西安郭杜大学城学校数学代数式专题练习(解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:

方法①:________ 方法②:________

请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________

(2)根据(1)中的等式,解决如下问题:

①已知:,求的值;

②己知:,求的值.

【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2

(2)解:①把代入

∴,

②原式可化为:

【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .

方法②:草坪的面积= ;

等式为:

故答案为:,;

【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和

的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.

2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类

①若a≠0,b=c=0,则称该整式为P类整式;

②若a≠0,b≠0,c=0,则称该整式为PQ类整式;

③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;

(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;

(2)说明整式x2﹣5x+5为“PQ类整式;

(3)x2+x+1是哪一类整式?说明理由.

【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.

若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

故答案是:a=b=0,c≠0;a=0,b≠0,c≠0

(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)

=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.

即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”

(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),

∴该整式为PQR类整式.

【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.

(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.

3.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地台,杭州厂可支援外地台.现在决定给武汉台,南昌台.每台机器的运费(单位:百元)如表.设杭州运往南昌的机器为台.

南昌武汉

温州厂

杭州厂

(1)用的代数式来表示总运费(单位:百元).

(2)若总运费为元,则杭州运往南昌的机器应为多少台?

(3)试问有无可能使总运费是元?若有可能,请写出相应的调运方案;若无可能,请说明理由.

【答案】(1)解:设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,

温州运往南昌(6-x)台,运往武汉(4+x)台,根据题意得:

W=4(6-x)+8(4+x)+3x+5(4-x)=2x+76,

∴总运费为(2x+76)百元

(2)解:当W=8200元=82百元时,76+2x=82,解得x=3.

答:总运费为8200元,杭州运往南昌的机器应为3台

(3)解:当W=7400元=74百元时,

74=2x+76,解得:x=-1,

∵0≤x≤4,

∴x=-1不符合题意,

总运费不可能是7400元.

【解析】【分析】(1)设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,温州运往南昌(6-x)台,运往武汉(4+x)台,杭州运往南昌x台需要的运费为:3x百元,杭州运往武汉(4-x)台需要的运费为:5(4-x)百元,温州运往南昌(6-x)台需要的运费为4(6-x)百元,温州运往武汉(4+x)台需要的运费为:8(4+x)百元,根据总运费等于各条线路的运费之和即可列出W与x之间的函数关系式;

(2)把W=8200元=82百元代入(1)列的函数关系式即可算出x的值,从而得出答案;(3)把W=7400元=74百元代入(1)列的函数关系式即可算出x的值,根据x的取值范围进行检验即可得出结论。

4.已知A,B在数轴上分别表示的数为m、n.

(1)对照数轴完成下表:

(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.

(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.

【答案】(1)3;7;2

(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|

根据题意得出:d=|x﹣(﹣2)|=|x+2|,

如果d=3,那么3=|x+2|,

解得x=1或﹣5

(4)解:根据题意得出:∵﹣5<m<3,

相关文档
最新文档