高中数学 巧构造 妙解题解题思路大全
高中数学构造法求解题技巧
![高中数学构造法求解题技巧](https://img.taocdn.com/s3/m/47af86e9c0c708a1284ac850ad02de80d5d80659.png)
高中数学构造法求解题技巧高中数学构造法是一种解题思路和技巧,它通过构造适当的数学结构,使得问题的求解变得更加简单明了。
构造方法在高中数学中应用广泛,可以用于解决各类题型,包括代数题、几何题、概率题等等。
一、构造法的基本思想构造法是一种通过建立合适的数学结构,简化问题的解决方法和步骤的思想。
通过构造一些符合题意的数学对象,我们可以发现一些规律,从而提供问题的解答方式。
二、构造法的常见技巧1.构造等差数列或等比数列在解决一些代数问题时,我们可以尝试构造一个等差数列或者等比数列。
通过构造这样的数列,我们可以找到其中的规律,从而解决问题。
2.构造图形在解决几何问题时,我们可以尝试构造一个与原图形相似或者关联的图形。
通过构造这样的图形,我们可以将复杂的几何问题简化为一些基本的几何性质,从而解决问题。
3.构造排列组合在解决一些概率问题和组合问题时,我们可以尝试构造排列组合。
通过构造排列组合,我们可以得到一些计算公式或者规律,从而解决问题。
4.构造方程组在解决一些代数问题时,我们可以尝试构造一个方程组。
通过构造这样的方程组,我们可以得到一些方程之间的关系,从而解决问题。
5.构造递推公式在解决一些数列问题时,我们可以尝试构造一个递推公式。
通过构造递推公式,我们可以找到数列中的规律,从而解决问题。
三、构造法的实例分析1.构造等差数列例题:有一些连续的整数,它们的和是45,这些整数中最小的是多少?解析:我们可以假设这些连续的整数的首项是x,公差是1,那么这些整数的和可以表示为:x+(x+1)+(x+2)+...+(x+n)=45。
通过求和公式,我们可以得到(x+45)/(n+1)=45,进一步化简得到x=15-n。
我们可以发现,当n=30时,x=15-n=0,此时连续整数中的最小值为0。
2.构造图形例题:在平面直角坐标系中,有一条线l过点(0, 0)和(1, 2),线l与x轴、y轴以及x=y共同围成一个三角形,求这个三角形的面积。
试论高中数学解题中运用构造法的措施
![试论高中数学解题中运用构造法的措施](https://img.taocdn.com/s3/m/b344e2c80342a8956bec0975f46527d3240ca6ca.png)
试论高中数学解题中运用构造法的措施在高中数学学习中,构造法是一种重要的解题方法之一,它在许多领域中发挥了巨大的作用。
可以说,掌握好构造法,对于学生在数学解题中有很大的帮助。
下面就来探讨一下高中数学解题中使用构造法的措施。
一、采取递推法在数学考试中,我们经常会遇到这样的问题:要求某个数列的第n项,而这个数列的前若干项并已经给出。
这时,我们可以采用构造法中的递推思想,对每一项进行递推求解。
比如某个数列的第n项可以表示为前两项之和,我们就可以从第一项开始一步步往后递推,得出第n项的值。
二、利用图形构造在几何问题中,构造法是非常常见的方法,特别是一些需要证明的几何定理。
通过巧妙的构造,我们可以将问题转化为更易于理解和证明的形式,如构造中垂线、平行线、垂线平分线段等。
结合图形构造和勾股定理、相似三角形等几何定理可以较容易地得到结论。
三、运用等价转化法等价转化法是构造法中比较常用的一种方法,它利用等式关系转化问题的形式,使其更易于处理。
在解方程、不等式等问题时,我们可以通过对原式进行恰当的等式变形,将其转换为更加简单的形式,从而得到问题的解。
这种方法可以大大降低解题的难度,提高解题效率。
四、利用枚举法在一些组合问题中,我们需要找出所有的方案,此时可以采取构造法中的枚举思想,列举所有的可能性,并分别进行计算,最终得到问题的解。
通过枚举法,我们可以不漏解,不误判,有效地切实地解决问题。
五、注意相似、对称性质在一些特殊的问题中,常常会涉及到相似、对称等性质,此时我们可以运用这些性质,利用构造法来解决问题。
在三角形的内心、垂心等特殊点的构造中,对称性质和相似性质是非常重要的,运用好这些性质可以简化问题,使解题更加容易。
在高中数学解题过程中,构造法是一种非常重要的解题方法,能够帮助我们快速解决问题,提高课堂成绩和考试成绩。
通过采用递推法、利用图形构造、运用等价转化法、利用枚举法和注意相似、对称性质等措施,我们可以更好地应用构造法解决问题,提升数学解题的能力和水平。
高考数学复习点拨 巧构造妙解题
![高考数学复习点拨 巧构造妙解题](https://img.taocdn.com/s3/m/ab1d6377cc22bcd127ff0cea.png)
高考数学复习点拨 巧构造妙解题指数函数的单调性是指数函数的重要性质,灵活应用此性质可以解决一些与之相关的问题,使一些看似复杂的问题,通过构造指数函数轻松获解.那么在具体问题中应如何构造函数呢?下面结合几例加以剖析.一、确定代数式的符号例1 已知3333x y x y x y --∈+>+R ,,,判断x y +的符号. 解:构造函数1()3333t t t t f t -=-=-,则它在R 上递增, 而3333x x y y --->-,即()()f x f y >-.x y ∴>-,即0x y +>.评析:在利用指数函数的性质解决问题时,要善于挖掘函数所隐含的性质. 二、确定字母的取值范围例2 关于x 的方程32345x x a a+=-有负实根,求实数a 的取值范围. 解:据方程有负实根,并注意到34x y ⎛⎫= ⎪⎝⎭是单调递减的,从而得到314x ⎛⎫> ⎪⎝⎭, 于是问题就变为解不等式3215a a +>-,可知354a <<. 评析:本题构造函数34x y ⎛⎫= ⎪⎝⎭是关键,利用函数与方程的关系使问题得以顺利解决. 三、判断几何图形形状例3 已知a bc m ,,,都是正数,且m m m a b c =+, 求当m 取何值时,长分别为a bc ,,的三条线段能构成三角形? 解:由于m m ma b c =+,且a bc m ,,,都是正数, 所以0a b >>,且0a c >>.因此要使长为a bc ,,的三线段能构成三角形,只要b c a +>即可. 因为m m m a b c =+, 所以1m m m m m b c b c a a a +⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. 因为()x x b c f x a a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在R 上是单调递减函数, 所以若1m =,则(1)1b c f a a=+=,即b c a +=,显然不能构成三角形;若1m >,则()(1)f m f <,又()1m mb c f m a a ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,(1)b c f a +=, 因此b c a +>,故能构成三角形;若01m <<,则()(1)f m f >,即b c a +<,显然不能构成三角形.综上可知,当1m >时,长为a b c ,,的三线段能构成三角形.评析:应用指数函数的性质解决问题的关键在于构造指数函数, 本题对等式m m m a b c =+进行变形,使等式一端为常数,即1m mb c a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 然后利用相关函数单调性使问题顺利获解.。
构造法在高中数学解题中的应用方法
![构造法在高中数学解题中的应用方法](https://img.taocdn.com/s3/m/8ba5695cfbd6195f312b3169a45177232f60e4c2.png)
构造法在高中数学解题中的应用方法构造法是数学解题的一种常用方法,它通过构造一些合适的图形或者算式,从而得出问题的解。
下面将详细介绍在高中数学解题中的应用方法。
1.构造举例法构造举例法是指通过举例子来说明问题的性质和解法。
在解决问题时,可以先为问题中的某些元素赋予具体的值,然后通过计算和观察找出规律或者结论,进而解决问题。
在解决函数的性质或者图形的性质的问题时,可以通过构造一些特殊的函数或者图形来观察其特点,然后得出结论。
2.构造等价问题法构造等价问题法是指将原问题转化为一个与原问题性质类似但更易解决的等价问题,然后解决该等价问题,最后将等价问题的解转化为原问题的解。
在解决问题时,可以通过思考和变换,将原问题转化为一个已知的问题或者与已知问题相似的问题。
在解决几何证明问题时,可以通过构造一些辅助线或者引入一些辅助概念,将原问题转化为已知的几何定理或者性质,从而简化问题的解决过程。
3.构造反证法构造反证法是指通过假设原命题不成立,然后推导出一个矛盾的结论,从而证明原命题的真实性。
在解决问题时,可以假设问题的反面或者与问题相反的情况,然后推导出矛盾的结论,从而证明问题的真实性。
在解决一些证明问题时,可以对问题做出一个取非的假设,然后通过逻辑推导得出一个矛盾的结论,从而证明原命题的真实性。
4.构造递归法构造递归法是指通过递归地应用某一规则或者某一性质,依次构造解的方法。
在解决问题时,可以通过将问题分解为若干个子问题,并且将子问题的解合并为原问题的解,从而解决问题。
在解决数列的性质问题时,可以通过递归地应用数列的递推公式,依次计算出数列的各项值,从而得到数列的性质。
构造法在高中数学解题中具有很大的灵活性和实用性。
通过构造法,可以把抽象的问题转化为具体的问题,通过观察和计算得出结论,从而解决问题。
构造法还可以帮助学生培养创造力和逻辑思维能力,提高解题的效率和准确性。
在高中数学教学中,应该鼓励学生灵活运用构造法,积极参与解题,提高数学解决问题的能力。
高中数学解题方法之构造法(含答案)
![高中数学解题方法之构造法(含答案)](https://img.taocdn.com/s3/m/aaa38468fd0a79563d1e7236.png)
十、构造法解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。
在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。
历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。
数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。
近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。
构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。
用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。
但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。
再现性题组 1、求证: 31091022≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则42511≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x (构造函数) 3、已知01a <<,01b <<,求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a(构造图形、复数)4、求证:9)9(272≤-+x x ,并指出等号成立的条件。
(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当ca b 111+=时取等号。
选准好思路,巧解解答题(高中数学)
![选准好思路,巧解解答题(高中数学)](https://img.taocdn.com/s3/m/094ca2926bec0975f465e210.png)
2 和 tan (2 3) cot 都成立 ? 若存在 , 求出 3 2
, 的值;若不存在.请说明理由.
