多元统计分析实验报告,计算协方差矩阵,相关矩阵,sas
多元统计分析实验报告
第二部分:实验过程记录(可加页) (包括实验原始数据记录,实验现象记录,实验过程发现的问题
等) 操作步骤: 1、 执行“分析”—“比较均值”—“单因素方差分析” ; 2、 在弹出的单因素方差分析对话框中,将时期选为因子,将 X1、X2、X3、X4 选为因变量; 3、 单击“对比” ,选择“多项式” ,在后面的下拉菜单中选择“线性” ,然后继续; 4、 单击“两两比较” ,选择“LSD”和“S-N-K” ,显著性水平默认为 0.05,然后继续; 5、 单击“选项” ,选择“方差同质性检验”和“均值图” ,然后继续,点击“确定”后即可输出结果。
12
题目:研究者提出,随着时间的推移头骨尺寸会发生变化,这是外来移民与原住民人口民族融合的证据。表 6.13 是古埃及三个时期的男性头骨的四个观测值得观测数据,这是个观测变量是: X1=头骨最大的最大宽度 X2=头骨高度 X3=头骨底穴至齿槽的长度 X4=头骨鼻梁高度 对古埃及头骨数据构造单因子 MANOVA 表, a=0.05.并构造 95%联合置信区间来判断在三个时期中哪个分 令 量的均值发生了改变。同常的 MANOVA 假设对这些数据是不是合理的?请解释。 部分数据如下:
实验课程名称:多元统计分析-均值向量检验
实验项目名称 实 验 者 同 组 者
均值向量检验习题 均值向量检验习题 6.24
专业班级
实验成绩 实验成绩 组 别 年 月 日
实验日期
一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验
方案与技术路线等) 实验目的:深入了解方差分析及方差分析的概念,掌握方差分析的基本原理;掌握方差分析的过程;增强实 践能力,能够动手用统计软件解决实际问题,熟练掌握方差分析的基本操作。 实验原理:多个正态总体均值向量检验(多元方差分析) 设 有 k 个 p 元 正 态 总 体 N p ( µ1 , Σ), L , N p ( µ k , Σ) , 从 每 个 总 体 抽 取 独 立 样 品 个 数 分 别 为
多元统计数据分析报告(3篇)
第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。
多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。
本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。
二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。
三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。
2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。
(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。
(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。
(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。
(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。
四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。
(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。
(3)工作环境得分普遍较高,其中工作压力得分最低。
2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。
(2)创新能力与稳定性呈负相关。
3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。
多元统计分析与统计软件实验指导书——实验三 判别分析
实验三判别分析【实验目的】1.通过上机操作使学生掌握判别分析方法在SPSS软件中的实现。
2.要求学生重点掌握该方法的用途,能正确解释软件处理的结果。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】学会判别分析的基本操作,熟悉各对话窗口,对输出的分析结果进行解读并给出分析结论。
【实验学时】4学时【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【实验例题】为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。
试建立判别函数,判定广东、西藏分别属于哪个收入类型。
判别指标及原始数据见表1。
表1:1991年30个省、市、自治区城镇居民月平均收人数据表单位:元/人x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体)x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体)x3:人均来源于国有经济单位标准工资 x8:人均从工作单位得到的其他收入x4:人均集体所有制工资收入 x9:个体劳动者收入x5:人均集体所有制职工标准工资样品序地区x1x2x3x4x5x6x7x8x9类序G11 北京170.03110.259.768.38 4.4926.8016.4411.90.412 天津141.5582.5850.9813.49.3321.3012.369.21 1.053 河北119.4083.3353.3911.07.5217.3011.7912.00.704 上海194.53107.860.2415.68.8831.0021.0111.80.165 山东130.4686.2152.3015.910.520.6l12.149.610.476 湖北119.2985.4153.0213.18.4413.8716.478.380.517 广西134.46 98.6148.188.90 