微生物宏基因组学及其在瘤胃微生物研究中的应用

合集下载

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用宏基因组学是指将高通量测序技术应用于微生物群体的基因组研究。

相较于传统的基因组学研究方式,宏基因组学可以同时对大量微生物基因组进行研究,且无需对微生物进行单个细胞的分离处理,因此可以更全面地了解微生物群体中的基因组组成、功能和相互关系。

首先,宏基因组学的应用使得研究人员可以更全面地了解到微生物群体的生物多样性。

在传统的微生物群体研究中,研究人员只能通过培养、显微观察和生化鉴定等手段,对微生物群体中存在的细菌种类进行分析。

然而,在实际的微生物群体中,由于很多菌株的生长特性和生态位置等原因,很难对它们进行分离培养和鉴定。

而宏基因组学的出现,则可以通过对样品中所有的DNA序列进行高通量测序,并通过基因组序列比对的方式,分析得到样品中所有的微生物基因组序列。

这样,研究人员就可以了解到在实际的微生物群体中,存在的微生物种类和数量,并可以对微生物群体进行更准确的分类。

其次,宏基因组学的应用,还可以为微生物群体中的代谢和适应能力等方面的研究提供更大的数据支持。

实际上,除了微生物的多样性研究,微生物群体的代谢和适应能力等方面的研究也一直是微生物学研究的热点。

但是传统的微生物学研究方式,往往只能从单个细胞或单个菌株的角度进行研究,过程较为繁琐且耗时。

而宏基因组学的出现,则可以通过将样品中的DNA序列进行高通量测序,并通过基因组序列的注释和功能预测等方式,得到微生物群体中所有的基因功能信息。

这样,研究人员就可以更全面地了解微生物群体在代谢和适应等方面的能力和机制,并可以根据这些信息,开展更深入的微生物群体研究。

再次,宏基因组学的应用,还可以为微生物生态学研究提供更深入的支持。

微生物是地球上最丰富的生物资源之一,在地球生态系统中扮演着重要角色。

另外,微生物群体中的细菌之间,往往存在着相互作用。

而传统的微生物群体研究方式,则只能了解到群体中的单个物种,并只能从单个物种的角度进行研究,无法全面了解微生物群体的真实生态环境和群体间的相互作用。

宏基因组学及其在微生物生态学中的应用

宏基因组学及其在微生物生态学中的应用

宏基因组学及其在微生物生态学中的应用宏基因组学是研究在宏观层次上的生态系统中微生物的遗传信息的学科,主要通过高通量测序技术以及生物信息学的方法来研究微生物的基因组组成和功能。

随着生物科技的不断发展,宏基因组学的应用越来越广泛,尤其在微生物生态学研究中,宏基因组学的应用也越来越受到关注。

一、宏基因组学技术宏基因组学利用的主要技术是高通量测序技术,也称为下一代测序技术。

这种技术的出现大大加快了微生物基因组的测序速度,降低了测序成本,让宏基因组学得到了广泛的应用。

同时,生物信息学方法也是宏基因组学研究的重要手段,包括序列拼接、物种注释和功能分析等。

二、微生物生态系统中宏基因组学的应用微生物与生态系统密不可分,宏基因组学在微生物生态系统中有广泛的应用,既可以用来研究单一微生物,也可以用来研究整个微生物群落。

它可以帮助我们理解微生物的种类、数量以及它们在生态系统中的功能和相互作用关系。

1. 微生物群落结构的研究宏基因组学可以通过对微生物群落的序列分析,帮助我们了解微生物群落的组成结构,从而研究微生物在生态系统中的作用和功能。

比如,通过对皮肤微生物群落的宏基因组学研究,可以发现与某些皮肤疾病相关的细菌数量增加,从而为病因研究提供了新思路。

2. 微生物群落功能的研究除了研究微生物群落的结构,宏基因组学也可以帮助我们研究微生物群落的功能。

比如,可以通过宏基因组学的方法来研究某一生态系统中微生物群落的代谢通路和代谢产物的组成,从而解析在这一生态系统中微生物的生态角色,为生态系统的恢复和调控提供科学依据。

3. 微生物对环境的响应宏基因组学可以帮助我们了解微生物对环境变化的响应机制。

比如,在全球气候变暖的背景下,宏基因组学的方法可以研究微生物对于气候变化的适应性,从而为环境保护和生态调控提供依据。

三、宏基因组学在微生物生态学中的挑战尽管宏基因组学已经成为微生物生态学研究的重要手段之一,但它依然面临着许多挑战。

首先,宏基因组学目前还存在数据分析的难题,包括序列拼接、注释、代谢路径预测等。

宏基因组分析技术及其在微生物群落研究中的应用

宏基因组分析技术及其在微生物群落研究中的应用

宏基因组分析技术及其在微生物群落研究中的应用宏基因组学是一种综合性的技术,主要用于研究微生物群落的遗传信息。

与传统的小基因组学不同,宏基因组学更注重群体层面的分析,而非单个生物体。

该技术在发现新菌种和理解微生物群落功能上有着重要的应用价值。

宏基因组分析技术的基本原理是先从环境样品中提取DNA,然后利用高通量测序技术将DNA进行测序,最后通过基因组装和注释等步骤进行分析。

与小基因组学相比,宏基因组学需要处理的数据量更大,分析过程也更复杂。

宏基因组学在微生物群落的研究中有着广泛的应用。

首先,它可以发现新菌种。

由于微生物群落的组成极其复杂,相当一部分细菌无法通过传统的培养方法获得。

但是,这些细菌在环境中发挥着重要作用。

宏基因组学可以通过对环境样品进行测序分析,发现新的细菌种类,极大地拓宽了我们对微生物世界的认识。

其次,宏基因组学能够揭示微生物群落的功能与互作关系。

微生物群落中的细菌种类繁多,宏基因组学可以通过测序分析来研究它们各自的代谢通路、生长模式、对环境的响应等方面的信息,从而了解它们在群体中的功能互补和协同作用。

例如,我们可以研究在某个水体中,肠杆菌和水藻之间的互作关系,从而揭示它们之间的作用。

这对环境保护和微生物生态学等领域有着重要的意义。

另外,宏基因组学还可以被用于研究宏生物与微生物间的相互作用关系。

微生物与宏生物之间存在着复杂的相互作用,而且宏生物的健康状况与微生物群落的正常与否呈现高度的相关性。

例如,在研究人类肠道菌群时,我们可以通过分析肠道微生物的基因组,了解它们对宿主的身体机能有何作用,这样就可以预防腹泻等肠道疾病的发生。

总的来说,宏基因组学的分析技术为微生物群落的研究提供了有力的工具,对拓宽我们对微生物世界的认识和揭示微生物群落的功能互作关系具有深远的意义。

在未来,我们相信宏基因组学的应用将会在环境科学、医学和农业等领域得到进一步的拓展和深入研究。

宏基因组技术在微生物研究中的应用探索

宏基因组技术在微生物研究中的应用探索

宏基因组技术在微生物研究中的应用探索宏基因组技术是指通过高通量测序技术对微生物及其他生物群落中的所有基因组成分进行广泛、快速研究的新兴技术。

与此前的单个基因研究不同,宏基因组技术可以同时研究所有生物体或生态系统中存在的基因组成分,从而揭示出微生物交互、代谢、环境适应以及进化等多个方面的信息,具有重要的应用和推广价值。

宏基因组技术在微生物研究中的应用主要有以下几个方面:1、揭示微生物群落的组成宏基因组技术可以同时分析样品中的RNA或DNA样本,并对其中的基因序列进行深度测序,从而可以揭示出微生物群落中的多样性和物种组成情况。

通过对样品中的所有微生物进行测序之后,可以直接挖掘样品中所有微生物的基因组序列信息,包括细胞代谢、碳循环、光合作用等方面,有利于深入了解微生物群落中物种间相互作用。

2、代谢通路预测宏基因组技术可以利用基因预测算法直接从样品中测序得到的基因序列中预测微生物的代谢通路,并根据多样图片心理学研究策略推测微生物的物种功能等信息。

通过对代谢通路的分析和比较,可以了解微生物的不同生理活动之间的相互作用,阐述微生物群落的动态变化过程。

3、微生物基因组的新发现除了研究已知微生物的基因组数据外,宏基因组技术还可以揭示出新物种及新基因组序列。

对于分离不了的微生物,或在环境样品最初未能检测到的微生物群落,都可以通过一定的数据分析技术发现它们的存在,同时探索可能潜在的代谢通路及其环境适应性。

4、生态环境监测利用宏基因组技术可以探测微生物、细菌、病毒等微生物群落在不同生态系统中的分布情况,可以更好的了解微生物区域性差异性,通过定量测序,可以量化微生物物种在不同生态系统中的存在情况,从而为生态环境监测提供了一个新的手段。

在以上四个方向中,微生物基因组的发现与细菌性别的研究成果,引起了相关学者的兴趣和广泛讨论。

可以说宏基因组技术在现代微生物研究中的作用越来越重要。

宏基因组技术的应用不仅有利于探究微生物的进化、演化、环境适应性等基础科学问题,同时也对新药开发、生态环境监测、食品工业及农业生产等领域有着重要应用和推广价值,是一项充满前途和活力的生物技术。

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用

宏基因组学在微生物研究中的应用宏基因组学是一项利用现代高通量测序技术对整个生态系统中所包含的所有微生物群体进行测序和分析的科学研究领域。

宏基因组学可以用来研究微生物的分类、物种间关系、功能等方面的问题,已经成为微生物学研究的重要工具之一。

在宏基因组学的兴起之前,微生物学家们主要使用PCR方法和一些传统分子生物学技术来研究微生物。

这些方法只能对少量的细菌进行研究,无法全面掌握复杂微生物群体的信息。

宏基因组学技术的发展,使得科学家们可以针对微生物群体进行全基因组测序,从而获得所有微生物的信息,包括细菌、真菌、病毒和其他微生物。

宏基因组学的流程包括样品制备、测序、序列分析和数据分析等步骤。

其中,样品制备是非常关键的步骤,直接决定了测序质量和准确性。

对于不同类型的微生物,有不同的样品制备方法。

例如,对于酵母等真核生物,需要对DNA进行加工,去除非编码区域,提高测序的效率和准确性;对于细菌和古菌,需要对样品进行分离纯化,以避免其他细胞的混杂。

测序是宏基因组学的核心步骤,现在市场上有许多不同的高通量测序方法,包括Illumina平台、Ion Torrent平台和PacBio平台等。

对于不同的样品类型和具体研究目的,适用的测序平台也不同。

Illumina平台以其高精度、高质量和低成本而被广泛应用于宏基因组学研究。

而PacBio平台则以其长读长度、高容错率和高分辨率等优点被用于研究复杂宏基因组。

在测序完成之后,需要对测序数据进行分析。

主要的分析方法包括序列组装、物种注释、基因注释和功能预测等。

序列组装是将原始序列拼接成长的连续序列,并去除较小的序列和质量差的序列;物种注释是确定序列对应物种的分类信息;基因注释是识别物种基因组中的开放阅读框(ORF),并确定其具体功能;功能预测是基于已知数据库对ORF的功能进行推测。