2
解 : 由 已 知 可 得
3
, 所 以 , tan(
2
)
tan
2
tan 1 tan2tan
3 , 又 由
t a n
故 tan
热线:029-82551428
解答题专项训练
1. 求函数 y 3 sin x cos x (
3
x
2
)的值域.
1. 解 :整理函数解析式可得 y 2 sin(x 据正弦函数的图像可得
6
) , 因为
3
x
2
, 所以 ,
6
x
6
1 sin( x ) 1 ,故函数的值域为 [1, 2] . 2 6 1 2.已知点点 A(1,2),点 B(-2,6),点 P 在直线 AB 上,且满足 | AP | | AB | ,求点 P 的坐标. 3
3.解: OG 所 以 , ( m) a
1 3
1 1 1 b = [ a ( n)b] , 故 3 3 3
1 m 3 3 ,消去 可得: ( 1 n) 1 3 3
1 1 1 1 1 ( m)( n) ,整理即得 3 . 3 3 9 m n
8 2 , 5
) 的值. 2 8 解: 由 m (cos ,sin ) , n ( 2 sin ,cos ) 知:
高中数学,巧解极值点偏移5大套路
![高中数学,巧解极值点偏移5大套路](https://img.taocdn.com/s3/m/920880a833d4b14e852468ff.png)
巧解极值点偏移5大套路已知()21ln 2f x x x mx x =--,m ∈R .若()f x 有两个极值点1x ,2x ,且12x x <,求证:212e x x >(e 为自然对数的底数).解法一:齐次构造通解偏移套路证法1:欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.于是,有1122ln 0ln 0x mx x mx -=⎧⎨-=⎩,解得1212ln ln x x m x x +=+.另一方面,由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩,得()2121ln ln x x m x x -=-,从而可得,21122112ln ln ln ln x x x x x x x x -+=-+.于是,()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<,设21x t x =,则1t >.因此,()121ln ln ln 1t t x x t ++=-,1t >.要证12ln ln 2x x +>,即证:()1ln 21t t t +>-,1t >.即:当1t >时,有()21ln 1t t t ->+.设函数()()21ln 1t h t t t -=-+,1t ≥,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++,所以,()h t 为()1.+∞上的增函数.注意到,()10h =,因此,()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+.所以,有12ln ln 2x x +>成立,212e x x >.解法二变换函数能妙解证法2:欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.显然0m >,否则,函数()f x '为单调函数,不符合题意.由()11121222ln 0ln ln ln 0x mx x x m x x x mx -=⎧⇒+=+⎨-=⎩,即只需证明()122m x x +>即可.即只需证明122x x m+>.设()()210,g x f x f x x m m ⎛⎫⎛⎫⎛⎫''=--∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()22102mx g x x mx -'=>-,故()g x 在10,m ⎛⎫↑ ⎪⎝⎭,即()10g x g m ⎛⎫<= ⎪⎝⎭,故()2f x f x m ⎛⎫''<- ⎪⎝⎭.由于()11mx f x m x x -''=-=,故()f x '在10,m ⎛⎫↑ ⎪⎝⎭,1,m ⎛⎫+∞↓ ⎪⎝⎭.设121x x m <<,令1x x =,则()()2112f x f x f x m ⎛⎫'''=<- ⎪⎝⎭,又因为2x ,121,x mm ⎛⎫-∈+∞ ⎪⎝⎭,()f x '在1,m ⎛⎫+∞↓ ⎪⎝⎭,故有212x x m >-,即122x x m +>.原命题得证.解法三构造函数现实力证法3:由1x ,2x 是方程()0f x '=的两个不同实根得ln x m x =,令()ln xg x x=,()()12g x g x =,由于()21ln xg x x-'=,因此,()g x 在()1,e ↑,()e,+∞↓.设121e x x <<<,需证明212e x x >,只需证明()212e 0,e x x >∈,只需证明()212e f x f x ⎛⎫> ⎪⎝⎭,即()222e f x f x ⎛⎫> ⎪⎝⎭,即()222e 0f x f x ⎛⎫-> ⎪⎝⎭.即()()()()2e 1,e h x f x f x x ⎛⎫=-∈ ⎪⎝⎭,()()()22221ln e 0e x x h x x --'=>,故()h x 在()1,e ↑,故()()e 0h x h <=,即()2e f x f x ⎛⎫< ⎪⎝⎭.令1x x =,则()()2211e f x f x f x ⎛⎫=< ⎪⎝⎭,因为2x ,()21e e,x ∈+∞,()f x 在()e,+∞↓,所以221e x x >,即212e x x >.证法4:设()11ln 0,1t x =∈,()22ln 1,t x =∈+∞,则由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩得11221122e e et t t t t t m t m t -⎧=⇒=⎨=⎩,设120k t t =-<,则1e e 1k kk t =-,2e 1k k t =-.欲证212e x x >,需证12ln ln 2x x +>.即只需证明122t t +>,即()()()()()1e 21e 2e 11e 2e 10e 1k k k k k k k k k +>⇔+<-⇔+--<-.设()()()()1e 2e 10k k g k k k =+--<,()e e 1k k g k k '=-+,()e 0k g k k ''=<,故()g k '在(),0-∞↓,故()()00g k g ''>=,故()g k 在(),0-∞↑,因此()()00g k g <=,命题得证.证法5:设()11ln 0,1t x =∈,()22ln 1,t x =∈+∞,则由1122ln 0ln 0x mx x mx -=⎧⎨-=⎩得11221122e e et t t t t t m t m t -⎧=⇒=⎨=⎩,设()120,1t k t =∈,则1ln 1k k t k =-,2ln 1k t k =-.欲证212e x x >,需证12ln ln 2x x +>,即只需证明122t t +>,即()()()1ln 21212ln ln 0111k kk k k k k k k +-->⇔<⇔-<-++,设()()()()21ln 0,11k g k k k k -=-⇔+,()()()22101k g k k k -'=>+,故()g k 在()0,1↑,因此()()10g k g <=,命题得证.。
巧妙构造函数 破解三类题型
![巧妙构造函数 破解三类题型](https://img.taocdn.com/s3/m/515e6535974bcf84b9d528ea81c758f5f61f2911.png)
中孝生皋捏化解题篇创新题!溯源高二数学2021年5月巧妙构造函数破解三类题型■河北师范大学附属实验中学闫文娟函数是支撑数学学科知识体系的重要内容,反映了客观世界两个集合间的对应关系&而导数是研究函数性质的有力工具,是高考的热点话题。
函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数解题的思路恰好是这两种思想的良好体现。
下面浅谈巧妙构造函数,合理运用导数,破解三类题型,旨在抛砖引玉$一、由“导^寻“源™妙解函数不等式在近几年的高考试题中,出现了一类抽象函数、导数、不等式交汇的重要题型,这类题型涉及抽象函数,很多学生解题时,突破不了由于抽象而造成的解题障碍,不能从容应对不等式的求解问题。
实际上,根据所给不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法$!!62020年河南信阳高中期末】已知函数f(')在R上存在导函数对于任意的实数都有f(!'"=A2',当'V0时&f一)f{'"+f('">0,若e"f(2"+1"% f("+1),则实数"的取值范围是("$A. B.[-2#.[0,+7) D.(—7,0,解析:令g('"=e'f('"则当'V0时& g f('"=e'「f('"+?('),>0,g(')在(—7,0)上单调递增又g(—'"=e'f(—'"=e'f('"= g(c",故 g('"为偶函数,g(')在(0,+7"上单调递减$从而e"f(2"+1"%f("+1"等价于e2"+1f(2"+1"%e"+1f("+1",g(2"+1"% g(,"+1" $因此,I2"+1I'二I"+1I,即(2"+1)2'二2("+1"2,3"2+2"'0,解得一3'"'0,选B$点睛:联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法。
高考数学构造法求数列通项的八种技巧(三)(解析版)
![高考数学构造法求数列通项的八种技巧(三)(解析版)](https://img.taocdn.com/s3/m/d468f73e0a4e767f5acfa1c7aa00b52acfc79c1f.png)
构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
构造法在高中数学解题中的应用方法
![构造法在高中数学解题中的应用方法](https://img.taocdn.com/s3/m/fb146b00bf1e650e52ea551810a6f524ccbfcb06.png)
构造法在高中数学解题中的应用方法构造法是一种常用的解题方法,在高中数学中有着广泛的应用。
它通过巧妙地构造一些数学对象或者利用某些数学性质,来解决问题。
下面将介绍构造法在高中数学解题中的常见应用方法。
1.构造图形构造图形是构造法的一种常见应用方法。
在解决几何问题时,我们可以通过构造一些特殊的图形,来辅助求解。
