多系列,可以满⾜市场的各种需求,从内核上分有 Cortex-M0、M3、M4和 M7 这⼏种,每个内核⼜⼤概分为主流、⾼性能和低功耗。
单纯从学习的⾓度出发,可以选择 F1和 F4,F1代表了基础型,基于 Cortex-M3内核,主频为 72MHZ,F4 代表了⾼性能,基于 Cortex-M4 内核,主频 180M。
本⽂则选择的F1下的stm32f103c8t6。
⼆.使⽤通过寄存器点灯原理介绍。
1.配置时钟使能。
因为流⽔灯要操作的引脚都是在GPIO端⼝的,所以根据系统结构图,属于AHB总线,所以所要⽤的端⼝的复位和时间控制都受RCC控制。
再看寄存器组起始地址表,可以看到RCC的地址范围,且可以看到要控制的寄存器都是在APB2总。
从上⾯发现复位和时钟控制的起始地址为0x4002 1000,再翻到这⾥发下偏移量为0x18,所以该寄存器的地址为0x4002 1018上图表格表⽰的寄存器⾥各位的含义,⽐如第三位也就是2那个位置为1时,就是GPIOA的时钟开启了。
这时我们就可以⽤代码表达出来了。
#define RCC_AP2ENR *((unsigned volatile int*)0x40021018) #时钟使能寄存器RCC_AP2ENR|=1<<2; //开启APB2-GPIOA外设时钟使能接下来就是配置端⼝配置寄存器了,这个就⽐较关键了,可以发现上⾯的时钟使能寄存器开启时钟是针对⼀个区域的,并不能确定引脚,⽽这个寄存器就是确定引脚的,端⼝配置寄存器有两个,分别为端⼝配置低寄存器(CRL)和端⼝配置⾼寄存器(CRH)。
stm32f103中文手册[1]
STM32F103中文手册概述32位ARM® Cortex®-M3内核,最高运行频率72 MHz从16 KB到1 MB的闪存,从6 KB到96 KB的SRAM从36到144个引脚的不同封装,支持LQFP、BGA、TFBGA、UFBGA和V FQFPN等从1.65 V到3.6 V的宽电源电压范围,支持低功耗模式和电池供电从-40°C到+105°C的工作温度范围多达11个通信接口,包括3个USART、2个UART、2个I2C、2个SPI、1个CAN和1个USB 2.0全速多达15个定时器,包括7个16位通用定时器、2个16位基本定时器、2个16位高级定时器、2个32位定时器和2个看门狗定时器多达3个12位模数转换器(ADC),每秒可采样1.2 M次两路12位数模转换器(DAC)多达80个外部中断/事件源多达112个GPIO端口,支持5 V耐压CRC计算单元,用于检测数据传输错误实时时钟(RTC),支持日历功能和闹钟功能嵌入式内存保护单元(MPU),用于增强应用程序安全性嵌入式调试支持,包括串行线调试(SWD)和JTAG接口7层DMA控制器,支持所有外设数据传输可选的双银行闪存模式,支持实时软件更新存储器映射STM32F103系列单片机的存储器映射如下图所示:![存储器映射]代码区:包括闪存和系统存储器。
闪存用于存储用户程序代码和数据。
系统存储器用于存储引导加载程序(bootloader)和设备标识符。
SRAM区:包括SRAM1和SRAM2。
SRAM1用于存储用户程序数据和堆栈。
SRAM2用于存储备份寄存器和备份域。
外设区:包括APB1外设、APB2外设和AHB外设。
APB1外设和APB2外设是通过两个高速总线矩阵连接到内核的低速外设。
AHB外设是通过一个高速总线矩阵连接到内核的高速外设。
外部设备区:包括FSMC区域、NOR/PSRAM区域和NAND/CF区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32F103_使用心得IO端口输入输出模式设置:...........;Delay延时函数:..............;IO端口使用总结:...............;IO口时钟配置:................;初始化IO口参数:...............;注意:时钟使能之后操作IO口才有效!......;IO端口输出高低电平函数:...........;IO的输入IO端口输入输出模式设置: (1)Delay延时函数: (2)IO端口使用总结: (2)IO口时钟配置: (2)初始化IO口参数: (2)注意:时钟使能之后操作IO口才有效! (2)IO端口输出高低电平函数: (2)IO的输入和输出宏定义方式: (3)读取某个IO的电平函数: (3)IO口方向切换成双向 (3)IO 口外部中断的一般步骤: (3)内部ADC使用总结: (4)LCDTFT函数使用大全 (5)TFTLCD使用注意点: (5)IO端口宏定义和使用方法: (6)Keil使用心得: (6)ucGUI移植 (6)DDS AD9850测试程序: (6)ADC 使用小结: (7)ADC测试程序: (9)DAC—tlv5638测试程序 (9)红外测试程序: (9)DMA使用心得: (9)通用定时器使用: (9)BUG发现: (10)编程总结: (10)时钟总结: (10)汉字显示(外部SD卡字库): (11)字符、汉字显示(内部FLASH) (12)图片显示: (16)触摸屏: (17)引脚连接: (19)IO端口输入输出模式设置:Delay延时函数:delay_ms(u16 nms);delay_us(u32 nus);IO端口使用总结:1)使能IO 口时钟。
调用函数为RCC_APB2PeriphClockCmd()。
2)初始化IO 参数。
调用函数GPIO_Init();3)操作IO。
