北师大版七年级数学下册平行线的性质教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质
课时安排说明:
本节“平行线的性质”共分两课时完成,第一课时探索得出平行线的三条性质,并认识平行线的性质和判别直线平行的条件的区别和联系。第二课时在进一步区分并熟练应用平行线的性质和判别直线平行的条件的同时,让学生逐渐理解几何推理的要领,分清推理中因为和所以表达的意义,从而初步学习有理有据地进行几何推理。
一、学生起点分析
学生的知识技能基础:学生在小学就已经直观认识了角、平行与垂直,对其性质有了一定的了解。在本章前面几节课中,在学习判定直线平行的条件的同时,自然引入了“三线八角”,认识了同位角、内错角和同旁内角。这些知识储备为学生本节课的学习奠定了良好的知识技能基础。
学生的活动经验基础:在七年级上学期,学生对几何知识的学习过程中,已经历了一些探索、发现的数学活动,并积累了一些直观活动经验,具备了一定的图形的识别能力和借助图形分析、解决问题的能力,初步感受了推理说明的必要性;同时七年级学生经过一个学期的合作交流,初步形成了一定的合作学习的经验,具备了一定的合作与交流的能力。而且初中生本身好胜、好强的特点,也为他们独立思考,合作探究奠定了基础。
二、教学任务分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际生活中也有着广泛的应用。平行线的性质为三角形内角和定理的证明中转化的方法提供了支撑,,也为今后学习三角形全等、三角形相似等知识奠定了理论基础,因此学好这部分内容至关重要。为此,特制定本节课的教学目标是:
1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,
能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习回顾、逆向猜想;第二环节:动手操作、探求新知;第三环节:巩固新知,灵活运用;第四环节:对比学习,加深理解;第五环节:联系拓广,综合应用;第六小节:课堂小结,布置作业。第一环节:复习回顾,逆向猜想
活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)
所以a∥b()
(2)因为∠4=∠(已知)
所以a∥b(内错角相等,两直线平行)
(3)因为∠4+∠=1800 (已知)
所以a∥b()
活动目的:平行线的性质与判定直线平行的条件
是互逆的,对初学者来说易将它们混淆,因此,复
习判定直线平行的条件为后面学习性质做好准备。
活动的注意事项:利用平行线的性质与判定直线平行的条件的互逆关系自然引入新课,学生不觉得突兀,极易猜想出结论。但因为学生在应用时非常容易混淆,因此在学生回答判定直线平行的三个条件时,可将其合理板书,以便直观地进行判定直线平行的条件与平行线的性质的对比分析,加深学生的印象。
第二环节:动手操作、探求新知;
反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。如图,直线a与直线b平行。
(1)测量同位角∠1 和∠5 的大小,它们有什么关
系?图中还有其他同位角吗?它们的大小有什么关系?
(2)图中有几对内错角?它们的大小有什么关系?为什么?
(3)图中有几对同旁内角?它们的大小有什么关系?为什么?
(4)换另一组平行线试试,你能得到相同的结论吗?
这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:
活动1、先测量角的度数,把结果填入表内.
角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度数
活动2、根据测量所得的结果作出猜想:
同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?
活动3、验证猜测.
另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?
活动4、归纳平行线的性质
性质1:两条平行直线被第三条直线所截,同位角相等。
简称为两直线平行, 同位角相等.
性质2:两条平行直线被第三条直线所截,内错角相等。
简称为两直线平行, 内错角相等.
性质3:两条平行直线按被第三条线所截,同旁内角互补。
简称为两直线平行, 同旁内角互补.
活动5、运用与推理
你能根据性质1,说出性质2,性质3成立的理由吗?
因为a∥b.
所以∠1=∠5 (_______)
又因为∠1=∠_____(对顶角相等)
所以∠4=∠5,
类似地,对于性质3,你能说出道理吗?
活动目的: 通过测量、猜想、验证,让学生首先在动手探索的过程中感知平行线的性质,然后再在性质1的基础上推理论证性质2、3的正确性,从而使学生
对知识的认识从感性上升到理性。
活动的注意事项: 教学活动一定要在学生的认知基础上建构,问题设计跨越性不能太强,让学生在主动探索的过程中得到不同程度的感悟,在合作交流中去探究问题的实质。
第三环节:巩固新知,灵活运用;
活动内容:
1.如图所示,AB∥CD,AC∥BD,分别找出与
∠1相等或互补的角。
2.如图是一块梯形铁片的残缺部分,量得∠A=65°,∠B=80°,
梯形另外两个角分别是多少度?
3.如图,一条公路两次拐弯后,和原来的方向相同,
第一次拐的角∠B是130°,第二次拐的角∠C是多少度?
活动目的:这几道题考察的都是平行线的性
质,目的就是通过其来落实基础。因为学生刚刚接触到新知识,往往应用起来会比较生疏。这三个题目,第一题是直接应用,对第二题,学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找∠C 和∠D的大小.第3题则需要学生将方向不变这个条件转化成平行,有利于学生进一步理解知识,感受数学和生活的联系。因此,三个题目层层递进,是对新知识从熟悉到熟练的过程,无论是基本的习题,还是变化的习题,都以透彻理解性质为最终目标。
活动注意事项:在此环节,教师不必包办代替,要充分调动学生的主动性和积极