要证明一个角为直角,可以通过构造一个等腰直角三角形;要证明两条线段相等,可以构造两个相等的线段等等。
通过构造图形,我们可以更加直观地理解问题,并且根据构造出的特殊图形进行推理和证明。
2.构造等式构造等式是构造法的另一种常见应用方法。
在解决代数问题时,我们可以通过构造一些特殊的等式,利用等式的性质和关系来推导和求解。
要解方程组可以通过构造一个与原方程组等价的等式,从而利用等式的性质消去未知数。
又要证明两个多项式恒等,可以通过构造一个等式,使得等式两边的多项式进行运算后得到相同的结果。
通过构造等式,我们可以把复杂的问题转化为更简单的等式求解问题。
3.构造序列4.构造方法构造方法是构造法的一个重要应用。
在解决问题时,我们可以通过构造一种方法或者算法,来找到问题的解决思路。
要证明一个命题成立,可以通过构造一个反证法,假设命题不成立,然后推导出矛盾;要解决一个最优化问题,可以通过构造一个函数或者模型,然后利用函数的性质进行优化。
通过构造方法,我们可以建立问题与数学方法之间的联系,从而解决问题。
构造法是一种重要的解题方法,在高中数学中有着广泛的应用。
通过构造图形、构造等式、构造序列和构造方法等,我们可以更加直观地理解问题,利用数学性质和关系进行推理和证明,以达到解决问题的目的。
希望通过这些介绍,能够帮助到学生在高中数学中更好地运用构造法解题。
构造法在高中数学解题中的应用方法
![构造法在高中数学解题中的应用方法](https://img.taocdn.com/s3/m/1c96e11b2e60ddccda38376baf1ffc4fff47e251.png)
构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。
下面我们将介绍在
高中数学解题中构造法的应用方法。
一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。
2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。
3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。
二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。
2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。
三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。
2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。
四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。
2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。
构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。
通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。
在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。
构造法在高中数学解题中的应用方法
![构造法在高中数学解题中的应用方法](https://img.taocdn.com/s3/m/cd594866bf23482fb4daa58da0116c175f0e1eec.png)
构造法在高中数学解题中的应用方法
构造法是一种在数学解题中常用的方法,它通过构造一些特殊的对象或者关系,来解决问题。
在高中数学中,构造法经常用于代数问题、几何问题、组合问题等各个领域的解题过程中。
下面我们将重点介绍构造法在高中数学解题中的应用方法。
1. 构造等式:当遇到代数式中有未知数的时候,可以通过构造等式的方式来求解。
已知一个三位数的百位数字等于个位数字的平方,十位数字加个位数字等于百位数字的平方,则可以设这个三位数为abc(其中abc分别表示百位、十位、个位数字),则可以得到以下两个方程:a=b^2,b+c=a^2。
通过解方程组,可以得到a=1,b=1,c=1,故该三位数为111。
2. 构造函数关系:当遇到函数的性质需要求证时,可以通过构造函数关系的方式来解决。
证明对于任意实数x,都有f(x)=f(x+1),可以构造一个以1为周期的函数
f(x)=sin(2πx),通过对任意实数x和x+1代入,可以证明f(x)和f(x+1)相等。
1. 构造特殊图形:当遇到几何问题需要求证时,可以通过构造一些特殊的图形来解决。
证明一个四边形是平行四边形,可以先构造一个与该四边形相似的平行四边形,再证明它们是全等的。
1. 构造排列组合关系:当遇到排列组合问题需要求解时,可以通过构造排列组合关系的方式来解决。
求从10个球中选出3个球的方案数,可以通过构造一个由10个球组成的数列,并在数列中标记出选中的球,再计算方案数。
巧妙构造,让数学解题更精彩
![巧妙构造,让数学解题更精彩](https://img.taocdn.com/s3/m/96924f2277c66137ee06eff9aef8941ea76e4bdf.png)
应考方略数学有数GUANG DONG JIAO YU GAO ZHONG 巧妙构造,让数学解题更精彩■江苏省太仓市明德高级中学王佩其数学解题,贵在巧思,巧思方可得妙解.而巧思中最为推 崇的解法是构造法,这种方法体现了数学思维的创新性,是 数学解题的最高境界.通过对题目的条件与结论进行对比分 析,找到一座沟通它们之间的桥梁,这座桥梁可以是一个函 数,一个方程,一个图形等,借助这座桥梁,可以让原问题 圆满解决,这就是所谓的构造法.本文举例说明,供同学们 参考._、巧构几何体,速解立几题在立体几何中,我们通常把正方体、长方体、正四面体 等这些形状优美,性质优美且特殊的几何体称作完美几何体. 在立体几何中,这些几何体有着十分重要的地位,起着不可 替代的作用,有些几何问题,往往可以通过对比与联想,构 造出完美几何体,借助于完美几何体的优美性质,让原问题 快速解决,同时也让我们感受到数学的奇异美.例1.已知一个棱长是a的正四面体的四个顶点均在同一 个球面上,则这个球的表面积是()A. 37T02B-T na2C.^rTTa}D.各•jra2解析j正四面体有六条相等的棱,而正方体的六个面都是 全等的正方形,因此它们的对角线都相等,于是可以采用补 形的方法,将正四面体“还原”成正方体(如图1),那么正 方体的外接球就是与正四面体的外接球.因为四面体的棱长为a,所以正方体的棱长是A f a,于是正方体对角线f就是这个球的直径,故球半径= S:477"/?2=~^-7ra2.所以本题选 D.正方体是立方体中最完美的图形,它与它的内切球 与外接球之间的关系,能帮助我们快速找到解题“突破口 对于正四面体,将其“放入”正方体中,可以快速求出它的 外接球的半径.例2.已知乙/10B是平面a内的一个直角,0是直角顶 点,又0C是平面a的斜线,且乙4O C=Z S O C=60°,则直线 0C与平面a所成的角的大小是______._如图2所示,作正四棱锥且它的每一个侧面都是正三角形.于是a4, O B,0C满足已知条件,这相当于把题设所给的线面关系“搬到”了正四棱锥中,于是原问题等价于求侧棱C0与正四棱锥的底面a4A B所成的角.设底面中心为£,则乙C0£:即为所求的角.经图2计算可知,〇£=C£,故乙C O£=45。
高考数学构造函数求解技巧
![高考数学构造函数求解技巧](https://img.taocdn.com/s3/m/c5f9e307366baf1ffc4ffe4733687e21af45ff25.png)
高考数学构造函数求解技巧在高考数学中,构造函数法是一种常用的解题技巧,特别适用于一些求解问题的情况。
通过构造一个特定的函数,可以将问题转化为一个函数方程,从而简化问题的求解过程。
下面将介绍一些高考数学中常见的构造函数求解技巧。
1. 构造满足条件的函数在某些情况下,可以通过构造一个满足题目条件的函数来求解问题。
首先,分析题目所给出的条件,确定函数的性质。
然后,根据题意构造一个函数,使得它满足所给条件。
最后,通过对所构造的函数进行分析,可以得到问题的解。
例如,某高考题目要求解一个三次方程f(x) = ax^3 + bx^2 + cx + d,其中已知f(1) = 2、f(2) = 1、f(3) = 10。
我们可以构造一个临时的函数g(x) = f(x) - 2x + 1,然后根据g(1) = 0、g(2) = -1、g(3) = 7得到一个新的方程g(x) = 0。
通过求解这个方程,我们可以得到f(x)的解。
2. 构造递推关系递推关系是指某一项与它前面的几项之间有一定的关系,通过这种关系可以逐步求解出其他项。
在高考数学中,递推关系常常用于求解数列或数列的性质。
例如,某高考题目给定数列{an}的递推关系an = an-1 + 2n,且a1 = 2。
我们可以构造一个函数f(x) = x^2,然后计算f(1)、f(2)、f(3)等值,得到数列{f(n)}的项。
通过观察数列{f(n)}的递推关系f(n) = f(n-1) + 2n,我们可以得出an = a1 + 2(1+2+...+n-1)的结论,从而求解出数列{an}。
3. 构造利用对称性的函数在一些关于对称性的问题中,我们可以通过构造一个满足对称性的函数来求解问题。
例如,某高考题目给定一个圆O,点A、B、C、D分别位于圆上,且AC和BD交于E,要求证明AE=BE。
我们可以构造一个函数f(x) = PA - PB,其中P为圆O上的任意一点,A、B、C、D为圆上的四个点。
2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)
![2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)](https://img.taocdn.com/s3/m/46bce456b42acfc789eb172ded630b1c59ee9b83.png)