宏基因组学的应用非常广泛,可以应用于环境监测、农业生产、医疗诊断等领域。

例如,在环境监测方面,它可以用于了解水体、土壤、空气中微生物的物种组成和功能特性,为环境保护和资源管理提供科学依据。

胃肠肿瘤中微生物组的作用和调控潜力研究

胃肠肿瘤中微生物组的作用和调控潜力研究

胃肠肿瘤中微生物组的作用和调控潜力研究胃肠肿瘤是一种常见的恶性肿瘤,其发病率在全球范围内均较高。

近年来,研究表明,微生物组在胃肠肿瘤的发生和发展过程中起到了极其重要的作用。

本文将介绍微生物组在胃肠肿瘤中的作用和调控潜力研究进展。

一、微生物组在肠道功能调控中的作用肠道微生物组是指寄生在肠道内的微生物,包括细菌、真菌、病毒等。

它们与我们的肠道共同构成了一个共生关系,参与了人体内多种生理和代谢过程。

有关研究表明,肠道微生物组参与了肠道内营养物质的消化、吸收和代谢等过程。

此外,肠道内的微生物组还对免疫系统的调节和肠道屏障的维护起到了至关重要的作用。

微生物组通过释放代谢产物和菌体成分来刺激免疫系统,同时协调与肠道上皮细胞等宿主细胞的信号传递过程,从而实现对免疫系统的调节功能。

另外,肠道内的微生物组还通过抑制肠道内有害菌的滋生,促进肠道细菌群的平衡,维护了肠道屏障的稳定性。

二、微生物组与胃肠癌的关系近年来,研究表明,肠道微生物组与胃肠癌的发生和发展密切相关。

微生物组的不平衡和异常改变可能是胃肠癌的重要诱因之一。

首先,微生物组的不平衡可能导致肠道内细胞的基因突变以及增生。

目前的研究表明,肠道内某些致癌物质可以通过激活微生物组中的一些致癌菌而产生致炎性反应和突变基因,从而诱导肠道内的恶性肿瘤。

其次,微生物组的改变可能导致肠道屏障的破坏,使得致癌物质和有害菌对机体产生更强的刺激和毒性作用。

三、微生物组在胃肠癌预防和治疗中的潜力由于微生物组与胃肠癌的密切关系,调节和修复微生物组已成为预防和治疗胃肠癌的新思路。

微生物组的调节可以通过多种方式实现,包括特定饮食和营养补充、使用抗生素、微生物组移植等。

首先,饮食和营养补充是调节微生物组的有效途径之一。

一些食物中含有很多对安定和维持微生物组稳定性有益的营养物质,如纤维素、膳食纤维、果胶、半乳糖等。

此外,饮食中膳食纤维的摄入可以促进肠道内有益菌群的增长,从而抑制有害菌的滋生。

反刍动物瘤胃微生物培养组学研究进展

反刍动物瘤胃微生物培养组学研究进展

反刍动物瘤胃微生物培养组学研究进展
范定坤;张吉贤;付域泽;马涛;毕研亮;张乃锋
【期刊名称】《畜牧兽医学报》
【年(卷),期】2024(55)1
【摘要】瘤胃微生物被称为反刍动物的“隐藏器官”,与宿主营养物质的获取和生理健康的维持密切相关;目前宏基因组测序发现瘤胃中超过5800个基因组,然而超过90%的微生物尚未被培养,处于“生物信息黑箱”[1]中。

培养组学是一种采用多种培养条件,结合高通量测序技术鉴定菌种的培养方法。

高通量、并行化的培养组学技术在瘤胃微生物中的应用,为在菌株水平上研究重点菌株功能及其与宿主互作关系提供了新的视角。

然而,目前培养组学运用于瘤胃微生物的研究仍然较少,尚处于起步阶段。

本文从瘤胃微生物特点、培养组学技术及其在瘤胃微生物培养中的应用现状、面临挑战等方面进行综述,为不断优化、规范化培养组学研究方案、拓展瘤胃可培养菌株资源、加快瘤胃生物信息黑箱的破解提供思考。

【总页数】8页(P51-58)
【作者】范定坤;张吉贤;付域泽;马涛;毕研亮;张乃锋
【作者单位】中国农业科学院饲料研究所农业农村部饲料生物技术重点实验室【正文语种】中文
【中图分类】Q938.15
【相关文献】
1.宏基因组学用于瘤胃微生物代谢的研究进展
2.宏基因组学及其在瘤胃微生物中的应用研究进展
3.基于组学技术研究反刍动物瘤胃微生物及其代谢功能的进展
4.基于宏基因组学的反刍动物瘤胃微生物研究进展
5.宏基因组学技术在瘤胃微生物研究中的应用研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

宏基因组学在微生物学研究中的应用.doc

宏基因组学在微生物学研究中的应用.doc

宏基因组学在微生物学研究中的应用-一直以来,自然环境中微生物鉴定识别的唯一途径就是用传统的方法进行分离培养,这不但阻碍了人们认识微生物世界的视野,还限制了生物资源的开发和利用。

随着分子生物学技术的快速发展,为了研究不能培养的微生物,一个全新的理念宏基因组学应运而生,宏基因组学技术克服了相关培养技术的困难和限制,跳过传统培养而直接从环境样品中提取总DNA,通过构建宏基因组文库、筛选来获得新的功能基因和生物活性物质。

宏基因组学的产生和快速发展已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术、农业、生物防御等各方面显示了重要的价值。

1 宏基因组学的概念1998年,科学家Handelsman等首次提出了宏基因组(metagenome)的概念,宏基因组学又称为环境基因组学,或者群落基因组学,它是指环境中全部微生物基因的总和,包含细菌基因组和真菌基因组,所获得的基因是包含了可培养的和还不能培养的微生物的总基因,是目前一种新的微生物研究方法。

宏基因组学其显著的特征在于获得环境微生物基因组的方法是非传统培养方法,通过基因筛选和序列分析等手段,来研究环境微生物的功能活性、多样性、种群结构、进化关系,以及它们与环境之间的关系,获得新的酶及生物活性物质,可极大地拓展微生物基因资源的利用空间,研究其功能和彼此之间的关系和相互作用,并揭示其内在规律。

2 宏基因组学发展早期对微生物群落的研究,主要是根据微生物的生理特性,通过原位染色标记技术来确定微生物群落的分类。

可依据其菌落的形态特征、不同的生长媒介和代谢产物等来区分不同微生物的菌群。

但此种方法有很大的局限性,它只可检测到那些在实验室生长条件下容易生长的有机体,但对于研究非培养的微生物有很大的限制。

直至发展到免培养技术,即直接从样品中提取总DNA,并用这些DNA来分析物种的多样性,也可描述一个群体不同物种间的关系。

宏基因组学及其在瘤胃微生物中的应用研究进展

宏基因组学及其在瘤胃微生物中的应用研究进展

宏基因组学及其在瘤胃微生物中的应用研究进展吴锡川;杨舒黎;苟潇;冷静;毛华明【摘要】Metagenomics based on study of ecological community gene function is a brand-new discipline. It tries to use culture-independent approaches,and it offers enormous scope and potential for microbiology.It comprises isolation of DNA, library construction and screening of target gene clone,and can be used in the discovery of new gene and biocatalysts and in the study of microbial biodiversity in a community. The methodology of metagenomics and the application of metagenomics in rumen have been briefly summarized.%宏基因组学是研究生态群体基因功能的一门崭新的学科.它通过免培方法获得微生物的纯培养,主要技术包括DNA的提取、文库的构建和目标基因克隆的筛选,可用于发现新基因、开发新的生物活性物质、研究群落中微生物多样性等方面.文章介绍了宏基因组学的基本方法,并对瘤胃微生物宏基因组学的应用现状进行了综述.【期刊名称】《中国畜牧兽医》【年(卷),期】2011(000)012【总页数】5页(P106-110)【关键词】宏基因组学;瘤胃微生态;文库构建【作者】吴锡川;杨舒黎;苟潇;冷静;毛华明【作者单位】云南农业大学云南省动物营养与饲料重点实验室,云南昆明 650201;云南农业大学云南省动物营养与饲料重点实验室,云南昆明 650201;云南农业大学云南省动物营养与饲料重点实验室,云南昆明 650201;云南农业大学云南省动物营养与饲料重点实验室,云南昆明 650201;云南农业大学云南省动物营养与饲料重点实验室,云南昆明 650201【正文语种】中文【中图分类】Q78微生物是自然界分布最广、生物多样性最为丰富、用于生物技术革新最有潜力的生物资源,占地球生物总量的60%以上。

宏基因组学在微生物生态研究中的应用

宏基因组学在微生物生态研究中的应用

宏基因组学在微生物生态研究中的应用随着科技的不断进步,宏基因组学的出现为微生物生态研究带来了革命性变革。

传统的微生物学研究主要依靠培养和鉴定单一的菌株,再研究其生理和代谢特性。

但是,只能培养约1%的微生物,也就是所谓的“可培养菌”,而大部分细菌不能被培养出来。

这就导致了许多未知微生物的存在和不得不丢弃的生物信息。

那么,宏基因组学是如何解决这些问题的呢?一、宏基因组学概述宏基因组学是从微生物的体内或环境样本中采集DNA,并通过高通量测序来解析微生物群落中所有的代谢基因和特征基因的学科。

它利用一系列的基因组学和生物信息学技术,对微生物群落中所有生态位上物种的基因组信息进行挖掘和分析,以研究它们的生态功能、群落组成及其演变。

相比于其他微生物学研究方法,宏基因组学拥有具有显著优势,能够提供更加全面和准确的微生物信息,尤其是那些无法被培养的物种。

二、宏基因组学在微生物生态研究中的应用1. 微生物群落组成和结构的分析宏基因组学技术能够直接获取微生物群落中所有的DNA序列,包括每个单个物种或群落中的所有物种的所有基因序列。

因此,可以通过检测和比较微生物群落中基因序列的不同,来揭示微生物群落的组成和特征。

如此一来,可以研究微生物之间的相互作用和关系,甚至深入了解之前未知的种类和量。

2. 微生物生态功能的揭示宏基因组学不仅能够检测单个微生物基因组特征,也可通过检测基因组编码的任意功能微生物去解析生态位中的生态功能。

这意味着可以通过未知群落中的基因分布,推测不同菌群的代谢途径及其他生态功能模式等,研究微生物族群的结构和演变,并且预测这些生态功能会如何响应不同的环境压力。

3. 微生物入侵的监测预测对于已知的微生物物种,通过DNA测序比对非常准确快捷地判断其是否存在于一个特定环境样本中。

借助群落组成和结构分析,可以预测未知样本中可能存在的微生物种类的存在和过渡时间等重要参数,从而更好地了解和预测未知样本中微生物的入侵和变化趋势。

宏基因组技术在微生物研究中的应用

宏基因组技术在微生物研究中的应用

宏基因组技术在微生物研究中的应用随着科技的不断发展,现代生命科学研究借助高通量测序和计算技术的发展已进入基因组学时代。

基因组广泛应用于微生物性状的分析、生态学调查、反义物分化、生物技术的研发等研究领域。

而宏基因组技术是近年来发展得较为迅速的基因组学方向之一,它强调的是微生物群落中所有微生物的基因组合广泛可及性和基因组的完整性,从而优势应用。

在微生物研究领域中,宏基因组技术在多个方面都有着广泛应用,特别是在环境微生物物种多样性的研究中,极为重要。

本文将探讨宏基因组技术在微生物研究中的应用。

一、宏基因组技术的定义宏基因组技术是指通过直接提取和测序来自环境样品中的所有微生物的基因组,从而可获得更全面的微生物群落结构和功能信息的技术。

二、微生物群落分析中的宏基因组技术在常规微生物物种鉴定中,仅仅能够鉴定出被培养的微生物品种,然而许多微生物并不适合于在实验室中培养繁殖,这就限制了对微生物群落结构的分析。

宏基因组技术则可通过直接提取并测定环境生态体系中的微生物基因组来获取微生物群落结构和功能信息。

通过将微生物的DNA序列提取出来,可以构建出一个完整的微生物表型,包括基因功能预测、环境适应等信息。

此外,宏基因组技术与广谱PCR、DNA芯片技术等相结合,可更准确快速地检测特定微生物类群的分布、趋势和动态变化,从而更深刻地理解微生物与其所处环境之间的相互作用和关系。

三、宏基因组技术在新物种发现中的应用通过微生物宏基因组测序,可以在无需大量培养条件的情况下直接发现新的微生物种类。

宏基因组技术可以直接破解未被分类的微生物DNA序列,通过对其基因组组成、特征、适应性等特征的测定,建立一个包括微生物的新分类系统。

同时,宏基因组技术还可以对多样性的环境中微生物的代谢途径等进行研究,为该微生物的变异和特异性分析提供数据,为其进一步的应用和研究打下了基础。

四、宏基因组技术在环境微生物研究中的应用许多微生物在自然环境中的属性、生理特征和环境适应性与它们所在的生态系统紧密相连。

宏基因组学在微生物多样性研究中的应用

宏基因组学在微生物多样性研究中的应用

宏基因组学在微生物多样性研究中的应用随着科技的进步,越来越多的新颖技术被应用到生命科学领域中,从而推动了该领域的飞速发展。

其中,宏基因组学技术的出现,为微生物多样性研究提供了新的突破口。

本文将介绍宏基因组学在微生物多样性研究中的应用,包括其优势和局限性以及未来发展的前景。

宏基因组学的优势及其在微生物多样性研究中的应用宏基因组学是一种快速高通量的DNA测序技术,它能够同时测序大量不同样品的DNA,从而较全面地揭示该生态系统中所存在的微生物的种类和数量。