4.3421.4926.1213.6 4.568 海南143.79 99.97 45.60 6.30 1.56 18.67 29.49 11.8 3.829 四川128.05 74.96 50.13 13.9 9.62 16.14 10.18 14.5 1.2110 云南127.41 93.54 50.57 10.5 5.87 19.41 21.20 12.6 0.9011 新疆122.96 101.4 69.70 6.30 3.86 11.30 18.96 5.62 4.62G21 山西102.49 71.72 47.72 9.42 6.96 13.12 7.9 6.66 0.612 内蒙古106.14 76.27 46.19 9.65 6.27 9.655 20.1O 6.97 0.963 吉林104.93 72.99 44.60 13.7 9.01 9.435 20.61 6.65 1.684 黑龙江103.34 62.99 42.95 11.1 7.4l 8.342 10.19 6.45 2.685 江西98.089 69.45 43.04 11.4 7.95 10.59 16.50 7.69 1.086 河南104.12 72.23 47.31 9.48 6.43 13.14 10.43 8.30 1.117 贵州108.49 80.79 47.52 6.06 3.42 13.69 16.53 8.37 2.858 陕西113.99 75.6 50.88 5.21 3.86 12.94 9.492 6.77 1.279 甘肃114.06 84.31 52.78 7.81 5.44 10.82 16.43 3.79 1.1910 青海108.80 80.41 50.45 7.27 4.07 8.371 18.98 5.95 0.8311 宁夏115.96 88.2l 51.85 8.81 5.63 13.95 22.65 4.75 0.97G31 辽宁128.46 68.91 43.4l 22.4 15.3 13.88 12.42 9.01 1.412 江苏135.24 73.18 44.54 23.9 15.2 22.38 9.661 13.9 1.193 浙江162.53 80.11 45.99 24.3 13.9 29.54 10.90 13.0 3.474 安徽111.77 71.07 43.64 19.4 12.5 16.68 9.698 7.02 0.635 福建139.09 79.09 44.19 18.5 10.5 20.23 16.47 7.67 3.086 湖南124.00 84.66 44.05 13.5 7.47 19.11 20.49 10.3 1.76待判1 广东211.30 114.0 41.44 33.2 11.2 48.72 30.77 14.9 11.12 西藏175.93 163.8 57.89 4.22 3.37 17.81 82.32 15.7 0.00贝叶斯判别的SPSS操作方法:1. 建立数据文件2.单击Analyze→Classify→Discriminant,打开Discriminant Analysis判别分析对话框如图1所示:图1 Discriminant Analysis判别分析对话框3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。
多元统计分析实验报告,计算协方差矩阵,相关矩阵,SAS
院系:数学与统计学学院专业:__统计学年级:2009 级课程名称:统计分析 ____学号:____________姓名:_________________指导教师:____________2012年4月28日(一)实验名称1. 编程计算样本协方差矩阵和相关系数矩阵;2. 多元方差分析MANOVA。
(二)实验目的1. 学习编制sas程序计算样本协方差矩阵和相关系数矩阵;2. 对数据进行多元方差分析。
(三)实验数据第一题:第二题:(四)实验内容1. 打开SAS软件并导入数据;2. 编制程序计算样本协方差矩阵和相关系数矩阵;3. 编制sas程序对数据进行多元方差分析;4. 根据实验结果解决问题,并撰写实验报告;(五)实验体会(结论、评价与建议等)第一题:程序如下:proc corr data=sasuser.sha n cov;proc corr data=sasuser.sha n no simple cov;with x3 x4;partial x1 x2;run;结果如下:(1)协方差矩阵$AS亲坯曲;15 Friday, Apr: I SB,沙DOCOUR过程x4目由度=30Xi x2x3x4x5X?-10.I9B4944-0.45E2GJ5I.3347097-G.1193E48-£0.e75»GS-ID. 188494669,36&Q3?9-7.22IO&OS1J5692043I5.49ee^91S.Oa97SM-8.45S2645■7,221050829.S78&S46-6.372E47I-15.3084183-21.7352376-11.56747851.3841097 1.G5S2M7t.3726171IJ24«17B 4.e093011 4.4C124732.B747CM-G. I1S3S49 1.GS92043-is.soul aa 4.B09B01I68.7978495劣』S670971S.57ai1B3-IH.05l6l?a15.43S6569-J1.73S2376孔耶124TB27.0387097105.103225&S7.3505S7E:-2D K5752??319-11337204-1L55M7S52r9747?3i19,573118337.3S0&87E33.3SQ6452 (2) 相关系数矩阵Pearson相关系数” N =引当HO: Rho=0 时.Prob > |r|Xi Xixl1.QQ000x2-C.239540.2061x3-0,304590.0957x40.18975Q.3092x5'0.141570.4475x6-0.837870.0630-0.492920.0150x2-0.23354 1.00000-0.162750.143510.022700.181520.24438 x20.20C10.31:1?0.441?0.90350.32640.1761x3-0.30459-0.16275 1.00000-0.06219-0.34641-0.