构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之a n +1=Aa n +B 型构造等比数列求关于a n +1=Aa n +B (其中A ,B 均为常数,AB (A -1)≠0)类型的通项公式时,先把原递推公式转化为a n +1+M =A a n +M ,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知a n 满足a 1=3,a n +1=2a n +1求数列a n 的通项公式.【经典例题2】已知数列a n 中,a 1=1,a n +1=2a n +3,求数列a n 的通项公式.【经典例题3】已知数列a n 中,a 1=1,a n +1=3a n +4,求数列a n 的通项公式.【练习1】数列a n 中,a n +1=2a n -1,a 3=2,设其前n 项和为S n ,则S 6=()A.874 B.634 C.15 D.27【练习2】已知数列a n 的前n 项和为S n ,若3S n =2a n -3n ,则a 2018=()A.22018-1B.22018-6C.12 2018-72D.13 2018-103【练习3】在数列a n 中,a 1=2,a n +1=2a n +1,则a 5=_______.【练习4】已知数列a n 满足a 1=3,a n +1=2a n +1,则数列a n 的通项公式a n =______.【练习5】已知数列a n 的首项a 1=2,且a n +1=12a n +12n ∈N * ,则数列1a n -1 的前10项的和为______.【练习6】已知数列a n 中,a 1=1,a n +1=3a n +2,则a n =_______.◆构造二:待定系数之a n +1=Aa n +Bn +C 型构造等比数列求关于a n +1=Aa n +Bn +C (A ≠1,C ≠0,B ≠0)类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令a n +1+p (n +1)+q =A a n +pn +q ,然后与已知递推式各项的系数对应相等,解p ,q ,从而得到a n +pn +q 是公比为A 的等比数列.2024年高考数学专项突破构造法求数列通项的八种技巧(一)(解析版)【经典例题1】设数列a n满足a1=4,a n=3a n-1+2n-1(n≥2),求数列a n的通项公式.【经典例题2】已知:a1=1,n≥2时,a n=12a n-1+2n-1,求a n的通项公式.【练习1】已知数列a n是首项为a1=2,a n+1=13a n+2n+53.(1)求a n通项公式;(2)求数列a n的前n项和S n.【练习2】已知数列a n和b n,a n的前n项和S n,对于任意的n∈N*,a n,S n是二次方程x2-3n2x+b n=0的两根.(1)求a n和b n通项公式;(2)a n的前n项和S n.【练习3】设数列a n是首项为a1=1,满足a n+1=2a n-n2+3n(n=1,2,⋯).问是否存在λ,μ,使得数列a n+λn2+μn成等比数列?若存在,求出λ,μ的值,若不存在,说明理由;◆构造三:待定系数之a n+1=pa n+q n型构造数列求关于a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为a n+1+λq n+1=p a n+λq n,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以q n+1,得a n+1q n+1=pq⋅a nq n+1q,引入辅助数列b n(其中b n=a nq n),得b n+1=pq⋅b n+1q,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以p n+1,得a n+1p n+1=a np n+1p⋅qpn,引入辅助数列b n (其中b n=a n p n ),得b n+1-b n=1p⋅q.pn,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列a n中a1=56,a n+1=13a n+12n+1,求an的通项公式.【经典例题2】已知数列a n满足a n+1=2a n+4⋅3n-1,a1=-1,求数列a n的通项公式.【练习1】已知数列a n满足a1=1,a n+1=3a n+2n n∈N*,b n=a n+1a n.设t∈Z,若对于∀n∈N*,都有b n>t恒成立,则t的最大值为()A.3B.4C.7D.9【练习2】已知数列a n满足a1=2,a n+1=a n+2n+2n∈N*.(1)判断数列a n-2n是否为等差数列,并说明理由;(2)记S n为数列a n的前n项和,求S n.【过关检测】一、单选题1.已知S n为数列a n的前n项和,若a n+1=2a n-2,S2=10,则a n的通项公式为( )A.a n=3n-4B.a n=2n+2C.a n=n2+nD.a n=3n2-12.已知数列a n中,a1=1,a n+1=2a n+1,则数列a n的通项公式为( )A.a n=nB.a n=n+1C.a n=2nD.a n=2n-13.已知数列a n满足a1=3,a n+1=5a n-8,则a2022的值为( )A.52021-2B.52021+2C.52022+2D.52022-24.设数列a n的前n项和为S n,若S n=2a n-2n+1,则S10=( )A.211-23B.210-19C.3×210-23D.3×29-195.在数列a n中,a1=1,且a n+1=2a n+1,则a n的通项为( )A.a n=2n-1B.a n=2nC.a n=2n+1D.a n=2n+16.数列a n中,a n+1=2a n+1,a1=1,则a100=( )A.2100+1B.2101C.2100-1D.21007.数列a n满足12a n=a n+1-12n+1,且a1=12,若a n<13,则n的最小值为( )A.3B.4C.5D.68.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为( )A.3n-1B.3n+1-2C.3n-2D.3n9.数列a n满足a n=4a n-1+3n≥2且a1=0,则此数列第5项是( )A.15B.255C.16D.6310.在数列a n中,已知a1=1,a n+1=2a n+1,则a n=( )A.2n -1B.2n -1C.nD.2n -111.在数列a n 中,a 1=3,a n =2a n -1-n +2n ≥2,n ∈N + ,若a n >980,则n 的最小值是( )A.8B.9C.10D.1112.设数列{an }中,a 1=2,an +1=2an +3,则通项an 可能是()A.5-3nB.3·2n -1-1C.5-3n 2D.5·2n -1-313.在数列a n 中,若a 1=2,a n +1=3a n +2n +1,则a n =( )A.n ⋅2nB.52-12nC.2⋅3n -2n +1D.4⋅3n -1-2n +114.已知在数列a n 中,a 1=56,a n +1=13a n +12 n +1,则a n =( )A.32n -23n B.23n -32n C.12n -23n D.23n -12n 15.数列a n 满足a n +1=2a n +3,n ∈N *,若a 2017≥a 1,则a 1的取值范围为( )A.(-∞,-3]B.{-3}C.(-3,+∞)D.[-3,+∞)二、填空题16.设数列a n 满足a 1=1,且a n =3a n -1+4n ≥2 ,则数列a n 的通项公式为a n =___________.17.已知数列a n 中,a 1=1,a n +1=2a n +1,则a n 通项a n =______;18.数列{an }满足a 1=1,an +1=2an +1. (n ∈N *).数列{an }的通项公式为______.19.数列a n 满足a n =4a n -1+3,且a 1=0,则a 6=_________.20.已知数列a n 满足a n +1=2a n +12,且a n 前8项和为761,则a 1=______.三、解答题21.已知数列a n 满足a 1=1,a n +1=3a n +2.(1)证明1+a n 为等比数列,并求a n 的通项公式;(2)记数列11+a n 的前n 项和为S n ,证明S n <34.22.已知数列a n满足a1=3,a n+1=2a n-2.(1)求a n的通项公式;(2)求a n的前n项和S n.23.已知数列a n的首项a1=1,且1a n+1=2a n+1.(1)求数列a n的通项公式;(2)若数列b n满足a n⋅b n=n,求数列b n的前n项和S n.24.在数列a n中,a1=5,且a n+1=2a n-1n∈N*.(1)证明:a n-1为等比数列,并求a n的通项公式;(2)令b n=(-1)n⋅a n,求数列b n的前n项和S n.25.已知数列a n的前n项和为S n,a1=2,且a n+1=2a n+2.(1)求数列a n的通项公式;(2)令b n=2n+1a n+2,记数列b n的前n项和为T n,求证:T n<3.构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之a n +1=Aa n +B 型构造等比数列求关于a n +1=Aa n +B (其中A ,B 均为常数,AB (A -1)≠0)类型的通项公式时,先把原递推公式转化为a n +1+M =A a n +M ,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知a n 满足a 1=3,a n +1=2a n +1求数列a n 的通项公式.【解析】根据原式,设a n +1+m =2a n +m ,整理得a n +1=2a n +m ,题干中a n +1=2a n +1,根据对应项系数相等得m =1.∴a n +1+1=2a n +1 ,令b n =a n +1+1,b 1=a 1+1=3+1=4,所以a n +1 是4为首项,2为公比的等比数列.即a n +1=4⋅2n -1,a n =2n +1-1.【经典例题2】已知数列a n 中,a 1=1,a n +1=2a n +3,求数列a n 的通项公式.【解析】设a n +1+t =2a n +t ,整理得a n +1=2a n +t ,题干中a n +1=2a n +3,根据对应项系数相等,解得t =3,故a n +1+3=2a n +3 .令b n =a n +3,则b 1=a 1+3=4,且b n +1b n=a n +1+3a n +3=2.所以b n 是4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3.【经典例题3】已知数列a n 中,a 1=1,a n +1=3a n +4,求数列a n 的通项公式.【解析】设a n +1+t =3(a n +t ),即a n +1=3a n +2t ,题干中a n +1=3a n +4,根据对应项系数相等,解得t =2,故a n +1+2=3a n +2 .令b n =a n +2,则b 1=a 1+2=3,且b n +1b n=a n +1+2a n +2=3.