与传统的微生物样品分离培养和分子克隆技术相比,它具有以下几个明显的优势:①不需要事先进行微生物生物学培养。

很多微生物,特别是环境中的微生物,由于难以进行培养和纯化,因此常常会被忽略掉。

而宏基因组学技术可以直接对样本中的DNA进行测序,无需进行微生物培养,因此可以避免漏掉相当数量的微生物种类。

②可以从不同环境中检测微生物。

宏基因组学技术可以从不同的微生物生存环境中提取微生物DNA,因此能够揭示不同环境中微生物的种类和数量,从而更全面地了解微生物多样性的分布情况。

③可以同时检测数百万个序列。

宏基因组学技术可以高通量地进行大规模的DNA测序,一次可以同时检测数百万的序列。

这种高效的检测方式可以大大加快微生物多样性研究的速度。

在微生物多样性研究中,宏基因组学技术主要应用于环境微生物群落研究、人体微生物群落研究以及微生物组学等领域。

在环境微生物群落研究中,宏基因组学技术可以帮助我们了解微生物在各种环境中的分布情况以及微生物之间的相互作用和生态功能。

例如,研究人员可以通过对测序数据的分析得到环境中微生物的物种组成、数量等信息,从而了解微生物多样性在不同环境下的分布规律以及环境变化对微生物多样性的影响。

在人体微生物群落研究方面,宏基因组学技术可以揭示人体内微生物的类型和数量,从而更深入地了解人体内微生物的功能、作用以及与健康相关的信息。

例如,宏基因组学技术可以检测肠道微生物群落的变化,从而为相关临床疾病的诊断和治疗提供帮助。

宏基因组学技术分析山羊瘤胃病毒的多样性

宏基因组学技术分析山羊瘤胃病毒的多样性

畜牧兽医学报 2023,54(7):2932-2941A c t a V e t e r i n a r i a e t Z o o t e c h n i c a S i n i c ad o i :10.11843/j.i s s n .0366-6964.2023.07.024开放科学(资源服务)标识码(O S I D ):宏基因组学技术分析山羊瘤胃病毒的多样性吴祎程1,2,冉 涛3,4*,周传社1,2*,谭支良1,2(1.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室畜禽养殖污染控制与资源化技术国家工程实验室湖南省动物营养生理与代谢过程重点实验室农业部中南动物营养与饲料科学观测实验站,长沙410125;2.中国科学院大学,北京100049;3.兰州大学草地农业科技学院,兰州730020;4.兰州大学草种创新与草地农业生态系统全国重点实验室,兰州730020)摘 要:反刍家畜瘤胃内微生物丰富多样,病毒(主要是噬菌体)亦是其重要组成部分㊂瘤胃内所有的病毒可统称为瘤胃病毒组(r u m i n a l v i r o m e ),可以利用宏基因组学(m e t a ge n o m i c s )技术进行研究㊂解析山羊瘤胃病毒组的组分及功能有望更全面地了解其在瘤胃微生态区系中的地位和作用㊂为使测序结果能覆盖瘤胃中绝大部分病毒群落,不仅在样品的预处理阶段要尽量避免病毒样颗粒的损失,而且要保证瘤胃病毒组总D N A 的提取质量和产量均满足宏基因组测序的要求㊂本研究比较了制备瘤胃液病毒组分的4种流程:(P 1)离心+稀释㊁(P 2)离心+稀释+过滤㊁(P 3)离心+稀释+过滤+聚乙二醇沉淀㊁(P 4)离心+稀释+过滤+聚乙二醇沉淀+氯仿处理㊂提取核酸后采用I l l u m i n a N o v a s e q 6000平台对瘤胃病毒基因组D N A 进行测序,并对病毒群体结构进行分析比较,以筛选出瘤胃病毒组样品制备的最优流程㊂结果表明,聚乙二醇沉淀有助于病毒核酸提取,而氯仿处理过度影响病毒组分产量;山羊瘤胃内病毒群落主要是尾状病毒目的长尾病毒科㊁肌尾病毒科和短尾病毒科噬菌体㊂研究结果为深入分析噬菌体在山羊瘤胃微生态区系中的作用奠定了基础㊂关键词:瘤胃病毒;病毒宏基因组学;高通量测序技术;D N A 提取;多样性中图分类号:S 852.65 文献标志码:A 文章编号:0366-6964(2023)07-2932-10收稿日期:2022-08-30基金项目:国家自然科学基金(U 20A 2057);兰州大学 双一流 建设人才项目(561120213)作者简介:吴祎程(1997-),女,湖北武汉人,硕士生,主要从事瘤胃环境病毒提取及功能研究,E -m a i l :w u y i c h e n g19@m a i l s .u c a s .a c .c n ,T e l :0731-*********通信作者:周传社,主要从事反刍家畜蛋白质营养调控与农牧复合生态系统研究,E -m a i l :z c s @i s a .a c .c n ;冉 涛,主要从事传统动物营养学㊁分子营养学及胃肠道微生物组学研究,E -m a i l :r a n t @l z u .e d u .c nE v a l u a t i o n o f t h e V i r a l C o m m u n i t y C o m po s i t i o n i n G o a t R u m e n F l u i d ,B a s e d o n M e t a g e n o m i c A n a l ys i s WU Y i c h e n g 1,2,R A N T a o 3,4*,Z HO U C h u a n s h e 1,2*,T A N Z h i l i a n g1,2(1.S o u t h C e n t r a l E x p e r i m e n t a l S t a t i o n o f A n i m a l N u t r i t i o n a n d F e e d S c i e n c e i n t h e M i n i s t r y o fA g r i c u l t u r e ,H u n a n P r o v i n c i a l K e y L a b o r a t o r y o f A n i m a l N u t r i t i o n a l P h y s i o l o g y an d M e t a b o l i c P r o c e s s ,N a t i o n a l E n g i n e e r i n g L a b o r a t o r y fo r P o l l u t i o n C o n t r o l a n d W a s t e U t i l i z a t i o n i n L i v e s t o c k a n d P o u l t r y P r o d u c t i o n ,K e y L a b o r a t o r y f o r A g r o -E c o l o gi c a l P r o c e s s e s i n S u b t r o p i c a l R e g i o n ,I n s t i t u t e o f S u b t r o p i c a l A g r i c u l t u r e ,C h i n e s e A c a d e m y o f Sc i e n c e s ,C h a n g s h a 410125,C h i n a ;2.U n i v e r s i t y o f C h i n e s e A c ade m y of S c i e n c e s ,B e i j i ng 100049,Chi n a ;3.C o l l e g e o f P a s t o r a l A g r i c u l t u r e S c i e n c e a n d T e c h n o l o g y ,L a n z h o u U n i v e r s i t y ,L a n z h o u 730020,C h i n a ;4.S t a t e K e y L a b o r a t o r y o f H e r b a g e I m p r o v e m e n t a n d G r a s s l a n d A g r o -e c o s ys t e m s ,L a n z h o u U n i v e r s i t y ,L a n z h o u 730020,C h i n a )7期吴祎程等:宏基因组学技术分析山羊瘤胃病毒的多样性A b s t r a c t:V i r u s e s,m a i n l y b a c t e r i o p h a g e,a r e s i g n i f i c a n t c o m p o n e n t s o f t h e r u m i n a l m i c r o b i o t a i n r u m i n a n t s.A l l t h e r u m i n a l v i r u s e s a r e c a l l e d r u m i n a l v i r o m e,a n d c o u l d b e s t u d i e d b y m e t-a g e n o m i c s.U n d e r s t a n d i n g t h e c o m p o n e n t s a n d f u n c t i o n s o f g o a t r u m i n a l v i r u s e s i s e x p e c t e d t o p r o v i d e a m o r e c o m p r e h e n s i v e u n d e r s t a n d i n g o f r u m e n m i c r o e c o l o g y.A c c u r a t e p r o f i l i n g o f c o m-p l e x r u m e n v i r o m e r e q u i r e s D N A e x t r a c t i o n m e t h o d s t h a t p r o v i d e a d e q u a t e q u a l i t y a n d q u a n t i t y, a s w e l l a s s u f f i c i e n t c o v e r a g e o f t h e o r i g i n a l c o mm u n i t y.I n t h i s s t u d y,f o u r p r o c e d u r e s t o e x t r a c t v i r u s e s-l i k e p a r t i c l e s(V L P s)f r o m r u m e n f l u i d w e r e c o m p a r e d:(P1)c e n t r i f u g a t i o n+d i l u t i o n, (P2)c e n t r i f u g a t i o n+d i l u t i o n+f i l t r a t i o n,(P3)c e n t r i f u g a t i o n+d i l u t i o n+f i l t r a t i o n+p o l y-e t h y l e n e g l y c o l(P E G)p r e c i p i t a t i o n,(P4)c e n t r i f u g a t i o n+d i l u t i o n+f i l t r a t i o n+P E G p r e c i p i-t a t i o n+c h l o r o f o r m t r e a t m e n t.T h e n u c l e i c a c i d i n f o u r p r o c e d u r e s w a s e x t r a c t e d a n d D N A c o n-c e n t r a t i o n,p u r i t y a n d i n t e g r i t y w e r e c o m p a r e d.T h e n g e n o m i c D N A s e q u e n c i n g w a s p e r f o r m e d u s i n g I l l u m i n a N o v a s e q6000a n d v i r u s p o p u l a t i o n s t r u c t u r e w a s a n a l y z e d.T h e r e s u l t s s h o w e d t h a t t h e r e w e r e p o s i t i v e e f f e c t s o f f i l t r a t i o n a n d P E G p r e c i p i t a t i o n o n v i r a l n u c l e i c a c i d q u a l i t y. T h e c h l o r o f o r m t r e a t m e n t,s e v e r e l y r e d u c i n g v i r u s-l i k e p a r t i c l e s(V L P s)y i e l d,s h o u l d b e u s e d w i t h c a u t i o n w h e n p e r f o r m i n g h i g h-t h r o u g h p u t s e q u e n c i n g.T h e v i r a l c o mm u n i t i e s i n t h e r u m e n w e r e d o m i n a t e d b y b a c t e r i o p h a g e s b e l o n g i n g t o t h e v i r a l o r d e r C a u d o v i r a l e s(i.e.,M y o v i r i d a e, P o d o v i r i d a e,a n d S i p h o v i r i d a e).T h e r e s u l t s p r o v i d e t h e b a s i s f o r f u t u r e i n v e s t i g a t i o n s r e g a r d i n g t h e e c o l o g i c a l i m p o r t a n c e o f v i r u s e s i n r u m e n m i c r o b i a l e c o s y s t e m s.K e y w o r d s:r u m e n v i r u s;v i r a l m e t a g e n o m i c s;h i g h-t h r o u g h p u t s e q u e n c i n g t e c h n o l o g y;D N A e x-t r a c t i o n;d i v e r s i t y*C o r r e s p o n d i n g a u t h o r s:Z HO U C h u a n s h e,E-m a i l:z c s@i s a.a c.c n;R A N T a o,E-m a i l:r a n t@ l z u.e d u.c n反刍家畜瘤胃是一个复杂且多样的微生态系统,其内栖息了细菌㊁真菌㊁原虫㊁古生菌和病毒等多种微生物,瘤胃内病毒主要由噬菌体(b a c t e r i o-p h a g e)构成[1]㊂在微生物生态系统中,病毒尤其是噬菌体的侵染作用会极大地影响微生物群落的结构及功能[2]㊂但由于病毒基因组缺乏合适标记基因和分析基准,且多数病毒无法被归类或找到对应宿主,因此,难以通过P C R等常规技术来检测未知病毒序列[3],以致病毒组研究相对滞后㊂近年来,宏基因组学和生物信息学的发展极大地促进了宏病毒组的研究,并已应用于研究不同环境样本中的病毒群落,如海洋[4]㊁土壤[5]㊁人类粪便[6]等㊂研究人员很早便关注瘤胃液中的病毒群落,陆续分离鉴定了多种瘤胃噬菌体,包括以坏死梭杆菌(F