^797-0.23674 x30.095?0.381?<.00010.0563o.oses0 JS97x40.1S8760.14351-0.86219L000000.400540,313650.22610 x40.30920.4412<.0001 D.02EG Q.085S0.2213x5-0J 41570.02270-0.946410.40054 1.000000.317370.26750 x50.4J750.90350.0G68Q.025&0.08130+1620x6-0.33?e?0.1S162-0.397970.813650.31787LOOOOO0.82976 x60.0S300.32840.02660.08580.0813C0001辺-0.432920.24938-0.288740.22810 D.267600.92976 1.00000 x70,01500J7610.19970.22130JG20<.0001第二题:程序如下:proc anova data=sasuser.hua ng;class kind;model x1-x4=k ind;manova h=k ind;run;结果如下:(1)分组水平信息The ANNA ProcedureCla^s Level Informat ionClass Level®Valueskind 3 123Number of observatIons CO(2) x1、x2、x3、x4的方差分析Dependent Variable : xl xlSource DFSum of SquaresMea n Square F Value Pr > F Model 25221.30000 2610.650003.380.0411Error57 44069.55000773.15000Corrected Total 5949290.85000R-Square Coeff Var Rcot MSE xl Mean 0.10592832.3508727.8055785.95000Source DF Anova SS Mean Square F ValuePr > F kind25221.300000 2610.6500003.380.0411The ANOVA ProcsdureDependent Variable : x2 x2S UB ofSource DFSquares Mean Square F ValuePr > F Model 2 518.533333 259.26666?1.620.2078Error57 9148.050000160.492105Corrected Total 599666.583333R-Square Coeff Var Root MSE 0.05364222.9988812.6685555.08333Source DF Anova SS Mean Square F ValuePr > Fkind2518.5333333259.26666671.620.2078The ANOVA Procedure)epende 「t Variable : x:3 x3S UM ofSource DF Squares Mean SquareF Value Pr > FModel2 2480.8333 1240.41670.170.8478Error57 427028.50007491.7281Corrected Total 59429509.3333R-Square Coeff Var Root MSE x3 Mean0.00577621.1798088.55477408.66672480.8333331240.4166670.17 0.8478The ANOVA Procedurex2 Mean SourceAnova SS Mean Square F Value Pr > Fkind(3) 多元方差分析The ProcedureMulti var I ate Ana lysis of Vari sinceCharacteri st ic Roots and Vectors of :: E Inverse 水 H, whereH =舫ow SSCP Matrix for kindE = Error SSCP MatrixChareucteri st icRoot Percent Characteristic Vector V F EV=1x1 x2 x30.33804686 73J7 -0.00045795 -0.00379096 0.00090988 0.00279339 0.12323983 26,C3 0.00424111 0.00236878 0.00D01B42 0.00002832 0.00000000 0.00 0.00121062 -0.00032401 0.00157046 -0.00006539 0.000000000,00-0.003177880.010435260.000070140.00078872MANOVA Test Criteria and F ApproxI nat Ions for the Hypothesis of No Overall kind EffectH 二 Anova SSCP Matr ix for kindE = Error SSCP MatrixS=2M=0*5 N=26 Stat ist icVa 1 ueF Value Num DFDsn DF Pr > F Wilks' Lambda0*660359533.04 8 IDS 0.0040 Pi 1lai f s Trace0.36123585 3,03 e 110 0.0041 Hote11 ing-Law 1ey Trace Q.45927921 3.07 e 74.85G0.0048 Roy s Greatest Root 0.336045804.624550.0027NOTE : F Statistic for Roy's Greatest Root iis an upper boundsNOTE: F Statist ic f or Wilks' Lambdei is exact.根据多元分析结果,p 指小于0.05,表明在0.05的显著水平下,四个变量有 显著差异SourceDF Sum of Squares Mean iSouare F ValuePr > F Model239529,3000 192B4.8E0D 8.010.0009Error57 197115.10002405.5281Corrected Totiii59175644.4000R-SqusreGreff Vir Root M SE x4 Mean0.21936018.96604 49.04610 250.6000SourceDFA JWVI SSMean ^4j&re F V&luePr > F kind2 38529.3000019264.650008.010.0009The ANOVA ProcedureDependent Var iabls : x4 x4。