所以b n 是3为首项,3为公比的等比数列.所以b n =3×3n -1=3n ,即a n =3n -2.【练习1】数列a n 中,a n +1=2a n -1,a 3=2,设其前n 项和为S n ,则S 6=()A.874B.634C.15D.27【答案】A【解析】∵a n +1=2a n -1,a 3=2,可得2=2a 2-1,解得a 2=32,同理可得:a 1=54变形为a n +1-1=2a n -1 ,a 1-1=14. ∴数列a n -1 为等比数列,首项为14,公比为2.∴a n -1=14×2n -1,a n =2n -3+1.∴S 6=1426-1 2-1+6=874.故选:A .【练习2】已知数列a n 的前n 项和为S n ,若3S n =2a n -3n ,则a 2018=()A.22018-1B.22018-6C.12 2018-72D.13 2018-103【答案】A【解析】∵数列a n 的前n 项和为S n ,3S n =2a n -3n ,∴a 1=S 1=132a 1-3 ,解得a 1=-3,S n =132a n -3n ,(1),n ≥2,S n -1=132a n -1-3n +3 ,(2),(1)-(2),得a n =23a n -23a n -1-1,∴a n =-2a n -1-3,∴a n +1a n -1+1=-2,∵a 1+1=-2,∴a n +1 是以-2为首项,以-2为公比的等比数列,∴a n+1=(-2)n,∴a n=(-2)n-1,∴a2018=(-2)2018-1=22018-1.故选:A.【练习3】在数列a n中,a1=2,a n+1=2a n+1,则a5=_______.【答案】47【解析】数列 a n中, a1=2,a n+1=2a n+1,变形为:a n+1+1=2a n+1,a1+1=3,∴数列a n+1为等比数列,首项为3,公比为2,∴a n+1=3×2n-1,即a n=3×2n-1-1则a5=3×24-1=47.故答案为:47.【练习4】已知数列a n满足a1=3,a n+1=2a n+1,则数列a n的通项公式a n=______.【答案】a n=2n-1【解析】∵a n+1=2a n+1n∈N*,∴a n+1+1=2a n+1,∴a n+1是以a1+1=2为首项,2为公比的等比数列.∴a n+1=2n,故a n=2n-1.【练习5】已知数列a n的首项a1=2,且a n+1=12a n+12n∈N*,则数列1a n-1的前10项的和为______.【答案】1023【解析】数列a n的首项a1=2,且a n+1=12a n+12(n∈N*),则:a n+1-1=12a n-1 ,整理得:a n+1-1a n-1=12(常数) ,所以:数列a n-1是以a1-1=2-1=1为首项,12为公比的等比数列,所以:a n-1=1*12n-1,当n=1时,符合通项.故:1a n-1=2n-1,所以:S n=20+21+22+⋯+2n-1=2n-1所以:S10=210-1=1024-1=1023.【练习6】已知数列a n中,a1=1,a n+1=3a n+2,则a n=_______.【答案】a n=2×3n-1-1【解析】因为a n+1=3a n+2,所以a n+1+1=3a n+1,因为1+a1=2,所以数列1+a n是以2为首项,以3为公比的等比数列,所以1+a n=2×3n-1,故答案为:a n=2×3n-1-1.◆构造二:待定系数之a n+1=Aa n+Bn+C型构造等比数列求关于a n+1=Aa n+Bn+C(A≠1,C≠0,B≠0)类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn,在构造时我们也保持跟题干一样的结构,加一项pn再构造等比数列就可以,即令a n+1+p(n+1)+q=A a n+pn+q,然后与已知递推式各项的系数对应相等,解p,q,从而得到a n+pn+q是公比为A的等比数列.【经典例题1】设数列a n满足a1=4,a n=3a n-1+2n-1(n≥2),求数列a n的通项公式.【解析】将递推公式转化为a n+pn+q=3a n-1+p(n-1)+q,化简后得a n=3a n-1+2pn+2q-3p,与原递推式比较,对应项的系数相等,得2p=22q-3p=-1,解得p=1q=1,令bn=a n+n+1,则b n=3b n-1,又b1=6,故b n=6⋅3n-1=2⋅3n,b n=a n+n+1,得a n=2⋅3n-n-1.【经典例题2】已知:a 1=1,n ≥2时,a n =12a n -1+2n -1,求a n 的通项公式. 【解析】设a n +pn +q =12a n -1+p (n -1)+q ,a n =12a n -1-12pn -12p -12q .与题干原式比较,对应项系数相等得-12p =2-12p -12q =-1,解得p =-4q =6 ,首项a 1-4+6=3.所以a n -4n +6 是3为首项,12为公比的等比数列.所以a n -4n +6=3⋅12 n -1,即a n =32n -1+4n -6.【练习1】已知数列a n 是首项为a 1=2,a n +1=13a n +2n +53.(1)求a n 通项公式;(2)求数列a n 的前n 项和S n .【解析】因为a n +1-3(n +1)+2=13a n -3n + 2),且a 1-3+2=1,所以数列a n -3n +2 是以1为首项,13为公比的等比数列,则a n -3n +2=13n -1,即a n =13n -1+3n -2.【练习2】已知数列a n 和b n ,a n 的前n 项和S n ,对于任意的n ∈N *,a n ,S n 是二次方程x 2-3n 2x +b n =0的两根.(1)求a n 和b n 通项公式;(2)a n 的前n 项和S n .【解析】因为a n ,S n 是一元二次方程x 2-3n 2x +b n =0的两个根,所以a n +S n =3n 2a n S n =b n ,由 a n +S n =3n 2得a n +1+S n +1=3(n +1)2,两式相减得a n +1-a n +S n +1-S n =6n +3,所以a n +1=12a n +12(6n +3),令a n +1+A (n +1)+B =12a n +An +B ,则a n +1=12a n -12An -12B -A ,比较 以上两式的系数,得-12A =3-12B -A =32 ,解得A =-6B =9 .所以a n +1-6(n +1)+9=12a n -6n +9 .又 a 1+S 1=3,a 1=32,所以数列a n -6n +9 是以92为首项、12为公比的等比数列.所以 a n -6n +9=9212 n -1,a n =6n +92n +9,S n =3n 2-a n =3n 2-6n -92n +9,所以 b n =6n +92n -9 3n 2-6n -92n +9 【练习3】设数列a n 是首项为a 1=1,满足a n +1=2a n -n 2+3n (n =1,2,⋯).问是否存在λ,μ,使得数列a n +λn 2+μn 成等比数列?若存在,求出λ,μ的值,若不存在,说明理由;【解析】依题意,令a n +1+λ(n +1)2+μ(n +1)+γ=2a n +λn 2+μn +γ 所以a n +1=2a n +λn 2+μn -2λn +γ-λ-μ,即λ=-1μ-2λ=3γ-λ-μ=0, 解得λ=-1μ=1γ=0.所以数列a n -n 2+n 是以2为公比、a 1-1+1=1为首项等比数列.所以a n -n 2+n =2n -1,a n =n 2+2n -1-n ,即存在λ=-1,μ=1,使得数列a n -n 2+n 成等比数列.◆构造三:待定系数之a n+1=pa n+q n型构造数列求关于a n+1=pa n+q n(其中p,q均为常数,pq(p-1)≠0)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为a n+1+λq n+1=p a n+λq n,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以q n+1,得a n+1q n+1=pq⋅a nq n+1q,引入辅助数列b n(其中b n=a nq n),得b n+1=pq⋅b n+1q,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以p n+1,得a n+1p n+1=a np n+1p⋅qpn,引入辅助数列b n (其中b n=a n p n ),得b n+1-b n=1p⋅q.pn,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列a n中a1=56,a n+1=13a n+12n+1,求an的通项公式.【解析】解法一:构造数列a n+1+λ12n+1=13a n+λ12n,化简成题干结构得a n+1=13a n-13λ12n+1,对应项系数相等得λ=-3,设b n=a n-312n,b1=a1-312 1=-23,所以数列b n 是以-23为首项,13为公比的等比数列,b n=-2313n-1,所以an=32n-23n.解法二:将a n+1=13a n+12n+1两边分别除12n+1,也就是乘2n+1,为方便计算,我们等式两边同乘2n+1,得2n+1⋅a n+1=232n⋅a n+1.令b n=2n⋅a n,则b n+1=23b n+1,这又回到了构造一的方法,根据待定系数法,得b n+1-3=23b n-3,所以数列b n-3是首项为b1-3=2×56-3=-43,公比为23的等比数列.所以b n-3=-43⋅23n-1即b n=3-2⋅23 n.所以a n=b n2n=32n-23n.解法三:将a n+1=13a n+12n+1两边分别除13n+1,也就是乘3n+1,得3n+1an+1=3n a n+32 n+1⋅令b n=3n⋅a n,则b n+1=b n+32 n+1,所以b n-b n-1=32 n,b n-1-b n-2=32 n-1,...,b2-b1=32 2⋅将以上各式叠加,得b n-b1=32 2+⋯+32 n-1+32 n,又b1=3a1=3×56=52=1+32,所以b n=1+32+32 2+⋯+32 n-1+32 n=1⋅1-32 n+11-32=2⋅32 n+1-2,即b n=2⋅32n+1-2.所以an=b n3n=32n-23n.【经典例题2】已知数列a n满足a n+1=2a n+4⋅3n-1,a1=-1,求数列a n的通项公式.【解析】解法一:设a n+1+λ⋅3n=2a n+λ⋅3n-1,待定系数法得λ=-4,则数列a n-4⋅3n-1是首项为a1-4⋅31-1 =-5,公比为2的等比数列,所以a n-4⋅3n-1=-5⋅2n-1,即a n=4⋅3n-1-5⋅2n-1.