u s o b a c t e r i u m n e c r o-p h o r u m)㊁白色瘤胃球菌(R u m i n o c o c c u s a l b u s)㊁溶纤维丁酸弧菌(B u t y r i v i b r i o f i b r i s o l v e n s)和瘤胃拟杆菌(P r e v o t e l l a r u m i n i c o l a)等为宿主菌的10种噬菌体[7]㊂但是,目前仍缺乏对瘤胃病毒群落的整体认知㊂宏病毒组测序的关键在于从待测样品中富集病毒组分(v i r u s-l i k e p a r t i c l e s,V L P s),获取高质量的病毒核酸用于宏基因组测序㊂已有研究发现,D N A 病毒占据了病毒的绝大部分,本研究仅关注D N A 病毒㊂由于病毒的基因组非常小,如果直接对样品中所有的微生物组D N A进行宏基因组测序,虽然能够获得部分病毒的基因序列,但是容易丢失那些读长短㊁丰度低的病毒序列,不能真实反映病毒的群体构成[8]㊂同时,病毒组分中的噬菌体具有溶源性㊁溶菌性和慢性感染等生命周期,其中溶源性噬菌体在溶源性周期中将遗传物质整合到其细菌宿主的基因组中[9],通过生物信息学分析可以从细菌宏基因组数据中挖掘到溶源性噬菌体的基因序列,但是不能有效获取仅有溶菌性周期的噬菌体㊂因此,V L P s 的富集对全面解析样品中游离病毒组分尤为重要㊂由于瘤胃液样本具有特殊性,如存在饲料大颗粒㊁厌氧环境㊁中性偏酸环境,因此有必要建立专门的瘤胃病毒颗粒分离方法[10]㊂理想情况下,该方法应能快速㊁高效获得病毒组分,易于在实验室中操作㊂氯化铯(C s C l)密度梯度离心是病毒浓缩和纯化的常用技术之一,但是该方法需要用到超速离心3392畜牧兽医学报54卷机,不仅价格昂贵,而且操作耗时较长,更重要的是可能导致大量病毒组分的损失[11]㊂氯仿处理被认为是一种可代替C s C l密度梯度离心的快速纯化病毒的方法,其可通过破坏细菌的胞膜结构,以达到有效去除细菌的效果[12]㊂鉴于此,本研究在提取瘤胃液病毒组分基因组D N A之前,参考C a s t r o-M e jía 等[13]对人粪便样品采用的聚乙二醇(P E G8000)沉淀法,设计4种流程瘤胃液病毒组分富集流程: (P1)离心+稀释㊁(P2)离心+过滤+核酸酶处理㊁(P3)离心+稀释+过滤+聚乙二醇沉淀㊁(P4)离心+稀释+过滤+聚乙二醇沉淀+氯仿处理㊂P E G 8000广泛应用于病毒(噬菌体)的纯化过程,可使病毒沉淀,而不受其他有机质的干扰㊂本研究旨在比较过滤㊁P E G沉淀以及氯仿处理对瘤胃液样品中游离病毒组分D N A质量(产量㊁纯度和完整性)的影响,并利用I l l u m i n a N o v a s e q6000平台对获得的瘤胃病毒基因组D N A进行测序,通过对瘤胃病毒群体结构进行分析来评价不同流程对瘤胃病毒组分富集的效果,以期为进一步研究瘤胃病毒功能提供技术支撑㊂1材料与方法所有动物程序均遵循动物护理和使用指南,并经中国科学院亚热带农业研究所动物护理委员会批准(批准号I S A-W-201609)㊂选用3只体重相近((31.13ʃ3.72)k g)㊁体况良好的成年雄性湘东黑山羊作为试验动物,安装永久性瘤胃瘘管,按本团队成员曾波等[14]的报道进行术后护理和饲喂㊂试验羊的基础日粮由52%玉米秸秆㊁21.52%玉米㊁16.96%麦麸㊁5.98%豆粕㊁0.86%菜籽饼㊁1.08%尿素㊁0.60%食盐以及1%预混料组成㊂日粮营养水平为10.72%粗蛋白㊁58.76%中性洗涤纤维以及27.79%酸性洗涤纤维㊂1.1瘤胃液样品采集步骤山羊晨饲后4h,通过瘤胃瘘管采集瘤胃内容物,用无菌搅拌棒搅动使瘤胃内容物样品混匀,经4层无菌纱布过滤至50m L无菌离心管,离心管装至2/3处后立刻盖严,投入液氮罐中速冻,置于干冰上迅速转移至实验室,于-80ħ冰箱中保存备用㊂1.2瘤胃液病毒组分制备试验流程参考C a s t r o-M e jía的方法[13],并加以修改,以有效分析瘤胃液病毒组㊂为消除动物个体差异,将3头黑山羊的瘤胃液等体积混合,分成3份,操作流程如图1所示㊂离心:将解冻瘤胃液在4ħ下以5000ˑg离心15m i n,将液体部分转移至新的无菌离心管中,以去除瘤胃液样品中的饲料残渣;接着在4ħ下以15000ˑg转速离心30m i n,以去除其他小颗粒碎片,收集上清液㊂稀释:将上述含有游离病毒样颗粒的上清液与预冷的S M缓冲液(200m m o l㊃L-1N a C l,10m m o l㊃L-1 M g S O4,50mm o l㊃L-1T r i s p H7.5)进行1ʒ2稀释㊂过滤:通过1.0μm的玻璃纤维滤纸(W h a t-m a n,G F/C,U K)过滤,以去除瘤胃液中的粒径较大的细菌㊁原虫等,随后经过孔径为0.45μm的P V D F无菌滤膜(M i l l i p o r e B i l l e r i c a,MA,U S A)过滤,进一步去除细菌等㊂P E G沉淀:将200g P E G8000与146.1g N a C l 溶于1L蒸馏水中,经高压蒸汽灭菌后获得P E G-N a C l溶液㊂将过滤步骤后得到的上清液转移到新离心管中,向每个样品中加入25%(v/v)的P E G-N a C l溶液,于4ħ下震荡孵育22h,孵育结束后将样品于4ħ㊁13000ˑg离心45m i n,弃上清,沉淀即为病毒组分,并将其溶解于1m L预冷的0.01m o l㊃L-1磷酸盐缓冲液(P B S)中㊂氯仿处理:向获得的病毒组分浓缩液中加入等体积的氯仿,涡旋1m i n,使氯仿与样品均匀混合,形成乳状物,于4ħ㊁15000ˑg离心5m i n,小心吸取上清液至新的无菌离心管,即为病毒组分㊂1.3瘤胃液基因组D N A提取核酸酶处理:在提取D N A之前,用1.25μL D N a s e I和1.25μL R N a s e A处理样品30m i n,以消除游离D N A和R N A污染,随后在37ħ水浴中孵育10m i n,接着加入1μL100mm o l㊃L-1E D T A 使核酸酶失活,最后在65ħ下水浴孵育10m i n终止E D T A反应㊂使用D N A提取试剂盒(O m e g a D3892-01V i r a l D N A K i t,U S A)提取制备的瘤胃液病毒组分样品的核酸,提取步骤严格按照试剂盒说明书进行㊂完成病毒基因组D N A抽提后,使用Q u b i t D N A广谱分析仪(T h e r m o F i s h e r S c i e n t i f-i c)测定浓度㊁O D260n m/280n m及O D260n m/230n m,并使用1.0%(w/v)琼脂糖凝胶电泳检测基因组D N A的完整性㊂提取的D N A样品储存在-20ħ,直至文库制备及测序㊂检测合格的D N A样品采用C o v a-r i s M220超声破碎仪将样品D N A随机打断成长度43927期吴祎程等:宏基因组学技术分析山羊瘤胃病毒的多样性将瘤胃液混合后,分成三份按照四组流程进行处理,命名为P 1至P 4,下同㊂步骤1(离心)㊁2(稀释)为所有流程的共同步骤,且P 1只执行步骤1和2,P 2执行步骤1㊁2和3(微孔滤膜过滤),P 3执行步骤1㊁2㊁3和4(聚乙二醇沉淀),P 4执行步骤1㊁2㊁3㊁4和5(氯仿处理)T h e r u m e n f l u i d o f t h r e e g o a t s w e r e c o l l e c t e d a n d m i x e d ,t h e n d i v i d e d i n t o t h r e e p a r t s a n d p r o c e s s e d a c c o r d i n gt o f o u r r o u t e s n a m e d P 1t o P 4,t h e s a m e a s b e l o w.S t e p s 1(c e n t r i f u g a t i o n )a n d 2(d i l u t i o n )a r e t h e c o mm o n s t e p s o f a l l pr o c e s s e s ,a n d P 1o n l y p e r f o r m s s t e p s 1a n d 2,P 2p e r f o r m s s t e p s 1,2a n d 3(m i c r o p o r o u s m e m b r a n e f i l t r a t i o n ),P 3p e r f o r m s s t e ps 1,2,3a n d 4(P E G p r r e c i p i t a t i o n ),a n d P 4p e r f o r m s s t e ps 1,2,3,4a n d 5(c h l o r o f o r m t r e a t m e n t )图1 从山羊瘤胃液中分离富集病毒组分的流程示意图F i g .1 S c h e m a t i c r e pr e s e n t a t i o n o f t h e p r o c e d u r e s f o r t h e e x t r a c t i o n o f v i r u s e s f r o m g o a t r u m e n f l u i d 约为450b p 的片段,经末端修复㊁加入A 尾㊁加测序接头㊁纯化㊁P C R 全基因组扩增等步骤完成文库制备,质检合格的文库将采用I l l u m i n a N o v a s e q 6000平台进行测序(上海凌恩生物技术有限公司)㊂1.4 数据质控由于I l l u m i n a N o v a s e q 6000的原始测序数据中包含测序接头序列㊁低质量读段㊁N 率较高序列及长度过短序列,这将严重影响后续组装的质量㊂为保证后续的生物信息分析的准确性,首先对下机的原始测序数据进行质控,过滤掉低质量片段和宿主片段从而得到高质量的测序数据(c l e a n d a t a),以保证后续分析的顺利㊂原始数据已递交G e n B a n k ,登录号为P R J N A 788346㊂1.5 生物信息学分析按照R o u x 等[15]描述的方法,使用M e ga h i t (h t -t p s ://g i t h ub .c o m /v o u t c n /m e ga h i t )对高质量序列进行拼接㊁组装,挑选ȡ2000b p 的组装序列,使用如下软件进行病毒序列鉴定:V i r F i n d e r (h t t ps ://g i t h u b .c o m /je s s i e r e n /V i r F i n d e r )㊁V i r S o r t e r 2(h t -t p s ://g i t h u b .c o m /s i m r o u x /V i r S o r t e r )㊁C A T (h t -t p s ://gi t h u b .c o m /d u t i l h /C A T ),并对初步鉴定为病毒的序列进行v O T U s (v i r a l o pe r a t i o n a l t a x o -n o m i c u n i t s)分析㊂鉴定得到病毒序列后,获得其物种分类学信息,并使用V P F -C l a s s 工具对病毒进行物种注释和宿主预测㊂挑选置信度(C o n f i d e n c e _S c o r e )>0.36的结果,进行病毒科水平物种注释;挑选置信度(C o n f i d e n c e _S c o r e )>0.5且成员比对率(M e m b e r s h i p_R a t i o )超过0.3的结果,进行病毒(噬菌体)潜在宿主预测[16]㊂1.6 数据分析利用M i c r o s o f t E x c e l (M i c r o s o f t I n c .,W a s h -i n gt o n ,U S A )对数据进行初步统计,随后用S P S S 19.0(S P S S I n c .,C h i c a go ,U S A )对不同流程提取的基因组D N A 质量相关指标进行单因素方差分析(A N O V A )[17]㊂对宏基因组数据进行正态检验和方差齐性检验,符合方差分析的数据用S P S S 进行5392畜牧兽医学报54卷A N O V A分析,不符合方差分析的数据用S P S S软件进行非参数分析,P<0.01表示差异极显著, 0.01ɤP<0.05表示差异显著,0.05ɤP<0.10表示存在趋势㊂瘤胃液病毒相对丰度图㊁箱线图分别利用凌恩生物在线云平台(h t t p://c l o u d.b i o m i c r o-c l a s s.c o m/C l o u d P l a t f o r m)和联川生物在线云平台(h t t p s://w w w.o m i c s t u d i o.c n/t o o l)的工具在线绘制㊂2结果2.1不同提取流程对瘤胃病毒核酸提取质量的影响各流程提取的基因组D N A质检结果见图2㊂由图2a可知,P2流程中D N A产量显著高于P1㊁P3和P4处理流程(P<0.001)㊂P1㊁P2与P3流程获得的D N A的O D260n m/280n m均>1.90,说明提取的核酸相对纯净(图2b)㊂经氯仿处理(P4)的基因组核酸D N A,因产量过低(图2a)而不满足高通量测序需求,故没有进行后续上机建库及组学分析㊂a.核酸浓度;b.核酸纯度㊂*表示P<0.05,**表示P<0.01a.C o n c e n t r a t i o n o f n u c l e i c a c i d s;b.Q u a l i t y o f n u c l e i c a c i d s.*P<0.05a n d**P<0.01图2四种流程处理后所提取的山羊瘤胃液病毒组分的核酸质量(n=3)F i g.2Q u a l i t y o f n u c l e i c a c i d s o f r u m i n a l v i r a l-l i k e p a r t i c l e s e x t r a c t e d f r o m t h e g o a t r u m e n f l u i d i n f o u r g r o u p s(n=3)2.2不同提取流程对瘤胃病毒群落α多样性的影响使用I l l u m i n a N o v a s e q6000平台对符合测序要求的9个样本进行了病毒宏基因组学测序,共获得1058773724个r e a d s,每个样品的平均r e a d s数为117641525,范围为105495627至125358829㊂不同提取流程的瘤胃病毒α多样性指数见图3,不同提取流程对测序时获得的g o o d s_c o v e r a g e比例没有显著影响(图3a),同时不同流程间C h a o1指数(P=0.834)和S h a n n o n指数(P=0.255)均无显著差异㊂a.g o o d s_c o v e r a g e;b.C h a o1指数,用于估计群落中v O T U丰度;c.S h a n n o n指数,用来描述群落中病毒多样性a.g o o d s_c o v e r a g e;b.C h a o1i n d e x,r e p r e s e n t s t h e r i c h n e s s o f v O T U;c.S h a n n o n i n d e x,r e p r e s e n t s t h e d i v e r s i t y o f v i r u s 图3不同处理流程获得的瘤胃液病毒的α多样性指数F i g.3A l p h a d i v e r s i t y i n d e x e s o f r u m i n a l v i r o m e o b t a i n e d f r o m d i f f e r e n t p r o c e s s i n g p r o c e d u r e63927期吴祎程等:宏基因组学技术分析山羊瘤胃病毒的多样性2.3不同提取流程对瘤胃病毒群落β多样性的影响为评估不同样品处理流程对瘤胃病毒群落组成的影响,进行了基于B r a y-C u r t i s距离的P C o A分析及A N O S I M分析㊂在P C o A图中,P2流程与P1和P3在P C o A2上分开(26.01),但差异不显著(A N O S I M R=0.695,P>0.05;图4)㊂结果表明,虽然不同D N A提取流程会导致病毒群落组成的差异,但对群落组成的影响较小㊂2.4不同提取流程对瘤胃病毒群落分类学特征的影响宏基因组测序结果表明,不论采用何种瘤胃液样品病毒组分富集流程,均显示山羊瘤胃中的D N A 病毒主要为噬菌体(图5)㊂其中,绝大多数噬菌体序列来自长尾病毒科(S i p h o v i r i d a e,63.29%)㊁肌尾病毒科(M y o v i r i d a e,11.87%)和短尾病毒科(P o d o v i r i d a e,5.64%),这3个病毒科同属于有尾病图4不同处理流程对瘤胃病毒组分的主坐标分析(基于B r a y-C u r t i s距离,n=3)F i g.4P r i n c i p a l c o-o r d i n a t e s a n a l y s i s b a s e d o n B r a y-C u r t i sd i s t a n ce s of r u m i n a l v i r o m e o b t a i n e d f r o m d i f f e r e n tp r o c e s s i n g p r o c e d u r e(n=3)毒目(C a u d o v i r a l e s)㊂进一步分析了不同富集流程对瘤胃病毒相对丰度的影响,结果表明P E G处理对S i p h o v i r i d a e(P<0.05)及A c k e r m a n n v i r i d a e科(P<0.01)的病毒有显著富集效果(图6)㊂a.