IO口时钟配置:RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);初始化IO口参数:注意:时钟使能之后操作IO口才有效!GPIO_InitTypeDefGPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); //上拉输入GPIO_InitTypeDefGPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //LED0-->PA.8 端口配置 //推挽输出技巧:如果为同一端口的不同引脚,可以使用或运算,如GPIO_InitStructure.GPIO_Pin =GPIO_Pin_13|GPIO_Pin_15;IO端口输出高低电平函数:GPIO_SetBits(GPIOA,GPIO_Pin_8|GPIO_Pin_9); //PA.8 输出高GPIO_ResetBits(GPIOA,GPIO_Pin_8);GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitActionBitVal);//可以输出1,也可以输出0GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);//整体输出一个值IO的输入和输出宏定义方式:#define DATAOUT(x) GPIOB->ODR=x; //数据输出#define DATAIN GPIOB->IDR; //数据输入#define DATAOUT(DataValue){GPIO_Write(GPIOB,(GPIO_ReadOutputData(GPIOB)&0xff00)|(DataValu e&0x00FF));} //PB0~7,作为数据线读取某个IO的电平函数:(一) 读出一个IO口电平GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)#define KEY0 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_13) //PA13#define KEY1 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_15) //PA15#define KEY2 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)(二) 读出某个IO口的全部电平GPIO_ReadInputData(GPIOC)IO口方向切换成双向IIC里面的一个实例#define SDA_IN() {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=8<<12;} //PC12#define SDA_OUT() {GPIOC->CRH&=0XFFFF0FFF;GPIOC->CRH|=3<<12;}IO 口外部中断的一般步骤:1)初始化IO 口为输入。
2)开启IO 口复用时钟,设置IO 口与中断线的映射关系。
3)初始化线上中断,设置触发条件等。
4)配置中断分组(NVIC),并使能中断。
5)编写中断服务函数。
例程:开启IO 口复用时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO ,ENABLE);GPIOA.13 中断线以及中断初始化配置GPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_PinSource13); EXTI_InitTypeDef EXTI_InitStructure; EXTI_InitStructure.EXTI_Line=EXTI_Line13;EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; //[ 此外还可以为(EXTI_Trigger_Rising,EXTI_Trigger_Rising_Falling) ] EXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&EXTI_InitStructure); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = EXTI15_10_IRQn;//使能按键所在的外部中断通道 //[ 此外还可以为NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn ]; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;//抢占优先级2, NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x01; //子优先级 1 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道 NVIC_Init(&NVIC_InitStructure);中断函数的编写:(蓝色字体为格式)void EXTI0_IRQHandler(void){delay_ms(10); //消抖if(EXTI_GetITStatus(EXTI_Line0) != RESET) //检查指定的EXTI0线路触发请求发生与否 {LED0=!LED0;LED1=!LED1;}EXTI_ClearITPendingBit(EXTI_Line0); //清除EXTI0线路挂起位}void EXTI15_10_IRQHandler(void){delay_ms(10); //消抖if(EXTI_GetITStatus(EXTI_Line13) != RESET){ }else if (EXTI_GetITStatus(EXTI_Line15) != RESET){ }EXTI_ClearITPendingBit(EXTI_Line13); //清除EXTI13线路挂起位EXTI_ClearITPendingBit(EXTI_Line15); //清除EXTI15线路挂起位}内部ADC使用总结:1) STM32F103系列最少都拥有2个ADC,我们选择的STM32F103RBT6也包含有2个ADC。
2) STM32的ADC最大的转换速率为1Mhz,也就是转换时间为1us(在ADCCLK=14M,采样周期为1.5个ADC时钟下得到),不要让ADC的时钟超过14M,否则将导致结果准确度下降。
3) STM32将ADC的转换分为2个通道组:规则通道组和注入通道组。
规则通道相当于你运行的程序,而注入通道呢,就相当于中断。
在你程序正常执行的时候,中断是可以打断你的执行的。
同这个类似,注入通道的转换可以打断规则通道的转换,在注入通道被转换完成之后,规则通道才得以继续转换。
4) STM32ADC的规则通道组最多包含16个转换,而注入通道组最多包含4个通道。
5) STM32的ADC在单次转换模式下,只执行一次转换,该模式可以通过ADC_CR2寄存器的ADON位(只适用于规则通道)启动,也可以通过外部触发启动(适用于规则通道和注入通道),这是CONT位为0。