解法二:(两边同除以 q n+1) 两边同时除以3n+1得:a n+13n+1=23⋅a n3n+432,下面解法略.解法三:(两边同除以p n +1)两边同时除以2n +1得:a n +12n +1=a n 2n +32n -1,下面解法略.【练习1】已知数列a n 满足a 1=1,a n +1=3a n +2n n ∈N * ,b n =a n +1a n.设t ∈Z ,若对于∀n ∈N *,都有b n >t 恒成立,则t 的最大值为()A.3B.4C.7D.9【答案】A【解析】解法一:因为a n +1=3a n +2n ,所以a n +12n =3a n 2n +1,所以a n +12n +1=32⋅a n 2n +12,所以a n +12n +1+1=32a n 2n +1 ,因为a 1=1,所以a 121+1=32,所以数列a n 2n +1 是以32为首相以32为公比的等比数列,所以a n 2n+1=32 n ,所以a n =3n -2n,故选A .解法二:令a n +1+A ⋅2n +1=3a n +A ⋅2n ,因为a n +1=3a n +2n ,对比系数得:A =1,所以数列 a n +2n 是以3为首项,3为公比的等比数列,所以a n +2n =3n ,所以a n =3n -2n,所以 b n =a n +1a n =3n +1-2n +13n -2n=3⋅32 n-232 n -1n =3+132 n -1,因为∀n ∈N *,所以32 n -1≥12.所以0<132 n -1≤2,所以3<b n ≤5,对于∀n ∈N *,都有b n >t 恒成立,所以t ≥3,所以t 的最大值为3,故选 A .【练习2】已知数列a n 满足a 1=2,a n +1=a n +2n +2n ∈N * .(1)判断数列a n -2n 是否为等差数列,并说明理由;(2)记S n 为数列a n 的前n 项和,求S n .【解析】(1)数列a n 满足a 1=2,a n +1=a n +2n +2n ∈N * ,所以a n +1-2n +1 -a n -2n =2. a 1-2=0,所以数列a n -2n 为等差数列,首项为0,公差为2.(2)由(1)可得:a n -2n=0+2(n -1),可得:a n =2n+2(n -1),所以S n =22n -1 2-1+2×n (0+n -1)2=2n +1-2+n 2-n【过关检测】一、单选题1.已知S n 为数列a n 的前n 项和,若a n +1=2a n -2,S 2=10,则a n 的通项公式为( )A.a n =3n -4B.a n =2n +2C.a n =n 2+nD.a n =3n 2-1【答案】B 【解析】令n =1可得a 2=2a 1-2,又S 2=a 1+a 2=10,解得a 1=4,又a n +1-2=2a n -4=2(a n -2),则a 1-2=2,a n +1-2a n -2=2,即a n -2 是以2为首项,2为公比的等比数列,则a n -2=2⋅2n -1,a n =2n +2.故选:B .2.已知数列a n 中,a 1=1,a n +1=2a n +1,则数列a n 的通项公式为( )A.a n =n B.a n =n +1C.a n =2nD.a n =2n -1【答案】D 【解析】∵a n +1=2a n +1,∴a n +1+1=2(a n +1),又a 1=1,a 1+1=2,所以数列a n +1 是首项为2,公比为2 的等比数列,所以a n +1=2×2n -1,∴a n =2n -1.故选:D .3.已知数列a n 满足a 1=3,a n +1=5a n -8,则a 2022的值为( )A.52021-2 B.52021+2C.52022+2D.52022-2【答案】B 【解析】因为a n +1=5a n -8,所以a n +1-2=5(a n -2),又a 1-2=1,所以{a n -2}是等比数列,公比为5,首项是1,所以a n -2=5n -1,a n =5n -1+2,所以a 2022=52021+2.故选:B .4.设数列a n 的前n 项和为S n ,若S n =2a n -2n +1,则S 10=( )A.211-23 B.210-19C.3×210-23D.3×29-19【答案】C 【解析】当n =1时,S 1=a 1=2a 1-2+1,解得a 1=1.当n ≥2时,S n -1=2a n -1-2n +3,所a n =S n -S n -1=2a n -2n +1-2a n -1-2n +3 ,即a n =2a n -1+2,所以a n +2=2a n -1+2 ,即a n +2a n -1+2=2,所以数列a n +2 是首项为3,公比为2的等比数列,则a n +2=3×2n -1,从而S n =3×2n -2n -3,故S 10=3×210-23.故选:C5.在数列a n 中,a 1=1,且a n +1=2a n +1,则a n 的通项为( )A.a n =2n -1 B.a n =2nC.a n =2n +1D.a n =2n +1【答案】A 【解析】解:∵a n +1=2a n +1,∴a n +1+1=2a n +1 ,由a 1=1,得a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2⋅2n -1=2n ,即a n =2n -1.故选:A6.数列a n 中,a n +1=2a n +1,a 1=1,则a 100=( )A.2100+1B.2101C.2100-1D.2100【答案】C 【解析】数列a n 中,a n +1=2a n +1,故a n +1+1=2a n +1 ,故a n +1≠0,所以a n +1+1a n +1=2,因为a 1=1,所以a 1+1=2≠0,所以a n +1 是首项为2,公比为2的等比数列,所以a n +1=2n ,即a n =2n -1,故a 100=2100-1,故选:C .7.数列a n 满足12a n =a n +1-12n +1,且a 1=12,若a n <13,则n 的最小值为( )A.3B.4C.5D.6【答案】B【解析】因为12a n =a n +1-12 n +1,等式两边同时乘以2n +1可得2n a n =2n +1a n +1-1,所以,2n +1a n +1-2n a n =1且2a 1=1,所以,数列2n a n 是等差数列,且首项和公差都为1,则2n a n =1+n -1=n ,所以,a n =n2n,因为a n +1-a n =n +12n +1-n 2n =n +1-2n 2n +1=1-n2n +1.当n =1时,a 1=a 2=12;当n ≥2时,a n +1<a n ,即数列a n 从第二项开始单调递减,因为a 3=38>13,a 4=14<13,故当n ≤3时,a n >13;当n ≥4时,a n <13.所以,a n <13,则n 的最小值为4.故选:B .8.已知数列a n 中,a 1=1,a n =3a n -1+4(n ∈N ∗且n ≥2),则数列a n 通项公式a n 为( )A.3n -1 B.3n +1-2C.3n -2D.3n【答案】C 【解析】由已知得a 2=7,a n +2a n -1+2=3进而确定数列{a n +2}的通项公式,即可求a n .由a 1=1,a n =3a n -1+4知:a 2=7且a n +2a n -1+2=3(n ≥2),而a 1+2=3,a 2+2=9,∴{a n +2}是首项、公比都为3的等比数列,即a n =3n -2,故选:C 9.数列a n 满足a n =4a n -1+3n ≥2 且a 1=0,则此数列第5项是( )A.15 B.255C.16D.63【答案】B 【解析】∵a n=4a n-1+3n≥2,∴a n+1=4a n-1+1n≥2,∴a n+1是以1为首项,4为公比的等比数列,则a n+1=4n-1.∴a n=4n-1-1,∴a5=44-1=255.故选:B.10.在数列a n中,已知a1=1,a n+1=2a n+1,则a n=( )A.2n-1B.2n-1C.nD.2n-1【答案】B【解析】由a n+1=2a n+1,得a n+1+1=2a n+2=2a n+1,故数列a n+1为等比数列,首项为a1+1=2,公比为2,所以a n+1=2n,a n=2n-1,故选:B.11.在数列a n中,a1=3,a n=2a n-1-n+2n≥2,n∈N+,若a n>980,则n的最小值是( )A.8B.9C.10D.11【答案】C【解析】因为a n=2a n-1-n+2n≥2,n∈N+,所以a n-n=2a n-1-n-1.n≥2,n∈N+因为a1=3,所以a1-1=2,所以数列a n-n是首项和公比都是2的等比数列,则a n-n=2n,即a n=2n+n,因为a n-a n-1=2n-1+1>0,所以数列a n是递增数列,因为a9=521<980,a10=1034>980,所以满足a n>980的n的最小值是10,故选:C12.设数列{an}中,a1=2,an+1=2an+3,则通项an可能是()A.5-3nB.3·2n-1-1C.5-3n2D.5·2n-1-3【答案】D【解析】设a n+1+x=2a n+x,则a n+1=2a n+x,因为an+1=2an+3,所以x=3,所以a n+3是以a1+3为首项,2为公比的等比数列,a n+3=5×2n-1,所以a n=5⋅2n-1-3故选:D13.在数列a n中,若a1=2,a n+1=3a n+2n+1,则a n=( )A.n ⋅2nB.52-12n C.2⋅3n -2n +1 D.4⋅3n -1-2n +1【答案】C 【解析】令b n =a n 2n +2,则b n +1b n =a n +12n +1+2a n 2n +2=3a n +2n +12n +1+2a n 2n +2=32,又b 1=a 12+2=3,所以b n 是以3为首项,32为公比的等比数列,所以b n =a n 2n +2=3×32 n -1,得a n =2⋅3n -2n +1.故选:C .14.已知在数列a n 中,a 1=56,a n +1=13a n +12n +1,则a n =( )A.32n -23n B.23n -32nC.12n -23n D.23n -12n 【答案】A【解析】解:因为a 1=56,a n +1=13a n +12n +1,所以2n +1⋅a n +1=23⋅2n a n +1,整理得2n +1⋅a n +1-3=23⋅2na n -3 ,所以数列2n a n -3 是以2a 1-3=-43为首项,23为公比的等比数列.所以2n a n -3=-4323 n -1,解得a n =32n -23n .故选:A 15.