总体瘤胃微生物组成;b.总体病毒组分组成;c.不同处理流程瘤胃液中病毒相对丰度(科水平)a.O v e r a l l c o m p o s i t i o n o f r u m e n m i c r o b i a l;b.O v e r a l l c o m p o s i t i o n v i r u s-p a r t i c l e s;c.R e l a t i v e a b u n d a n c e o f v i r u s e s i n d i f-f e r e n t p r o c e s s i n g p r o c e d u r e s(f a m i l y l e v e l)图5黑山羊瘤胃液中微生物组成F i g.5C o m p o s i t i o n o f r u m e n m i c r o b i a l o f b l a c k g o a t*表示P<0.05,**表示P<0.01*m e a n s P<0.05a n d**m e a n s P<0.01图6在不同流程中病毒相对丰度(n=3)F i g.6R e l a t i v e a b u n d a n c e o f v i r a l f a m i l y i n d i f f e r e n t p r o c e s s i n g p r o c e d u r e s(n=3)7392畜牧兽医学报54卷2.5瘤胃病毒群落宿主预测利用V P F-C l a s s工具对山羊瘤胃中最丰富的4个D N A病毒科噬菌体成员进行了宿主预测,并列出了噬菌体与宿主间的对应关系(图6)㊂结果显示瘤胃病毒的宿主多为细菌,优势宿主预测排序结果为:节杆菌属(A r t h r o b a c t e r)㊁芽孢杆菌属(B a c i l-l u s)㊁噬纤维素属(C e l l u l o p h a g a)㊁梭菌属(C l o s-t r i d i u m)㊁乳酸球菌属(L a c t o c o c c u s)㊁分岐杆菌属(M y c o b a c t e r i u m)㊁绿脓杆菌属(P s e u d o m o n a s)㊁里氏杆菌属(R i e m e r e l l a)㊁链球菌属(S t r e p t o c o c c u s)㊂其中,M y o v i r i d a e科的噬菌体主要侵染芽孢杆菌属(B a c i l l u s)细菌,P o d o v i r i d a e科的噬菌体主要侵染噬纤维素属(C e l l u l o p h a g a)的细菌,而S i p h o v i r i d a e 科的噬菌体主要侵染芽孢杆菌属(B a c i l l u s)㊁梭菌属(C l o s t r i d i u m)㊁里氏杆菌属(R i e m e r e l l a)和噬纤维素属(C e l l u l o p h a g a)等属的细菌㊂图7山羊瘤胃病毒群落的潜在宿主种类预测F i g.7P r e d i c t i o n o f p o t e n t i a l h o s t s o f r u m i n a l v i r u s e s i n r u m e n f l u i d o f g o a t s2.6不同生境病毒群落比较本研究将山羊瘤胃病毒群落与其他环境,如人类粪便[4]㊁海洋[5]或土壤[6]病毒群落进行比较(图8)㊂结果表明,不同生境中病毒群落构成存在很大差异:在生境病毒群落多样性方面,以土壤生境最高;在病毒群落相对丰度方面,人类粪便和山羊瘤胃病毒群落的相似性更高,均为以S i p h o v i r i d a e科的病毒为主,但二者又有区别,体现在山羊瘤胃病毒群落具有更高丰度的M y o v i r i d a e科病毒;在病毒核酸类型方面,人类粪便和山羊瘤胃中的D N A 病毒以双链D N A(d o u b l e-s t r a i n D N A,d s D N A)病毒为主,而土壤生境中还含有微病毒科(M i c r o v i r i-d a e)㊁球状病毒科(G l o b u l o v i r i d a e)㊁矮化病毒科(N a n o v i r i d a e)等单链D N A(s i n g l e-s t r a i n D N A,s s-D N A)病毒㊂3讨论瘤胃微生物组成十分复杂,绝大多数瘤胃细菌是严格厌氧或兼性厌氧,且目前仅有很少的瘤胃细菌被分离培养,这导致基于传统培养手段的瘤胃病毒(主要是噬菌体)研究开展起来困难重重㊂近年来宏基因组学广泛运用于动物胃肠道微生态的研究,可规避体外培养微生物的限制㊂该技术也逐步应用于病毒组的研究,借助各种生物信息学分析工具,极大地推进了病毒特异性序列数据集(病毒组)的获取和分析[18]㊂高通量测序过程中,样品D N A的质量尤为关键,提高瘤胃病毒组分基因组D N A的产量及质量,可以有效地提高后续生物信息学分析的准确性㊂在核酸提取和上机测序之前,病毒组分预处理的主要作用为病毒富集和病毒纯化[11]㊂具体步83927期吴祎程等:宏基因组学技术分析山羊瘤胃病毒的多样性图8 山羊瘤胃液㊁人类粪便[4]㊁海水[5]及土壤[6]中的病毒相对丰度F i g.8 R e l a t i v e a b u n d a n c e o f v i r a l c o m m u n i t i e s i n g o a t r u m e n f l u i d ,h u m a n f a e c e s [4],s e a w a t e r [5]a n d s o i l [6]骤需要根据所研究的样本类型进行调整㊂本研究参考C a s t r o -M e jía 等[13]提出的方法,设置了4种流程来评估过滤步骤㊁P E G 沉淀以及氯仿处理对D N A 提取质量以及宏基因组测序结果的影响㊂O D 260n m /280n m 是衡量DN A 提取质量的重要指标,会受R N A 污染以及D N A 降解的影响[19]㊂P 3流程所获得的核酸产量并不是最高的,但P 3流程O D 260n m /280n m在数值上最高,P 4流程所获得的核酸产量最低㊂病毒学研究过程中常使用传统的苯酚-氯仿提取法对病毒基因组进行提取[20],而如今市场上已经出现了多款用于从环境样品中提取病毒基因组D N A 的试剂盒[9,21]㊂本研究选用了价格为Q i a ge n 试剂盒1/5的O m e g a 病毒D N A 提取试剂盒,该试剂盒原用于提取血清病毒基因组,本研究表明,该试剂盒也能用于提取瘤胃液样品中的病毒基因组,且满足测序需求㊂不同流程间瘤胃病毒多样性并没有显著差异,这可能是由于病毒组在整体微生物组中所占比例过小,正如H e s s 等[22]报道的,即使在大多数环境中噬菌体的数量级为细菌的10倍,但由于宿主D N A (细菌和真核生物)的污染,病毒r e a d s 只占可注释D N A 的2%~5%㊂病毒群落结构分析表明,本试验选用的山羊瘤胃中的优势病毒群落依次为长尾病毒科(S i ph o v i r i -d a e )㊁肌尾病毒科(M yo v i r i d a e )和短尾病毒科(P o d o v i r i d a e ),这与前人发表的瘤胃病毒群落以长尾病毒科㊁肌尾病毒科和短尾病毒科占主导地位一致[9]㊂过滤步骤需考虑滤膜孔径大小,常用微孔滤膜孔径为0.22或0.45μm ㊂先前研究表明胃肠道中最丰富的长尾病毒科(S i ph o v i r i d a e )及肌尾病毒科(M yo v i r i d a e )都大于0.22μm [9],故本研究选用了孔径为0.45μm 的微孔滤膜㊂本研究中丰度最高的为长尾病毒科(S i ph o v i r i d a e ),也证明了0.45μm 滤膜的有效性㊂由于病毒颗粒小,在核酸提取之前,通常使用P E G 配合N a C l 来沉淀样品中的V L P s 以实现病毒的浓缩㊂本研究表明,P E G 可显著富集有尾病毒目中的长尾病毒科(S i ph o v i r i -d a e )及A c k e r m a n n v i r i d a e 科噬菌体㊂本研究还发现疱疹病毒科(H e r p e s v i r i d a e )的病毒在该瘤胃液样本中的存在,但丰度十分低㊂C s C l 密度梯度离心步骤被认为是纯化病毒的最佳方法[12],此法可对特定密度范围内的噬菌体进行纯化,并根据密度将V L P s 与其他组分分离㊂但这一技术耗时㊁昂贵且需要特定的技术技能和实验室设备㊂有研究发现,氯仿处理能代替氯化铯密度梯度离心步骤用于纯化病毒[23],此方法已成功用于9392畜牧兽医学报54卷血清病毒纯化和发酵食品病毒纯化[24-25]㊂但本研究发现,氯仿处理在瘤胃液病毒纯化中会造成大量颗粒损失,以至于不能满足高通量测序的需求㊂这是因为瘤胃细菌仍为瘤胃液的主要部分,氯仿会严重干扰包膜类物质,比如细菌,而且有些病毒也存在膜结构,膜结构被破坏后,病毒的蛋白质外壳会变得不稳定[26]㊂而部分病毒蛋白质外壳也对氯仿十分敏感,氯仿处理则造成这类病毒的大量丢失[27]㊂D N A产量也因此出现显著差异,P4提取流程的核酸因产量过低,不适用于高通量测序建库㊂因此,氯仿处理代替C s C l密度梯度离心步骤用于纯化瘤胃病毒还有待后续试验进一步研究㊂环境中病毒的多样性和丰度与微生物群落息息相关㊂有研究表明同一环境中病毒群落具有很高的相似性,而来自不同环境的病毒及其宿主分布的相似性较低[28-30]㊂反刍动物会从外界摄入大量食物,瘤胃作为一个天然发酵罐,微生物群落共生于一个相对封闭的容器中,这导致瘤胃微生物具有非常独特的群落特征[1],瘤胃液中病毒的丰富度反映了瘤胃微生物宿主的多样性㊂由于病毒宏基因组学建库限制以及测序平台对核酸样品扩增的需求,本研究主只检测了山羊瘤胃液中的D N A病毒,发现样品中主要为d s D N A病毒,它们都属于有尾病毒目㊂之前的大量研究也表明瘤胃病毒以d s D N A为主,其中大部分为有尾病毒目的噬菌体[9,21,31-32]㊂另外,由于技术的局限性,本方法提取的D N A不一定满足长读长测序平台,例如P a c B i o(w w w.p a c b.c o m) o r O x f o r d N a n o p o r e(h t t p s://n a n o p o r e t e c h.c o m)㊂此外,本试验只关注了病毒组分中d s D N A的核酸,此病毒组分富集方法是否适用于s s D N A或R N A 病毒尚不清楚[33]㊂4结论本研究比较了不同D N A提取流程对核酸产量㊁质量㊁病毒多样性以及病毒概况的影响,表明了P E G沉淀步骤对长尾病毒科及A c k e r m a n n v i r i d a e 科噬菌体具有富集作用㊂研究人员可根据试验需求进行选择,当需要重点关注这类噬菌体的情况下,可采用P3流程,即对瘤胃液进行离心㊁稀释以及微孔滤膜过滤操作,若对特定病毒没有富集需求,则采用P2流程即可,即无需进行微孔滤膜过滤步骤,此两种流程均能达到病毒宏基因组测序要求㊂基于以上结果,本试验构建了提取瘤胃液中病毒组分D N A 的流程,此方案可大大促进反刍动物瘤胃液中噬菌体群落的研究进程㊂参考文献(R e f e r e n c e s):[1] D E N G W D,X I D M,MA O H M,e t a l.T h e u s e o fm o l e c u l a r t e c h n i q u e s b a s e d o n r i b o s o m a l R N A a n dD N A f o r r u m e n m i c r o b i a l e c o s y s t e m s t u d i e s:Ar e v i e w[J].M o l B i o l R e p,2008,35(2):265-274. [2] M I L L E R M E B,Y E OMA N C J,C H I A N,e t a l.P h a g e-b a c t e r i a r e l a t i o n s h i p s a n d C R I S P R e l e m e n t sr e v e a l e d B Y A m e t a g e n o m i c s u r v e y o f t h e r u m e nm i c r o b i o m e[J].E n v i r o n M i c r o b i o l,2012,14(1):207-227.[3] G I L B E R T R A,T OWN S E N D E M,C R E W K S,e ta l.R u m e n v i r u s p o p u l a t i o n s:T e c h n o l o g i c a l a d v a n c e se n h a n c i n g c u r r e n t u n d e r s t a n d i n g[J].F r o n tM i c r o b i o l,2020,11:450.[4] B R E I T B A R T M,HA Y N E S M,K E L L E Y S,e t a l.V i r a l d i v e r s i t y a n d d y n a m i c s i n a n i n f a n t g u t[J].R e sM i c r o b i o l,2008,159(5):367-373.[5] B R E I T B A R T M,S A L AMO N P,A N D R E S E N B,e ta l.G e n o m i c a n a l y s i s o f u n c u l t u r e d m a r i n e v i r a lc o mm u n i t i e s[J].P r o c N a t l A c ad S c i U S A,2002,99(22):14250-14255.