第3章统计实验(多元正态总体检验)
实验零多元正态总体检验(均值向量检验)1.实验目的:本实验讨论利用多元正态总体检验中的均值向量检验方法去判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
通过该实验,能够起到如下的效果:(1) 理解多元正态总体检验中的均值向量检验方法的作用、思想、数学基础、方法和步骤;(2) 熟悉如何利用多元正态总体检验中的均值向量检验方法,提出问题、分析问题、解决问题、得出结论;(3)会调用SAS软件实现多元正态总体检验中的均值向量检验方法的各个步骤,根据计算的结果进行分析,得出正确的结论,解决实际的问题。
2.知识准备:多元正态总体检验中的均值向量检验是从判断满足多元正态分布的总体的均值是否等于预先判断的向量(单正态总体检验)或判断两个独立的、满足多元正态分布的总体的均值是否相等(双正态总体检验)。
其思想和步骤是:1.假设“需判断的总体均值等于预先判断的向量(单正态总体检验)”或“需判断的两个总体的均值相等(双正态总体检验)”;2.在该假设下,构造适当的统计量并给出其分布;3.根据观测数据算出其统计量的值;4.根据预先确定的检验水平查阅相应的分布表确定临界值和拒绝域;5.根据结果判断接受或拒绝原假设,得出结论。
(具体见书【1】第三章)3.实验内容:一、单正态总体检验:人出汗多少与人体内钠、钾含量有一定关系。
今测20名健康成年女性出汗多少(X1)、钠含量(X2)、钾含量(X3),其数据如下表1:表1 健康成年女性出汗情况的基本数据序号X1 X2 X3 序号X1 X2 X31 3.7 48.5 9.3 11 3.9 36.9 12.72 5.7 65.1 8 12 4.5 58.8 12.33 3.8 47.2 10.9 13 3.5 27.8 9.84 3.2 53.2 12 14 4.5 40.2 8.45 3.1 55.5 9.7 15 1.5 13.5 10.16 4.6 36.1 7.9 16 8.5 56.4 7.17 2.4 24.8 14 17 4.5 71.6 8.28 7.2 33.1 7.6 18 6.5 52.8 10.99 6.7 47.4 8.5 19 4.1 44.1 11.210 5.4 54.1 11.3 20 5.5 40.9 9.4利用多元正态总体检验中的单正态均值向量检验方法判断“(X1,X2,X3)的均值是否等于(4,50,10)”【1】(假设总体服从正态分布,分别取检验水平为0.05、0.01)。
应用多元统计分析实验报告
多元统计分析实验报告学院名称理学院专业班级应用统计学14-2学生姓名张艳雪学号201411081051工资、受教育年限、初始工资和工作经验资料如下表所示: 设职工总体的以上变量服从多元正态分布,根据样本资料利用 SPSS 软件求出均注 1:最大似然估计公式为: μˆ = X = ∑ ∑ (X i - X )(X i - X )' ; ˆ第一章 多元正态分布1.1 从某企业全部职工中随机抽取一容量为 6 的样本,该样本中个职工的目前值向量和协方差矩阵的最大似然估计。
1 n n i =1 X i , Σ = 1 nn i =1一.SPSS 操作步骤:第一步:利用 spss 建立数据集第二步:分析--描述统计--描述 计算样本均值向量 第三步:分析--相关--双变量计算样本协方差阵与样本相关系数二.输出结果:⎪ μ= 37125 ⎪ 152.50⎪ ⎛ 352068000 12500 -110677500 102000 ⎫= -110677500 - 86250 2192793750 691125 ⎪16695.1⎪⎭ ∑ X i,∑ (X i - X )(X i - X )'ˆ三.实验结果分析:样本均值为样本的协方差∑⎪⎪如此就可以按照极大似然估计方程:1 nΣ =n i =1得出均值向量与协方差向量的最大似然估计结果。
μ=X=1nn i=1ˆ第三章聚类分析3.1下表是15个上市公司2001年的一些主要财务指标,使用系统聚类法和K-均值法利用SPSS软件分别对这些公司进行聚类,并对结果进行比较分析。
公司编号净资产收益率每股净利润总资产周转率资产负债率流动负债比率每股净资产净利润增长率总资产增长率111.090.210.0596.9870.53 1.86-44.0481.99211.960.590.7451.7890.73 4.957.0216.11300.030.03181.99100-2.98103.3321.18411.580.130.1746.0792.18 1.14 6.55-56.325-6.19-0.090.0343.382.24 1.52-1713.5-3.366100.470.4868.486 4.7-11.560.85710.490.110.3582.9899.87 1.02100.2330.32811.12-1.690.12132.14100-0.66-4454.39-62.759 3.410.040.267.8698.51 1.25-11.25-11.4310 1.160.010.5443.7100 1.03-87.18-7.411130.220.160.487.3694.880.53729.41-9.97128.190.220.3830.31100 2.73-12.31-2.771395.79-5.20.5252.3499.34-5.42-9816.52-46.821416.550.350.9372.3184.05 2.14115.95123.4115-24.18-1.160.7956.2697.8 4.81-533.89-27.74一、实验原理:1.系统聚类的基本思想是:首先,每个样品(或变量)先聚成一类,然后,选择距离公式计算类与类之间的距离,把距离相近的样品(或变量)先聚成类,距离相远的后聚成类,该过程一直进行下去,每个样品(或变量)总能聚到合适的类中,最后,所有的样品(或变量)聚成一类。