数列a n 满足a n +1=2a n +3,n ∈N *,若a 2017≥a 1,则a 1的取值范围为( )A.(-∞,-3]B.{-3}C.(-3,+∞)D.[-3,+∞)【答案】D【解析】由a n +1=2a n +3可得a n +1+3=2a n +3 ,所以a n +3=a 1+3 ×2n -1所以a n =a 1+3 ×2n -1-3,所以a 2017=a 1+3 ×22016-3≥a 1所以a 1+3 ×22016≥a 1+3,所以a 1+3≥0,所以a 1≥-3故选:D二、填空题16.设数列a n 满足a 1=1,且a n =3a n -1+4n ≥2 ,则数列a n 的通项公式为a n =___________.【答案】3n -2##-2+3n 【解析】解:因为a n =3a n -1+4n ≥2 ,∴a n +2=3a n -1+2 ,∴a n +2a n -1+2=3,∵a 1=1,则a 1+2=3,∴数列a n +2 是以3为首项,3为公比的等比数列.∴a n +2=3⋅3n -1=3n ,所以a n =3n -2,故答案为:3n -217.已知数列a n 中,a 1=1,a n +1=2a n +1,则a n 通项a n =______;【答案】2n -1【解析】因为a n +1=2a n +1,所以a n +1+1=2(a n +1),∴a n +1+1a n +1=2,所以a n +1 是一个以a 1+1=2为首项,以2为公比的等比数列,所以a n +1=2×2n -1=2n ,∴a n =2n -1.故答案为:2n -118.数列{an }满足a 1=1,an +1=2an +1. (n ∈N *).数列{an }的通项公式为______.【答案】a n =2n -1n ∈N * .【解析】∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1),又a 1+1=2∴a n +1 是以2为首项,2为公比的等比数列.∴a n +1=2n .即a n =2n -1(n ∈N *).故答案为:a n =2n -1n ∈N * .19.数列a n 满足a n =4a n -1+3,且a 1=0,则a 6=_________.【答案】1023【解析】由题意知:a n +1=4a n -1+4=4(a n -1+1),又a 1+1=1,故a n +1 是1为首项,4为公比的等比数列,故a 6+1=a 1+1 ×45=1024,故a 6=1023.故答案为:1023.20.已知数列a n 满足a n +1=2a n +12,且a n 前8项和为761,则a 1=______.【答案】52##2.5【解析】解:数列{a n }满足a n +1=2a n +12,整理得a n +1+12=2a n +12 ,若a 1=-12,则a n =-12,显然不符合题意,所以a n ≠-12,则a n +1+12a n +12=2(常数);所以数列a n +12 是以a 1+12为首项,2为公比的等比数列;所以a n +12=a 1+12 ⋅2n -1,整理得a n =a 1+12 ⋅2n -1-12;由于前8项和为761,所以S 8=a 1+12 ⋅(1+2+...+27)-8×12=a 1+12 ×1-281-2-4=255a 1+12 -4=761,解得a 1=52.故答案为:52.三、解答题21.已知数列a n 满足a 1=1,a n +1=3a n +2.(1)证明1+a n 为等比数列,并求a n 的通项公式;(2)记数列11+a n 的前n 项和为S n ,证明S n <34.【答案】(1)证明见解析,a n =2⋅3n -1-1(2)见解析【解析】(1)证明:因为a n +1=3a n +2,所以a n +1+1=3a n +1 ,又a 1+1=2,所以数列1+a n 是以2为首项,3为公比的等比数列,则a n +1=2⋅3n -1,所以a n =2⋅3n -1-1;(2)证明:由(1)得1a n +1=12⋅3n -1,因为1a n +1+11a n +1=12⋅3n12⋅3n -1=13,1a 1+1=12,所以数列11+a n 是以12为首项,13为公比的等比数列,则S n =12×1-13n 1-13=341-13n ,因为1-13n <1,所以S n <34.22.已知数列a n 满足a 1=3,a n +1=2a n -2.(1)求a n 的通项公式;(2)求a n 的前n 项和S n .【答案】(1)a n =2n -1+2;(2)S n =2n +2n -1.【解析】(1)∵a n +1=2a n -2,∴a n +1-2=2a n -2 即∴a n +1-2a n -2=2∴数列a n -2 是以首相为1,公比为2的等比数列,∴a n -2=2n -1∴a n =2n -1+2(2)由(1)知a n =2n -1+2∴S n =a 1+a 2+a 3+⋯+a n=20+2 +21+2 +22+2 +⋯+2n -1+2 =20+21+22+⋯+2n -1 +2n =1×1-2n 1-2+2n=2n +2n -123.已知数列a n 的首项a 1=1,且1a n +1=2a n+1.(1)求数列a n 的通项公式;(2)若数列b n满足a n⋅b n=n,求数列b n的前n项和S n.【答案】(1)a n=12n-1(2)S n=n-12n+1+2-n n+12【解析】(1)∵1an+1=2an+1,等式两边同时加1整理得1an+1+1=21an+1又∵a1=1,∴1a1+1=2∴1an +1是首项为2,公比为2的等比数列.∴1an +1=2n, ∴a n=12n-1(2)∵a n⋅b n=n,∴b n=n an=n⋅2n-n.记n⋅2n的前n项和为T n则T n=1⋅21+2⋅22+3⋅23+⋅⋅⋅⋅⋅⋅+n-1⋅2n-1+n⋅2n所以2T n=1⋅22+2⋅23+3⋅24+⋅⋅⋅⋅⋅⋅+n-1⋅2n+n⋅2n+1相减得-T n=21+22+23+24+⋅⋅⋅⋅⋅⋅+2n-n⋅2n+1整理得T n=n-12n+1+2.所以S n=n-12n+1+2-n n+1224.在数列a n中,a1=5,且a n+1=2a n-1n∈N*.(1)证明:a n-1为等比数列,并求a n的通项公式;(2)令b n=(-1)n⋅a n,求数列b n的前n项和S n.【答案】(1)证明见解析,a n=2n+1+1(2)S n=432n-1,n=2k,k∈N*,-2n+2+73,n=2k-1,k∈N*.【解析】(1)解:因为a n+1=2a n-1,所以a n+1-1=2a n-1,又a1-1=4,所以a n+1-1a n-1=2,所以a n-1是以4为首项,2为公比的等比数列.故a n-1=4×2n-1,即a n=2n+1+1.(2)解:由(1)得b n=(-1)n⋅2n+1+1,则b n=2n+1+1,n=2k,k∈N*-2n+1+1,n=2k-1,k∈N* ,①当n=2k,k∈N*时,S n=-22-1+23+1-24+1+⋯+-2n-1+2n+1+1=-22+23-24+25+⋯-2n+2n+1=22+24+⋯+2n=432n-1;②当n=2k-1,k∈N*时,S n=S n+1-b n+1=432n+1-1-2n+2+1=-2n+2+73,综上所述,S n=432n-1,n=2k,k∈N*-2n+2+73,n=2k-1,k∈N*25.已知数列a n的前n项和为S n,a1=2,且a n+1=2a n+2.(1)求数列a n的通项公式;(2)令b n=2n+1a n+2,记数列b n的前n项和为T n,求证:T n<3.【答案】(1)a n=2n+1-2(2)证明见解析【解析】(1)解:因为a1=2,a n+1=2a n+2,所以a n+1+2=2a n+2,所以a n+2是以4为首项,2为公比的等比数列,所以a n+2=4×2n-1=2n+1,所以a n=2n+1-2;(2)解:由(1)可知b n=2n+1a n+2=2n+12n+1=n+12n,所以T n=221+322+423+⋯+n+12n①,所以12T n=2 22+323+424+⋯+n+12n+1②;①-②得12T n=1+122+123+⋯+12n-n+12n+1=1+1221-12n-11-12-n+12n+1=32-n+32n+1所以T n=3-n+32n<3;。
试论高中数学解题中运用构造法的措施
![试论高中数学解题中运用构造法的措施](https://img.taocdn.com/s3/m/3a16bbe56e1aff00bed5b9f3f90f76c661374c13.png)
试论高中数学解题中运用构造法的措施高中数学解题中构造法是一种重要的解题思路和方法,通过构造一个符合条件的特殊例子或模型,从而得出一般情况的结论。
构造法在高中数学解题中具有广泛的应用,并且能够帮助学生理解概念、加深记忆、拓宽思路。
下面将从题目选择、构造思路和解题方法三个方面探讨高中数学解题中运用构造法的措施。
一、题目选择在解题过程中,首先要选择适合运用构造法的题目。
一般来说,构造法适合解决下面几种类型的问题:1.存在性问题:如证明某一条件下一定存在某种结果。
2.等式与不等式问题:如证明某一等式或不等式在某个特殊条件下成立。
3.图形问题:如构造某一特殊图形满足给定条件。
4.递推与逆推问题:如利用构造法来进行递推或逆推,从而得到一般情况的结论。
二、构造思路在解题过程中,可以通过以下几种构造思路进行推导和发现:1.类比法:通过类比已知的问题或模型,找到相似的结构,从而推导出一般情况的结果。
如利用平行线的性质类比解决相交线的问题。
2.分解法:将复杂的问题分解为若干简单的子问题,然后逐步构造出解决整个问题的结构。
如将一个多边形分解成若干个三角形,从而利用三角形的性质进行解题。
3.对称法:利用图形的对称性质进行构造,从而找到满足给定条件的特殊情况。
如通过利用图形的对称性质解决等腰三角形的问题。
4.反证法:假设所要证明的结论不成立,通过构造一个特殊例子进行推导得出矛盾,从而推出原命题成立。
如通过反证法证明无理数存在。
三、解题方法在实际解题过程中,可以采用以下几种方法来运用构造法:1.举例法:通过构造一个满足给定条件的特殊例子,从而发现或证明一般情况的结论。
特别是对于存在性问题,举一个具体例子往往可以帮助理清思路和跳出思维定势。
2.巧取法:利用已知条件和题目中给出的信息,巧妙地进行构造和推导,从而得到满足题目要求的解。
这种方法一般需要一定的数学见识和技巧,对于解答题来说特别有效。
3.推导法:通过观察已知的特殊例子或模型的性质,从中归纳出一般性质和结论。
巧构造,妙解题
![巧构造,妙解题](https://img.taocdn.com/s3/m/784c439dfc0a79563c1ec5da50e2524de518d0e7.png)