[6] K I M K H,C HA N G H W,N AM Y D,e t a l.A m p l i f i c a t i o n o f u n c u l t u r e d s i n g l e-s t r a n d e d D N Av i r u s e s f r o m r i c e p a d d y s o i l[J].A p p l E n v i r o nM i c r o b i o l,2008,74(19):5975-5985.[7]吴祎程,冉涛,周传社,等.反刍动物瘤胃噬菌体的宏基因组学研究方法及进展[J].畜牧兽医学报,2022,53(1):20-31.WU Y C,R A N T,Z HO U C S,e t a l.R u m e nb ac t e r i o p h a g e i n r u m i n a n t s:m e t a g e n o m e a n a l y t i c a lm e t h o d s a n d r e s e a r c h p r o g r e s s[J].A c t a V e t e r i n a r i ae t Z o o t e c h n i c a S i n i c a,2022,53(1):20-31.(i nC h i n e s e)[8] P O P O V V L,T E S H R B,W E A V E R S C,e t a l.E l e c t r o n m i c r o s c o p y i n d i s c o v e r y o f n o v e l a n de m e r g i n g v i r u s e sf r o m t h e c o l l e c t i o n o f t h e w o r l dr e f e r e n c e c e n t e r f o r e m e r g i n g v i r u s e s a n d a r b o v i r u s e s(WR C E V A)[J].V i r u s e s,2019,11(5):477. [9] F R I E D E R S D O R F F J C A,K I N G S T O N-S M I T H AH,P A C H E B A T J A,e t a l.T h e i s o l a t i o n a n d g e n o m es e q u e n c i n g o f f i v e n o v e l b a c t e r i o p h a g e s f r o m t h er u m e n a c t i v e a g a i n s t B u t y r i v i b r i o f i b r i s o l v e n s[J].F r o n t M i c r o b i o l,2020,11:1588.[10]I S L AM M M,F E R N A N D O S C,S A HA R.M e t a b o l i c04927期吴祎程等:宏基因组学技术分析山羊瘤胃病毒的多样性m o d e l i n g e l u c i d a t e s t h e t r a n s a c t i o n s i n t h e r u m e nm i c r o b i o m e a n d t h e s h i f t s u p o n v i r o m e i n t e r a c t i o n s[J].F r o n t M i c r o b i o l,2019,10:2412. [11] T H U R B E R R V,H A Y N E S M,B R E I T B A R T M,e t a l.L a b o r a t o r y p r o c e d u r e s t o g e n e r a t e v i r a l m e t a g e n o m e s[J].N a t P r o t o c o l s,2009,4(4):470-483.[12] B I L L E R S J,M C D A N I E L L D,B R E I T B A R T M,e ta l.M e mb r a n e v e s ic l e s i n s e a w a t e r:H e t e r o g e n e o u sD N A c o n t e n t a n d i m p l i c a t i o n s f o r v i r a l a b u n d a n c ee s t i m a t e s[J].I S M E J,2017,11(2):394-404.[13] C A S T R O-M E JÍA J L,MUHAMM E D M K,K O TW,e t a l.O p t i m i z i n g p r o t o c o l s f o r e x t r a c t i o n o fb ac t e r i o p h a g e s p r i o r t o m e t a g e n o m i c a n a l y s e s o fp h a g e c o mm u n i t i e s i n t h e h u m a n g u t[J].M i c r o b i o m e,2015,3:64.[14]曾波,康劲翮,汤少勋,等.山羊瘤胃微生物基因组D N A提取方法比较[J].农业生物技术学报,2015,23(6):823-830.Z E N G B,K A N G J H,T A N G S X,e t a l.M e t h o d sc o m p a r i s o n o f g e n o m i c D N A e x t r a c t i o n f o r r u m e nm i c r o b i o l o g y i n g o a t s(C a p r a h i r c u s)[J].J o u r n a l o fA g r i c u l t u r a lB i o t e c h n o l o g y,2015,23(6):823-830.(i n C h i n e s e)[15] R O U X S,A D R I A E N S S E N S E M,D U T I L H B E,e ta l.M i n i m u m i n f o r m a t i o n ab o u t a n u nc u l t i v a t ed v i r u sg e n o m e(M I U V i G)[J].N a t B i o t e c h n o l,2019,37(1):29-37.[16] P O N S J C,P A E Z-E S P I N O D,R I E R A G,e t a l.V P F-C l a s s:T a x o n o m i c a s s i g n m e n t a n d h o s t p r e d i c t i o n o fu n c u l t i v a t e d v i r u s e s b a s e d o n v i r a l p r o t e i n f a m i l i e s[J].B i o i n f o r m a t i c s,2021,37(13):1805-1813. [17] S P S S.I B M S P S S s t a t i s t i c s f o r W i n d o w s,v e r s i o n19.0[R].A r m o n k,N Y:I B M C o r p,2010. [18] S U T T O N T D S,H I L L C.G u t b a c t e r i o p h a g e:c u r r e n tu n d e r s t a n d i n g a n d c h a l l e n g e s[J].F r o n t E n d o c r i n o l(L a u s a n n e),2019,10:784.[19] D E S J A R D I N S P,C O N K L I N D.N a n o D r o pm i c r o v o l u m e q u a n t i t a t i o n o f n u c l e i c a c i d s[J].J V i sE x p,2010,22(45):2565.[20] D HUM IÈR E S C,T O U C HO N M,D I O N S,e t a l.As i m p l e,r e p r o d u c i b l e a n d c o s t-e f f e c t i v e p r o c e d u r e t oa n a l y s e g u t p h a g e o m e:F r o m p h a g e i s o l a t i o n t ob i o i n f o r m a t ic a p p r o a c h[J].S c i R e p,2019,9(1):11331.[21] N AMO N Y O S,WA G A C HA M,MA I N A S,e t a l.Am e t a g e n o m i c s t u d y o f t h e r u m e n v i r o m e i n d o m e s t i cc a p r id s[J].A r c h V i r o l,2018,163(12):3415-3419.[22] H E S S M,S C Z Y R B A A,E G A N R,e t a l.M e t a g e n o m i cd i s c o ve r y of b i o m a s s-d eg r a d i n g g e n e s a n d g e n o m e sf r o m c o w r u m e n[J].S c i e n c e,2011,331(6016):463-467.[23] G U O P,E l-G OHA R Y Y,P R A S A D A N K,e t a l.R a p i d a n d s i m p l i f i e d p u r i f i c a t i o n o f r e c o m b i n a n ta d e n o-a s s o c i a t e d v i r u s[J].J V i r o l M e t h o d s,2012,183(2):139-146.[24] W I L L N E R D,F U R L A N M,S C HM I E D E R R,e t a l.M e t a g e n o m i c d e t e c t i o n o f p h a g e-e n c o d e d p l a t e l e t-b i n d i n g f ac t o r s i n t h e h u m a n o r a l c a v i t y[J].P r o cN a t l A c a d S c i U S A,2011,108(S1):4547-4553.[25] D U G A T-B O N Y E,L O S S O U A R N J,D E P A E P E M,e t a l.V i r a l m e t a g e n o m i c a n a l y s i s of t h e c h e e s es u r f a c e:A c o m p a r a t i v e s t u d y o f r a p i d p r o c e d u r e s f o re x t r a c t i n g v i r a l p a r t i c l e s[J].F o o d M i c r o b i o l,2020,85:103278.[26] C O R D O V A A,D E S E R N O M,G E L B A R T W M,e ta l.O s m o t i c s h o c k a n d t h e s t r e n g t h o f v i r a l c a p s i d s[J].B i o p h y s J,2003,85(1):70-74.[27] F O R T E R R E P,S O L E R N,K R U P O V I C M,e t a l.F a k e v i r u s p a r t i c l e s g e n e r a t e d b y f l u o r e s c e n c em i c r o s c o p y[J].T r e n d s M i c r o b i o l,2013,21(1):1-5.[28] B O N I L L A-R O S S O G,S T E I N E R T,W I C HMA N NF,e t a l.H o n e y b e e s HA R B O R A d i v e r s e g u t v i r o m ee n g a g i n g i n n e s t e d s t r a i n-l e v e l i n t e r a c t i o n s w i t h t h em i c r o b i o t a[J].P r o c N a t l A c a d S c i U S A,2020,117(13):7355-7362.[29] B R E I T B A R T M,R OHW E R F.H e r e a v i r u s,t h e r e av i r u s,e v e r y w h e r e t h e s a m e v i r u s?[J].T r e n d sM i c r o b i o l,2005,13(6):278-284.[30] R O D R I G U E Z-B R I T O B,L I L L,W E G L E Y L,e t a l.V i r a l a n d m i c r o b i a l c o mm u n i t y d y n a m i c s i n f o u ra q u a t i c e n v i r o n m e n t s[J].I S M E J,2010,4(6):739-751.[31] P A R MA R N R,J A K H E S A R A S J,MOHA P A T R AA,e t a l.R u m e n v i r o m e:A n a s s e s s m e n t o f v i r a lc o mm u n i t i e s a nd t he i rf u n c t i o n s i n t h e r u m e n o f a nI n d i a n b u f f a l o[J].C u r r S c i,2016,111(5):919-925.[32] A N D E R S O N C L,S U L L I V A N M B,F E R N A N D O SC.D i e t a r y e n e r g y d r i v e s t h e d y n a m i c r e s p o n s e o fb o v i n e r u m e n v i r a lc o mm u n i t i e s[J].M i c r o b i o m e,2017,5(1):155.[33] R O U X S,S O L O N E N K O N E,D A N G V T,e t a l.T o w a r d s q u a n t i t a t i v e v i r o m i c s f o r b o t h d o u b l e-s t r a n d e d a n d s i n g l e-s t r a n d e d D N A v i r u s e s[J].P e e r J,2016,4:e2777.(编辑范子娟)1492。