多元统计分析实验报告计算协方差矩阵相关矩阵SAS
多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。
实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。
2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。
3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。
计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。
4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。
计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。
5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。
实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。
协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。
相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。
使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。
该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。
实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。
这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。
在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。
多元统计实验SAS软件应用基础
6 90 78 82 75 97
7 75 73 88 97 89
8 93 84 83 68 88
9 87 73 60 76 84
10 95 82 90 62 39
11 76 72 43 67 78
12 85 75 50 34 37
请计算各门成绩的均值、方差、标准差、变异系数、偏度、峰度。
二,实验原理
对于样本容量为n的一个样本:
有如下概念:
均值(Mean):
方差():
偏度(SKEWNESS):
峰度(KURTOSIS):
中位数(MEDIUM):
分位数:
上四分位数:
下四分位数:
三均值:
极差(RANGE)
Proc步具有大致相同的程序结构:
PROC过程名<option(s)> <statistic-keyword(s)>;
2.学生管理数据库中数据集如下:
姓名
出生日期
年龄
学号
数学
英语
王红
1977-06-02
22
9810012
90
73
李明
1978-03-23
21
9810004
88
68
徐凯歌
1978-11-14
21
9810034
92
78
吴青云
1978-04-12
21
9810023
89
84
李清华
1978-10-24
21
9810024
②plot:要求对所分析的各变量的观测值产生一个茎叶图(或水平直方图)、一个箱线图和一个正态QQ图。若某区间的观测值超过48,则不绘制茎叶图,而改绘制直方图。在正态QQ图中,以“*”表示正态QQ图上的点,以“+”表示相应的参考直线。
多元统计分析实验指导书——实验一均值向量和协方差阵检验
实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。
同时能够掌握对均值向量和协方差阵进行检验。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。
【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。
【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。
表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男1982.01.12 156.42 47.54 75 79 345.00 200202 许兆辉男1982.06.05 155.73 37.83 78 76 435.00 200203 王鸿屿男1982.05.17 144.6 38.66 65 88 643.50 200204 江飞男1982.08.31 161.5 41.68 79 82 235.50 200205 袁翼鹏男1982.09.17 161.3 43.36 82 77 867.00 200206 段燕女1982.12.21 158 47.35 81 74200207 安剑萍女1982.10.18 161.5 47.44 77 69 1233.00 200208 赵冬莉女1982.07.06 162.76 47.87 67 73 767.80 200209 叶敏女1982.06.01 164.3 33.85 64 77 553.90 200210 毛云华女1982.09.12 144 33.84 70 80 343.00200211 孙世伟男1981.10.13 157.9 49.23 84 85 453.80200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00男1981.11.21 168.55 50.67 79 79 657.40 200213 欧阳已祥200214 贺以礼男1981.09.28 164.5 44.56 75 80 1863.90200215 张放男1981.12.08 153 58.87 76 69 462.20200216 陆晓蓝女1981.10.07 164.7 44.14 80 83 476.80200217 吴挽君女1981.09.09 160.5 53.34 79 82200218 李利女1981.09.14 147 36.46 75 97 452.80200219 韩琴女1981.10.15 153.2 30.17 90 75 244.70200220 黄捷蕾女1981.12.02 157.9 40.45 71 80 253.00要求:1)变量名同表格名,以“()”内的内容作为变量标签。