基于宏基因组学的反刍动物瘤胃微生物研究进展

基于宏基因组学的反刍动物瘤胃微生物研究进展

试验研究LIVESTOCKANDPOULTRYINDUSTRYNo.9,2023基于宏基因组学的反刍动物瘤胃微生物研究进展余国春四川省水产学校,四川成都611730摘 要 反刍动物瘤胃是最强的微生态系统之一,与宿主的生命活动密切相关。

近年来,利用宏基因组学技术对反刍动物瘤胃微生物群落加以探索和挖掘,多维度地探讨了瘤胃微生物功能特征,以期更科学地进行饲养管理,促进牛羊养殖业的绿色可持续发展。

对宏基因组学的研究方法以及反刍动物瘤胃微生物组的影响因子进行综述,旨在优化瘤胃发酵系统,为提高反刍动物生产水平提供思路。

关键词 反刍动物;宏基因组学技术;高通量测序;瘤胃微生物doi:10.19567/j.cnki.1008 0414.2023.09.002 引言反刍动物瘤胃是最强的微生态系统之一,其中含有细菌、原虫和真菌等逾3000种微生物[1],与宿主的各项生理生化功能密切相关。

但瘤胃中的绝大多数微生物极度厌氧,培养极其不易,传统研究弊端显著。

宏基因组测序作为新兴组学技术,规避了传统培养研究的缺陷,且更能透彻地揭露微生物多样性、差异性、功能性及其与宿主间的相互关系,在瘤胃微生物群落的研究上具有广阔的前景。

本文聚焦宏基因组学的研究方法,重点讨论瘤胃微生物功能的相关影响因素,以期为提高反刍动物生产水平提供思路。

宏基因组学研究方法宏基因组在反刍动物瘤胃微生物中的研究主要包括以下核心环节。

1 1 样本采集瘤胃口腔导管法或屠宰法采集瘤胃液,经过滤后立即存于液氮罐。

1 2 宏基因组DNA提取根据试剂盒说明书分离纯化DNA,并用1.0%的琼脂糖凝胶电泳、NanoDrop分光光度计或Qubit荧光定量仪进行测验评价。

1 3 宏基因组测序运用PCR制作文库并进行Illumina高通量测序平台测序。

1 4 数据预处理1)采用Trimmomatic软件对原始数据进行过滤和质控。

2)使用SOAPdenovo软件、MEGAHIT软件或ID BA UD软件对优化数据进行拼接和组装。

宏基因组学技术在微生物功能研究中的应用

宏基因组学技术在微生物功能研究中的应用

宏基因组学技术在微生物功能研究中的应用微生物是一类庞大而复杂的生物群体,其种类繁多、功能多样,与生物圈的平衡和稳定息息相关。

然而,微生物的研究一直都是人类研究生命科学中的的一大难题,尤其是对于不可培养微生物的研究更是无从下手。

宏基因组学技术的发展和应用,为研究微生物领域提供了新的思路和工具。

一、宏基因组学技术的发展与原理宏基因组学是指查找并分析生态系统中所有微生物基因组的学科。

传统微生物学研究方法需要通过细胞培养后进行基因测序,这种方法很难从环境中探索到全部微生物种群,而且并不能提供有关基因组的完整信息。

相比之下,宏基因组学代表了一种更全面、更快速的进口,它可以在环境样品中捕捉整个微生物群落的全貌,进而推导出微生物群落的结构、功能和物种构成等信息。

宏基因组学的核心是基因组序列,但不同于传统的基因组测序。

在宏基因组学中,我们并不直接把从环境中采集的微生物转化为培养体系进行分析,而是将样品DNA进行拆分,并随机抽样测序,从而可高通量地检测出样品中所有微生物DNA 的序列信息。

然后,使用生物信息学手段对海量数据进行处理和分析,最终得到微生物群落基因组的全貌。

二、宏基因组学在微生物功能研究中的应用宏基因组学技术已广泛应用于微生物生态、生命周期研究和微生物的遗传形态与功能分析等方面。

下面我们分别阐述一下。

1. 微生态学方面微生物在生态系统中扮演着重要的角色,微生态系统的稳定与否与微生物的生命周期和功能密切相关。

因此,利用宏基因组学来研究不同生态系统的微生物群落结构及其影响因素,是宏基因组学应用在微生态学研究的典型案例。

宏基因组学技术广泛应用于林地、海洋、土壤、湖泊和肠道等生态环境中的微生物群落的研究。

例如利用宏基因组学技术揭示肠道微生物与免疫系统间的相互作用——不同肠道菌群和肠道免疫细胞之间相互沟通的机制。

2. 微生命周期学方面微生物因其繁殖方式特殊,生命周期相对比较短,因此宏基因组学也成为微生物生命周期研究的重要手段。

基因组学与宏基因组学在微生物研究中的应用及进展

基因组学与宏基因组学在微生物研究中的应用及进展

基因组学与宏基因组学在微生物研究中的应用及进展微生物是一类微小且广泛分布的生物,包括细菌、真菌、病毒等。

研究微生物对于人类的生活和健康具有重要意义。

随着技术的发展,基因组学与宏基因组学在微生物研究中的应用逐渐深入。

一、基因组学在微生物研究中的应用基因组学是研究基因组的学科。

基因组是一个生物体内所有基因的总体,包括DNA序列和RNA序列。

利用基因组学技术,研究人们可以对微生物进行深入的研究,了解微生物的基因组结构和功能。

1. 基因组测序基因组测序指的是对微生物的基因组序列进行测定和分析的过程。

通过基因组测序,可以了解微生物的基因组大小、基因数目、基因注释、基因功能等信息,进而推断微生物的生长环境和适应性。

2. 基因组比较基因组比较是通过比较两个或多个微生物基因组序列的相似性和差异性,来了解微生物间的亲缘关系、进化历程和适应性。

基因组比较可以拓展人们对微生物的了解,从而更好地研究微生物的生态、生理和遗传特性。

3. 基因组学应用基因组学在微生物研究中的应用非常广泛。

文献报道了基因组学技术在微生物新种发现、致病微生物的致病机制研究、微生物代谢物生产、环境微生物群落结构分析、微生物质量控制等方面的应用。

二、宏基因组学在微生物研究中的应用与进展宏基因组学指的是对未培养微生物群落的DNA序列进行测定和分析。

它利用DNA序列的信息,可以揭示未培养微生物的遗传多样性、代谢途径和生物合成潜力等信息。

1. 宏基因组学的发展历程宏基因组学技术的发展源于20世纪90年代的环境基因组学。

当时,科学家开始对环境中的微生物进行基因组分析。

但由于微生物多样性较高且未被培养的环境微生物难以分离,传统的基因组测序技术无法对这些未培养微生物进行研究。

为解决这个问题,科学家发展了针对未培养微生物群落的宏基因组学技术。

2. 宏基因组学的应用宏基因组学技术在微生物研究中的应用主要集中在以下方面:(1) 研究微生物群体结构利用宏基因组学技术分析环境微生物群体中不同微生物的DNA序列,可以了解微生物间的亲缘关系、相对数量、生境和生态角色等信息。

瘤胃液宏基因组学及血清代谢组学

瘤胃液宏基因组学及血清代谢组学

瘤胃液宏基因组学及血清代谢组学要说瘤胃液宏基因组学和血清代谢组学这俩个词,听起来就让人有点懵吧?别急,我慢慢跟你说!说白了,这俩个领域就是在研究一些咱们看不见摸不着的小东西,搞清楚它们是怎么在咱们身体里,或者说在动物的体内,搞事情的。

想象一下,咱们把身体比作一台超级复杂的机器,这些小东西就是机器里面的齿轮,大家在幕后默默地运转着,让咱们的机器跑得又快又好。

首先说说瘤胃液宏基因组学。

别看这名字长得像口粮都能吃掉的课题,实际上它研究的东西还挺有趣的。

瘤胃液就像是草食性动物的“秘密厨房”,比如牛羊这类的家伙,它们吃下去的草,经过胃的多重处理,变成了一种复杂的混合物。

你要知道,瘤胃里可是有一堆微生物在默默工作,分解这些看似难以消化的草料。

其实这些微生物,就像是厨房里的大厨,能够把一些不容易消化的物质转化为有用的营养成分。

宏基因组学的作用就在于,它能够帮助科学家搞清楚这些微生物到底都有哪些,怎么合作,能做些什么。

你想想,它们能把草料变得更好消化,那就是一种本事啊!更有意思的是,科学家通过研究这些微生物的基因组,发现了好多让人意想不到的事情。

这些微生物里,可能存在一些能够提高动物生产力、提升饲料转化率的基因,简直是草食动物的“福音”啊!你看,虽然这些微生物看起来不起眼,可它们对动物的健康和生长可起着至关重要的作用。

科学家们通过对这些微生物基因的深入分析,能够精准地找到哪些微生物在瘤胃液中“战斗”得最凶,哪些是吃货中的佼佼者。

这样一来,他们就能通过调整这些微生物的种群结构,提升动物的健康水平,甚至影响它们的体重增长、奶产量等等,简直是给畜牧业开了一个新天地。

再说血清代谢组学。

哎,这一听,觉得好像和血液有关系吧?没错!血清代谢组学关注的正是咱们体内的“化学反应”。

你看咱们每天吃的食物,喝的水,呼吸的空气,都会进入身体进行一系列的代谢过程。

这些过程产生了大量的小分子物质,比如氨基酸、脂肪酸、糖类,这些东西看似不起眼,实际上它们在血液里潜藏着巨大的信息,能够反映出咱们身体的整体健康状态。

宏基因组学在微生物界的应用

宏基因组学在微生物界的应用

宏基因组学在微生物界的应用宏基因组学是一种从环境样品中获取大量的DNA序列,然后对其进行分析和解读的方法。

而微生物学是研究微生物以及其与生态系统的相互关系的学科。

宏基因组学的应用对于微生物学的研究具有非常重要的意义。

本文将介绍宏基因组学在微生物界的应用及其意义。

1、宏基因组学在探测生态体系中未知微生物群落的优势宏基因组学通过研究环境中所有微生物群落的基因组,能够大大扩展我们对微生物世界的认识。

人们在研究微生物时通常只研究其中一小部分如培养的微生物,但是宏基因组学检测出未知的微生物种类。

这种未知细菌很难在传统实验室中被分离出来,但是通过宏基因组学,人们可以获取它们的DNA序列,推断出它们在复杂的微生物群落里存在的数量并且进一步分析它们对环境的影响。

2、宏基因组学在了解微生物种群的生态功能方面的作用微生物在地球上扮演着非常重要的角色,而在不同的生态系统中,不同的微生物群落有着不同的功能。

通过宏基因组学的技术,人们可以了解在各种微生物群落中存在的微生物基因组。

这些基因组的信息使得人们能够研究微生物在不同的环境中所扮演的角色,如研究哪些微生物是负责氮循环的,哪些微生物擅长产生有用的代谢产物等。

这样的研究对于人类生活有着非常重要的意义,如对于净化环境、治疗疾病、发展新型农业等有着重要的作用。

3、宏基因组学在检测微生物之间的相互作用方面的作用在微生物群落中,不同的微生物之间存在着相互作用。

这些微生物之间存在一些协同或者竞争关系。

而这些关系通常是靠它们之间的分泌物或者其他信号分子来完成的。

如今宏基因组学方面的研究也为人们提供了一种检测这些微生物之间关系的方法。

通过分析微生物的基因组和生态学指标来了解微生物之间的相互作用。

这种研究对于了解微生物之间生态功能互补性以及建立相对稳定的生态系统具有非常重要的意义。

综上所述,宏基因组学的发展对于微生物学研究的方法和理解有着重要的意义。

它的使用能够探测未知细菌、了解微生物种群的生态功能以及检测微生物之间的相互作用。

宏基因组学技术在微生物生态研究中的应用

宏基因组学技术在微生物生态研究中的应用

宏基因组学技术在微生物生态研究中的应用微生物学在生态学、环境科学、医学、农业等众多领域担任着重要角色。

然而,微生物的深入研究对于科学研究者来说始终是一个巨大的挑战。

常规方法如菌落计数法和传统PCR都只能研究细菌群落的概略信息,与之相比,宏基因组学技术的应用,使得微生物群落更加复杂和精细地被探究。

宏基因组学技术是指将从样本中提取的DNA水平千倍于微生物细胞的生物大量数据组合在一起进行研究的后种基因组学。

这一技术旨在研究微生物群落的多样性以及微生物与宿主之间的相互作用。

宏基因组学主要包括两个步骤:提取DNA和托管剖析。

DNA提取是有关DNA在样品中的分离、纯化和浓缩。

提取后可以用凝胶电泳、紫外线、荧光素等技术得到纯化的DNA。

在托管剖析中,基因分离并序列化被定量的序列。

宏基因组学能够在不对生态学实验室进行人工操纵的情况下对微生物进行分析。

模式化学习、物种生态学和系统生物学是其主要的研究思路。

宏基因组学技术的优势由其多样性分析、代谢指纹图谱、基因之间的互作性线路图、功能注释、生态滤波等方面表现出来。

这些功能的存在可以快速而准确地区分微生物代谢类型和物种生态学角色,同时扩大了我们对微生物生态学的认识。

首先,宏基因组学技术能够让研究人员了解未被发现的菌种。

以前,菌落计数是一种常用的方法,然而菌落计数只能确定被人类发现的一些物种,并不能确定未被发现的种类。

宏基因组学能够利用基因特点来准确地识别微生物并确定物种的详细性信息。

其次,宏基因组学技术能够揭示物种之间的微环境变化和宏观生态学关系,进而探究微生物群落与外部环境之间的相互作用。

由于微生物群落内部具有复杂的代谢物合成和分解,每个微生物都有其特定的代谢物。

宏基因组学技术可以打破传统方法的限制,准确地确定物种之间的代谢物点和生态学角色,同时分析微生物群落的稀有物种。

最后,获得的数据可以在大量的信息中寻找一些与特定代谢通路、关键代谢通路相关或宿主相互作用的重要基因信息,进一步揭示微生物生态学角色的深层次研究。

微生物宏基因组学及其在瘤胃微生物研究中的应用

微生物宏基因组学及其在瘤胃微生物研究中的应用

微生物宏基因组学及其在瘤胃微生物研究中的应用
安娜;李吕木;程建波
【期刊名称】《安徽农业科学》
【年(卷),期】2010(038)007
【摘要】宏基因组学可以在非实验室纯培养的条件下直接获取环境微生物DNA,并对其基因组进行分析,将其克隆到合适的载体上,筛选所需要功能基因.就微生物宏基因组学及其在瘤胃微生物研究中的应用作一综述.
【总页数】3页(P3328-3330)
【作者】安娜;李吕木;程建波
【作者单位】安徽农业大学动物科技学院,安徽合肥,230036;安徽农业大学动物科技学院,安徽合肥,230036;安徽农业大学动物科技学院,安徽合肥,230036
【正文语种】中文
【中图分类】Q93
【相关文献】
1.变性梯度凝胶电泳在瘤胃微生物多态性研究中的应用 [J], 李启琳;李燕鹏;王士长
2.宏基因组技术在瘤胃微生物多样性研究中的应用 [J], 李伟;
3.RNA-Seq技术在瘤胃微生物研究中的应用进展 [J], 廖奇;刘旭川;李清;樊月圆;张春勇;杨舒黎;毛华明;冷静
4.宏基因组技术在瘤胃微生物多样性研究中的应用 [J], 李伟
5.宏基因组学及其在瘤胃微生物中的应用研究进展 [J], 吴锡川;杨舒黎;苟潇;冷静;毛华明
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物种类多, 分布广, 适应力强, 据估计仅原核生物数 量就达 4 10 ~ 6 10 。微生物广泛存在于大气、 土壤、 水和生物体 , 在人类的生活和生产中起着不可替代的作用。 长期以来, 人们对微生物的研究大多局限于实验室纯培养的 微生物, 然而实验室条件下可培养的微生物占不到自然界微 [ 2- 4] 生物总数的 1% , 99 % 以上的微生物无法实验室纯培养 , 实际上未 ( 难 ) 被纯培养的微生物才是环境微生物的主体
基金项目 作者简介 收稿日期 安徽省自然科学基金资助项目 ( 090411019) 。 安娜 ( 1984- ), 女 , 安徽蚌 埠人 , 硕 士研究 生 , 研究 方向 : 营 养与分子生物学 。 * 通讯作者 , E m ai: l ll m 56 @ ahau . edu. cn 。 2009 11 23
[ 30]
。谭婉新等以柯
斯质粒为载体构建了 1 个含约se 活性又表 达 42 MU C ase 酶活性的克隆
[ 31]
。郭鸿等构建了水牛瘤胃未的独立克隆, 并对其中 1个克隆进行 亚克隆及序列分析, 表明该基因的编码产物可能是来自水牛 瘤胃未培养微生物中的 1个新的 3 小结 葡萄糖苷酶
[ 11 ] [ 9]
,
这就大大限制了人们对自然界中微生物的探索研究。近年 来 , 现代分子技术和基因组学研究的迅速发展, 为微生物的 研究提供了一种新方法即宏基因组学 ( M etageno m ics) 。 1998 年 , H andelsm an等提出了绕过菌株分离培养直接在基因水平 上研究和开发未培养微生物资源的技术, 即环境生物宏基因 组学 ( m etageno m e) 。 m etageno m e指的是自然环境中某一特 定环境中微生物群落的基因组总和 , 它包含了远比那些可培 养的类群更海量的信息 。宏基因组研究通过提取特定环 境中所有微生物的基因组 DNA, 并克隆到合适的载体, 从而 建立起不需要针对功能基 因分离特定的微生物, 使得研究工作更加方便。 1 环境基因组的构建 宏基因组学的基本方法是直接分离未培养微生物的基 因组 DNA ( eDNA ), 通过载体连接克隆到可培养微生物中 , 最后通过功能或序列筛段的 获得 , 要尽可能多地得到样品中的 DNA, 并且充足完整的基因或基因簇。 1. 1 总 DNA 提取方法 总 DNA 提取方法一般有 2 种: 直 [ 6] [ 7] 接法 和间接法 。直接法也叫细胞原位裂解法, 就是直接 将样品悬浮在裂解缓冲液中处理, 然后再进行 DNA 提取。 这种方法的优点是操作简单且成本低, 可以获得高产量的 DNA。但由于机械损伤 的作用, 所提 取的 DNA 片段 较小
安徽农业科学, Jou r n al ofAnhu iAgr.i Sc. i 2010 , 38( 7 ): 3328 - 3330
责任编辑
胡剑胜
责任校对
况玲玲
微生物宏基因组学及其在瘤胃微生物研究中的应用
安 娜, 李吕木 , 程建波
* (安徽农业大学动物科技学院, 安徽合肥 230036)
摘要 宏基因组学可以在非实验室纯培养的条件下直接获取环境微生物 DNA, 并对其基因组进行分析, 将其克隆到合适的载体上 , 筛选 所需要功能基因。 就微生物宏基因组学及其在瘤胃微生物研究中的应用作一综述。 关键词 宏基因组 ; 瘤胃微生物 中图分类号 Q 93 文献标识码 A 文章编号 0517- 6611( 2010) 07- 03328- 03 M icrob ialM etagenom ics and Its Application in R u m en M icrobiology R esearch AN N a et al ( Co llege o fAn m i al Science and Technology , AnhuiA gr iculturalU niversity , H efe,i Anhu i230036) A bstract Environm enta lM icrobia lDNA was acqu ired directly by etageno m ics under the conditions of pure culture and non laboratory , and its geno m e was analyzed, cloning into a suitab le vector , screening the required functional genes. the m etageno m ics and its app lication in ru m en m icroorganis m s research were revie w ed . K ey w ords M e tagenom ics ; Ru m en m icroorgan ism
[ 1] WH I TMAN W B , COLE M AN D C ,WI EBE W J . Pr ok aryotes : the unseen m ajority [ J]. ProcNatlAcad SciUSA, 1998 , 95 : 6578- 6583 . [ 2] HANDELS MAN J , RONDON M R, BRADY S F, et a. l M olecular biological access to the chem is try of unknown soilm icrobes : a new fron tier for natural p roducts[ J]. Chem B io, l 1998 ,5 : 245- 249 . [ 3] TORSV I K V, OVREAS L. M icrob ial divers ity and function in soi:l from genes to ecosystem s[ J]. Curr Op inM icrobio,l 2002 ,5 : 240- 245 . [ 4] HANDELS MAN J . M etagenom ics : app lication of genom ics to uncultu red m icroorgan is m s[ J]. M icrob iolM o lB iolRev, 2004 , 68 : 669- 685 . [ 5] V I GD I S T, VREAS L. M icr obial d iversity and fun ction in soi:l from genes to ecosystem s[ J]. Curr Op in M icrobio,l 2002 , 5( 3): 240- 245 . [ 6] ZHOU J , BRUNS M A, TI EDJE J M. DNA recovery from soils of d iverse compos ition [ J]. App lEnvir onM icrobio,l 1996 , 62 : 316- 322 . [ 7] STE I N J L, MARS H T L, WU K Y, et a. l Characterization of uncu ltivated p rokaryotes : isolation and analysis of a 40 k ilobase pair genom e fragm ent from a p lanktonicm arine archaeon[ J]. J Bacterio, l 1996 , 178 : 591- 599 . [ 8] HENNE A, DAN I EL R, SCHM I TZ R A, et a. l Construction of environm en tal DNA libraries in E scherich ia coli and screen ing for the presence of genes conferring utilization of 4- hydroxybutyrate [ J]. Appl Environ M icrob io,l 1999 , 65 : 3901- 3907 . [ 9] ENTCHEVA P, LIEBL W, JOHANN A, et a. l D irect clon ing from enrich m ent cultures , a reliab le s trategy for isolation of comp lete operons and genes from m icrob ial consortia [ J]. App lEnvironM icrob io, l 2001 , 67 : 8999 . [ 10] BE J A O, SUZUK IM T, KOONI N E V, et a. l Construction and analysis of bacterial artificial chrom osome libraries from a marine m icrob ial asse m b lage[ J]. E nviron M icrob io, l 2000 ,2 : 516- 529 . [ 11] PARK H J , JEON J H, KANG S G, et a. l Functional express ion and re fold i ng of new alkaline esterase, E M 2L8 from deep sea sedm i entm etage nom e[ J]. Protein Expr Puri, f 2007 , 52 : 340- 347 . [ 12] WANG G Y, GRAZI AN I E , WATERS B , et a.l Novel natural products from soilDNA libraries in a streptomycete hos t[ J]. O rg Let, t 2000 ,2 : 2401 - 2404 . [ 13] MART I NEZA, KOLVEK S J , YI P C L, et a.l Geneticallym od ified bacteri al strains and novel bacterialartificial chromosom e shuttle vectors for con structing env ironmen tal libraries and detecti ng heterologous natural prod u cts in mu ltiple exp ression hosts[ J]. Appl Environ M icrob io, l 2004 , 70 :
相关文档
最新文档