多元统计分析中的协方差矩阵与主成分分析
多元统计分析中的协方差矩阵与主成分分析在多元统计分析中,协方差矩阵和主成分分析是两个非常重要的概念。
协方差矩阵用于描述随机变量之间的相关性,而主成分分析则是一种通过线性变换将高维数据转化为低维数据的方法。
本文将详细介绍协方差矩阵和主成分分析的原理和应用。
一、协方差矩阵的概念和计算方法协方差矩阵是多元统计分析中用于描述随机变量之间关系的一种矩阵。
对于n个随机变量X1,X2,...,Xn,其协方差矩阵定义为一个n×n的矩阵Σ,其中Σij表示随机变量Xi和Xj之间的协方差。
协方差矩阵的计算方法如下:1. 首先计算随机变量Xi的均值μi和随机变量Xj的均值μj;2. 然后计算随机变量Xi和Xj的协方差Cov(Xi,Xj);3. 将协方差填入协方差矩阵Σ的对应位置。
需要注意的是,协方差矩阵是一个对称矩阵,即Σij=Σji。
同时,协方差矩阵的对角线上的元素是各个随机变量的方差。
二、主成分分析的原理和步骤主成分分析(Principal Component Analysis, PCA)是一种通过线性变换将原始数据转化为具有统计特性的新坐标系的方法。
主成分分析的原理如下:1. 假设我们有m个样本,每个样本有n个特征,可以将这些样本表示为一个m×n的矩阵X;2. 对X进行去均值操作,即将每个特征减去该特征的均值,得到一个新的矩阵X';3. 计算X'的协方差矩阵Σ;4. 对Σ进行特征值分解,得到特征值和对应的特征向量;5. 将特征值按照从大到小的顺序排列,选择前k个特征值对应的特征向量作为主成分;6. 将原始数据X'与主成分构成的新坐标系相乘,得到降维后的数据X''。
通过主成分分析,我们可以将高维的数据降维到低维,并且保留了大部分的信息。
主成分分析在数据降维、特征提取和数据可视化等领域都有广泛的应用。
三、协方差矩阵与主成分分析的应用协方差矩阵和主成分分析在实际应用中有着广泛的应用。
多元统计分析实验报告(精选多篇)
多元统计分析实验报告(精选多篇)第一篇:多元统计分析实验报告多元统计分析得实验报告院系:数学系班级:13级 B 班姓名:陈翔学号:20131611233 实验目得:比较三大行业得优劣性实验过程有如下得内容:(1)正态性检验;(2)主体间因子,多变量检验a;(3)主体间效应得检验;(4)对比结果(K 矩阵);(5)多变量检验结果;(6)单变量检验结果;(7)协方差矩阵等同性得Box 检验a,误差方差等同性得Levene 检验 a;(8)估计;(9)成对比较,多变量检验;(10)单变量检验。
实验结果:综上所述,我们对三个行业得运营能力进行了具体得比较分析,所得数据表明,从总体来瞧,信息技术业要稍好于电力、煤气及水得生产与供应业以及房地产业。
1。
正态性检验Kolmogorov-SmirnovaShapir o—Wilk 统计量 df Sig.统计量df Sig、净资产收益率。
113 35、200*。
978 35。
677 总资产报酬率。
121 35、200*。
964 35、298 资产负债率。
086 35。
200*.962 35、265 总资产周转率.180 35、006。
864 35。
000流动资产周转率、164 35、018.88535、002 已获利息倍数、28135.000。
55135、000 销售增长率.103 35、200*。
949 35、104 资本积累率。
251 35。
000、655 35。
000 *。
这就是真实显著水平得下限。
a。
Lilliefors显著水平修正此表给出了对每一个变量进行正态性检验得结果,因为该例中样本中n=35<2000,所以此处选用 Shapiro—W ilk 统计量。
由 Sig。
值可以瞧到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面得分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成得向量遵从正态分布(尽管事实上并非如此)。
《多元统计分析分析》实验报告
《多元统计分析分析》实验报告2012 年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。
选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。
最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。
多元统计实验报告--因子分析
多元统计实验报告设计题目:因子分析一、分析数据1995年我国社会发展状况的数据二、基本原理因子分析的基本思想是把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。
三、实验步骤及其结果分析1、选择Analyze→Data Reduction→Factor,打开Factor Analysis主对话框;2、选择变量X1至X6,点击向右的箭头按钮,将六个变量移到Variable栏中;3、点击Descriptives…按钮,打开Descriptives子对话框。
在此对话框的Statistics下选择Initial solution;Correlation Matrix下选择coefficients,单击Continue按钮,返回Factor Analysis主对话框;4、单击Extraction…按钮,打开Extraction子对话框。
在此对话框的Method 下选择Principal components;Analyze下选择Correlation Matrix;Extract下选择Number of Factor,并在其右端的矩形框键入6;Display下选择Unrotated factor 和Scree plot,单击Continue按钮,返回Factor Analysis主对话框;点击OK按钮,显示结果清单。
(1)相关矩阵从表Correlation Matrix(相关矩阵)可知,各变量间存在较强的相关关系,因此有必要进行因子分析。
表中主对角线上的元素为1,表明变量自身于自身的相关系数为1。
(2)解释总方差从表Total Variance Explained(解释总方差)可知,前三个因子一起解释总方差的93.466%(累计贡献率),这说明前三个因子提供了原始数据的足够信息。
5、根据以上分析提取因子情况,单击Extraction…按钮,打开Extraction子对话框。
应用多元统计分析实验报告
应用多元统计分析实验报告一、引言多元统计分析是一种通过同时考虑多个自变量对因变量的影响来进行数据分析的方法。
它可以帮助研究人员了解不同自变量之间的关系,并预测因变量的表现。
本实验旨在应用多元统计分析方法,探索自变量对于因变量的影响。
二、实验设计在本次实验中,我们选择了一个具体的研究问题:探究学生的学习成绩在不同自变量下的表现。
我们收集了100名学生的数据,包括他们的性别(自变量1)、年龄(自变量2)、家庭背景(自变量3)以及他们的数学和语文成绩(因变量)。
三、数据收集与处理我们使用问卷调查的方式收集了学生的性别、年龄和家庭背景的数据,并从学校的成绩数据库中获取了他们的数学和语文成绩。
在处理数据之前,我们进行了数据清洗和缺失值处理。
四、数据分析步骤1.描述统计分析:首先,我们对数据进行了描述性统计分析,包括计算平均值、标准差、最小值、最大值等指标,以了解数据的基本情况。
2.相关性分析:接下来,我们进行了相关性分析,探索自变量与因变量之间的关系。
我们使用皮尔逊相关系数来衡量两个变量之间的线性相关性,并进行了显著性检验。
3.多元线性回归分析:为了探究多个自变量对因变量的综合影响,我们进行了多元线性回归分析。
我们选择了逐步回归的方法,逐步将自变量加入模型,并根据显著性检验的结果决定是否保留自变量。
4.方差分析:最后,我们进行了方差分析,检验不同自变量水平下因变量均值之间的差异是否显著。
我们使用了单因素方差分析和多重比较方法。
五、结果与讨论1.描述统计分析结果显示,学生平均年龄为18岁,数学平均成绩为80分,语文平均成绩为85分。
标准差较小,表明数据的波动较小。
2.相关性分析结果显示,学生的性别和家庭背景与他们的数学和语文成绩之间存在显著相关性(p < 0.05)。
而年龄与成绩之间的相关性不显著。
3.多元线性回归分析结果显示,性别和家庭背景对学生的成绩有显著影响(p < 0.05),而年龄的影响不显著。
应用多元统计分析报告习的题目解答_因子分析报告
第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。
7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。
7.3 简述因子模型中载荷矩阵A 的统计意义。
答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量i X 对公共因子j F 的相对重要性。
多元统计分析实验报告计算协方差矩阵相关矩阵SAS
(一)
院系:数学与统计学学院
专业:__ _统计学
年级: 2009级
课程名称:统计分析
学号:
姓名:
指导教师:
2012年 4月 28 日
(一)实验名称
1.编程计算样本协方差矩阵和相关系数矩阵;
2.多元方差分析MANOVA。
(二)实验目的
1.学习编制sas程序计算样本协方差矩阵和相关系数矩阵;
2.对数据进行多元方差分析。
(三)实验数据
第一题:
第二题:
(四)实验内容
1.打开SAS软件并导入数据;
2.编制程序计算样本协方差矩阵和相关系数矩阵;
3.编制sas程序对数据进行多元方差分析;
4.根据实验结果解决问题,并撰写实验报告;(五)实验体会(结论、评价与建议等)
第一题:
程序如下:
proc corr data= cov;
proc corr data= nosimple cov;
with x3 x4;
partial x1 x2;
run;
结果如下:
(1)协方差矩阵
(2)相关系数矩阵
第二题:
程序如下:
proc anova data=; class kind; model x1-x4=kind;
manova h=kind; run;
结果如下:
(1)分组水平信息
(2)x1、x2、x3、x4的方差分析
(3)多元方差分析
根据多元分析结果,p指小于,表明在的显着水平下,四个变量有显着差异。
spss主成分分析报告
spss主成分分析报告目录spss主成分分析报告 (1)引言 (2)研究背景 (2)研究目的 (2)研究意义 (3)主成分分析的基本概念 (4)主成分分析的定义 (4)主成分分析的原理 (5)主成分分析的应用领域 (6)数据收集与准备 (7)数据收集方法 (7)数据预处理 (8)数据清洗 (9)主成分分析的步骤 (9)因子提取 (9)因子旋转 (10)因子解释 (11)SPSS软件在主成分分析中的应用 (12)SPSS软件的介绍 (12)数据导入与处理 (13)主成分分析的操作步骤 (14)主成分分析结果的解读 (15)因子载荷矩阵的解读 (15)方差解释率的解读 (16)因子得分的解读 (17)主成分分析的结果验证与评价 (18)因子可靠性分析 (18)因子有效性分析 (19)结果的稳定性分析 (19)主成分分析的局限性与改进 (20)主成分分析的局限性 (20)主成分分析的改进方法 (21)结论 (22)研究总结 (22)研究展望 (23)引言研究背景主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,广泛应用于各个领域的研究中。
它通过将原始数据转换为一组新的无关变量,即主成分,来揭示数据中的潜在结构和模式。
主成分分析不仅可以帮助我们降低数据的维度,减少冗余信息,还可以提取出数据中的主要特征,帮助我们更好地理解和解释数据。
在当今信息爆炸的时代,数据的获取和处理变得越来越重要。
各个领域的研究者和决策者需要从大量的数据中提取有用的信息,以支持决策和研究。
然而,原始数据往往包含大量的冗余信息和噪声,使得数据分析变得困难和复杂。
主成分分析作为一种有效的数据降维方法,可以帮助我们从复杂的数据中提取出关键信息,简化数据分析的过程。
主成分分析最早由卡尔·皮尔逊(Karl Pearson)于1901年提出,并在之后的几十年中得到了广泛的研究和应用。
多元统计实验报告
多元统计实验报告关于某校导师研究生指标的分配问题班级:***姓名:***学号:***目录一.问题背景 (4)二.实验要求 (4)三.数据预处理 (4)3.1 数据分离3.2 数量化3.3 归一化四.建模及求解 (6)4.1多元线性回归填补模型 (6)4.1.1 多元线性回归模型简介4.1.1.1 向前选择法4,1.1.2 向后消去法4.1.1.3 逐步删选法4.1.2 多元线性回归填补模型4.1.2.1 建模4.1.2.1 求解A. 向前选择法B. 向后消去发C. 逐步删选法4.2判别分析填补模型 (9)4.2.1 判别分析模型简介4.2.1.1 概论4.2.1.2 分类4.2.1.3 常用判别方法A. 距离判别法B. Fisher判别法C. Bayes判别法4.2.2 判别分析填补模型4.2.2.1 建模4.2.2.2 求解4.3主成分分析验证模型 (12)4.3.1 主成分分析简介4.3.1.1 概论4.3.1.2 数学模型4.3.1.3 主成分分析步骤4.3.2 主成分分析验证模型4.3.2.1 建模4.3.2.2 求解4.4典型相关分析验证模型 (15)4.4.1 典型相关性分析简介4.4.1.1 概论4.4.1.2 数学模型4.4.2 典型相关性分析验证模型4.4.2.1 建模4.4.2.2 求解A. 典型相关结果B. 多种多元统计结果比较C. 典型变量的标准线性方程D. 原始变量与典型变量的相关度4.5聚类分析 (18)4.5.1 聚类分析简介4.5.1.1 概论4.5.1.2 常用方法A.最短距离法B.平均距离法C.Ward法4.5.1 聚类分析4.5.1.1 建模4.5.1.2 求解A.聚类图形表示B.Ward聚类详解C.基于Ward分类的预测五.体会及建议 (24)六.SAS程序 (25)七.附录 (28)一.问题背景高等学校研究生招生指标分配问题,对研究生的培养质量、教育资源利用率、学科建设和科研成果的取得有直接影响。
多元统计分析方法
<多元统计分析方法> Ch1 基本概念1.多元总体:该总体有多个属性,可表示为X=x 1…x p ,考察一个P 元总体即是考察这个总体中每个对象的P 个属性。
2.多元样本数据:X=[x 1,x 2…x n ]=x 11,x 12,…,x 1n…x p1,x p2,…,x pn3.多元总体的样本统计参数: 3.1 单总体3.1.1 分属性行样本统计参数 样本平均值向量:中心化数据:原始数据-平均数标准化数据=中心化数据/该行样本标准差样本离差矩阵Q :Q=XX ’,即两两中心化属性行乘积和,q αβ=∑(x αi −x α̅̅̅)(x βi −x β̅̅̅)(1≤n 1α,β≤p)样本协方差矩阵S :S=Q/n=XX ’/n(n 为样本数)样本相关矩阵R :用X 中的两行计算两属性间的相关,r αβ=√s s =√q q3.1.2 样本间统计参数各种距离:欧氏距离,马氏距离,B 模距离,绝对距离,切比雪夫距离 相似系数:定量:用X 中的两列算出的相关系数;夹角余弦c αβ=i ′j|x ||x |αi αjp 1√∑x αi 21∑x αj21定性:首先转化为0,1型定性数据;对于p 元总体的变量α,两样本单元i,j 配对情况有四种(1,1),(1,0),(0,1),(0,0),分别用a,b,c,d 表示所有变量中这四种情况出现的次数。
显然a,d 出现的次数越多,两样本越接近。
由此定义匹配系数:f ij =a+d p=1−绝对距离p;修正的夹角余弦f ij =√(a+b )(a+c )(b+d )(c+d)3.2 两总体(样本数均为n)两组样本的协方差矩阵:Y p×n ,X q×n ,Y 与X 的协方差矩阵cov ̂(y,x )=c 11,c 12,…,c 1q…c p1,c p2,…,c pq =YX ′(Y,X 分别表示Y,X 中心化数据),其中c αβ=1n ∑(y αi −y α̅̅̅)(x βi −x β̅̅̅)(α≤p,β≤q)n 1,注意两个样本的协方差一般不对称,即c αβ≠c βα。
(完整版)多元统计分析试题及答案
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)
院系:数学与统计学学院
专业:__ _统计学
年级: 2009级
课程名称:统计分析
学号:
姓名:
指导教师:
2012年 4月 28 日
(一)实验名称
1.编程计算样本协方差矩阵和相关系数矩阵;
2.多元方差分析MANOVA。
(二)实验目的
1.学习编制sas程序计算样本协方差矩阵和相关系数矩阵;
2.对数据进行多元方差分析。
(三)实验数据
第一题:
第二题:
(四)实验内容
1.打开SAS软件并导入数据;
2.编制程序计算样本协方差矩阵和相关系数矩阵;
3.编制sas程序对数据进行多元方差分析;
4.根据实验结果解决问题,并撰写实验报告;(五)实验体会(结论、评价与建议等)
第一题:
程序如下:
proc corr data= cov;
proc corr data= nosimple cov;
with x3 x4;
partial x1 x2;
run;
结果如下:
(1)协方差矩阵
(2)相关系数矩阵
第二题:
程序如下:
proc anova data=; class kind; model x1-x4=kind; manova h=kind; run;
结果如下:
(1)分组水平信息
(2)x1、x2、x3、x4的方差分析
(3)多元方差分析
根据多元分析结果,p指小于,表明在的显著水平下,四个变量有显著差异。