构造法是一种解答高中数学问题的常用方法,尤其是在解答数列问题、立体几何问题、导数问题、方程问题时,巧妙地构造出新数学模型,便可从新角度找到解题的方案.这样不仅能有效地提升解题的效率,还能拓宽解题的思路.运用构造法解题,难点在于怎样构造出合适的数学模型.下面结合实例来进行探讨.一、妙用构造法,解数列问题数列问题侧重于考查等差、等比数列的通项公式、性质、前n项和公式.对于一些复杂的数列问题,我们常需要根据已知条件,构造出等差或等比数列,利用等差、等比数列的通项公式、前n项和公式来求解.巧妙地运用构造法,来构造出辅助数列,可使复杂的问题简单化.例1.已知数列{a n}的前n项和为S n,S n=2a n-3n,求数列的通项公式.解:因为a1=S1=2a1-3,所以a1=3,当n≥2时,an=S n-S n-1=(2a n-3n)-(2a n-1-3n-1),化简可得an-2a n-1=2·3n-1,设bn-1=an2n-a n-12n-1=æèöø32n-1(n≥2),则{b n}是一个以32为首项,32为公比的等比数列,设b n的前n项和为T n,则Tn-1=a222-a121+a323-a222+…+a n2n-a n-12n-1=32éëêùûú1-æèöø32n-11-32,整理得an2n-a121=2·æèöø32n-3,故an=2·3n-3·2n-1,所以数列的通项公式为a n=2·3n-3·2n-1.解答本题,需先根据数列的前n项和与a n之间的关系a n={S1,n=1,Sn-S n-1,n≥2,来消去Sn,得到关于an、an-1的关系式,然后根据其特征,在其左右同时除以2n,构造辅助数列{b n}.根据等比数列的定义可知该数列为等比数列,于是根据等比数列的前n项和公式求出数列{a n}的通项公式.构造辅助数列的常用途径有在递推式的左右同时除以一个常数、同时取对数、同时取倒数等.二、妙用构造法,解立体几何问题立体几何问题对同学们的空间想象能力和抽象思维能力有较高的要求.有些立体几何问题较为复杂,很难快速找到解题的思路,此时可根据几何图形的特点和相关的定理、性质、定义来添加合适的辅助线,构造出规则的几何体、向量、平行线、垂线等,这样便能将问题简化,快速找到解题的突破口.例2.在四面体OABC中,OA=OB=OC,∠AOC=∠AOB.证明:OA在△OBC所在的平面的射影平分∠BOC.分析:本题采用几何法证明较为困难,于是转换思路,构造向量OA、OB、OC,并以这3个向量为基底,分别表示出其他向量,然后根据向量的数量积公式证明cos∠BOH=cos∠COH,即可解题.证明:如图,过A向平面OBC作垂线,垂足为H,则OH为OA在平面OBC上的射影.解题宝典40设 OA =a , OB =b ,OC =c ,则|a |=|b |=|c |,且 OH = OA + AH =a +AH ,于是 OB · OH =| OB |·|OH |·cos ∠BOH=|b |·| OH |·cos ∠BOH =b ·(a + AH )=b ·a +b ·AH =b ·a =|b |·|a |·cos ∠AOB ,所以cos ∠BOH =|a ||b |·cos ∠AOB |b ||OH |=|a ||OH |cos ∠AOB.同理可得cos ∠COH =|a ||OH |cos ∠AOC因为∠AOB =∠AOC ,所以cos ∠BOH =cos ∠COH .所以∠BOH =∠COH .即OA 在平面OBC 上的射影平分∠BOC .通过构造向量来将问题转化为向量问题求解,是解答立体几何问题的常用思路.三、妙用构造法,解不等式问题很多不等式问题中给出的条件较为简单,为了证明结论,常需运用构造法,将不等式进行变形,构造出合适的函数模型、方程、几何图形等,利用函数的性质、方程的性质、几何图形的位置关系来解题.这样能减少计算量,降低解题的难度.例3.已知x >0,证明:ln x +1x -1x +1>0.证明:设f (x )=lnx +1x -1x +1,x >0,令x +1x=t ,其中x >0,所以x =1t -1,t >1,则f (t )=ln t +1t-1,其中t >1,所以f ′(t )=1t -1t 2=t -1t2,因为当t ∈(1,+∞)时,f ′(t )>0,所以f (t )在t ∈(1,+∞)上为增函数,所以f (t )>f (1)=0,故f (x )>0.要证明ln x +1x -1x +1>0,只需构造函数f (x ),证明f (x )>0,即证f (x )的最小值大于0,这样便将不等式证明问题转化为函数的最值问题.根据导函数与函数单调性之间的关系判断出函数f (x )的单调性,求得函数f (x )的最小值,即可证明不等式成立.在构造新的数学模型时,通常需将不等式进行适当的变形,再根据其代数式的特征和几何意义进行构造.四、妙用构造法,解方程问题解答方程问题常用的方法有因式分解法、配方法、换元法、待定系数法等.但当面对一些复杂的解方程题目时,运用这些方法往往很难奏效,此时可运用构造法,根据方程中代数式的特点、几何意义,构造出向量、函数、几何图形,运用向量的运算法则、函数的图象、性质、几何图形的位置关系来解题.例4.解方程x 4-5x 2-4x +13+x 4+x 2-2x +1=10.分析:该方程中含有根式且未知数的最高次数达到了4次,不能直接去根号.可将根号下的式子整理为平方和的形式,根据两点间的距离公式构造出三个点A 、B 、C ,根据三点之间的位置关系以及斜率公式来解题.解:x 4-5x 2-4x +13+x 4+x 2-2x +1=(x 2-3)2+(x -2)2+(x 2-0)2+(x -1)2=10,设A (x ,x 2),B (2,2),C (1,0),则|AB |=(x 2-3)2+(x -2)2,|AC |=(x 2-0)2+(x -1)2,因为|AB |+|AC |=10,又|BC |=(2-1)2+32=10,则|AB |+|AC |=|BC |,故A ,B ,C 三点共线,从而可得K AB K CB ,即3-x 22-x =3-02-1,解得x ,因为A 位于B ,C 之间,所以1<x <2,故x =16(3+21)是方程的唯一解.在解题受阻时,要学会转换解题的思路,可以将复杂的数列与等差、等比数列靠拢;也可以将不等式与函数、方程关联起来;也可以利用“向量”的双重身份,根据几何图形的特点构造出向量,还可以深入挖掘问题中代数式的特点、几何意义,构造出几何图形,运用构造法来解题.这就要求我们在解题时,展开想象,运用发散性思维,将问题与其他知识关联起来,以便另辟蹊径,构造出合适的数学模型,利用其他板块的知识来解题,从而将复杂问题简单化.(作者单位:西华师范大学数学与信息学院)解题宝典41。
巧构造,妙解题
![巧构造,妙解题](https://img.taocdn.com/s3/m/8e4abbe38ad63186bceb19e8b8f67c1cfad6eee7.png)
构造法是根据题目的条件与特征,构造出一种新的数学模型,从一种新的角度解题的方法.巧妙运用此方法解题,往往可以将复杂的数学问题转化为简单的问题,达到化难为易、化繁为简的目的.一、构造方程方程是指含有未知数的等式.在解题时,我们可根据问题中所给的数量关系和特征,确定一个或几个未知数,从而构造出一个新的方程,然后通过解方程,或运用方程的性质来解题.例1.若x ,y ∈R ,且x 2+y 2+xy =3,求x 2+y 2-xy的最值.解:由x 2+y 2+xy =3及x 2+y 2-xy =k 可知x 2+y2=k +32,x 2y 2=-6k +9+k 24,可将x 2,y 2看作关于t 的方程t 2-k +32t +-6k +9+k 26=0的两个根,则判别式△≥0,即k 2-10k +9≤0,解得1≤k ≤9,故x 2+y 2-xy 的最小值为1,最大值为9.将题中的两个代数式进行变形可得出x 2+y 2、x 2y 2的表达式,于是联想到一元二次方程的根与系数的关系,于是构造方程t 2-k +32t +-6k +9+k 26=0,根据一元二次方程的判别式大于或等于0建立不等式,从而求得问题的答案.二、构造函数用函数可以表示出变量之间的关系.若某个变量与另一个变量之间存在一定的联系,此时我们便可根据题意构造出一个函数模型,利用函数的图象和性质来解题.例2.已知x ,y ,z ∈R ,求证:x 2+4y 2+9z 2≥4xy +6zx -12yz .证明:要证明x 2+4y 2+9z 2≥4xy +6zx -12yz ,只要证明x 2-(4y +6z )x +4y 2+9z 2+12yz ≥0,不妨设f (x )=x 2-(4y +6z )x +4y 2+9z 2+12yz ,此函数图象的开口向上,其判别式△=(4y +6z )2-4(4y 2+9z 2+12yz )=0,由其图象可知,f (x )≥0,即12yz ≥0成立,所以x 2+4y 2+9z 2≥4xy +6zx -12yz 得证.此题中的变量较多,并且不等式中的各项都是二次的,难以破解.于是可以确定一个主元,并以其为自变量构造一个二次函数,利用二次函数的图象讨论根的分布情况,即可证明不等式成立.三、构造数列当遇见与自然数n 相关的数学问题时,可以根据题意构造一个数列,运用数列的性质、通项公式、前n 项和公式进行求解.例3.证明:∑k =1n1k>n (n ≥2).证明:构造数列{}x n ,这里x n=k =nn,则x n +1-xn =1n +1+n -n +1=所以x n +1n ,则{}x n 是单调递增数列,从而可得x n +1>x n ≥x 2,又x 2=(1-2=10,所以x n >0,即∑k =1n1k>n (n ≥2).欲证含有与自然数n 有关的不等式f (n )>g (n ),可以构造数列模型x n =f (n )-g (n ),然后设法证明数列是单调数列,并且说明x n >0,且f (n ),g (n )均为正值,即可运用数列的单调性证明不等式成立.可见,巧妙运用构造法解题,能使问题快速获解.而运用构造法解题的关键在于构造合适的数学模型,从新的角度思考解题的方案.因此在运用构造法解题时,同学们要仔细审题,明确问题的本质,展开联想,将问题中的未知数、变量、自然数与方程、函数、数列关联起来,然后构造出相应的方程、函数、数列,灵活运用方程、函数、数列的性质以及相关的公式来解题.(作者单位:江苏省大丰高级中学)考点透视唐卉35。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧构造 妙解题
1. 直接构造
例1. 求函数f x x x ()sin cos =
-+32的值域。
分析:由于f x x x
()sin cos =-+32可以看作定点(2,3)与动点(-cosx ,sinx )连线的斜率,故f(x)的值域即为斜率的最大、最小值。
解:令μθ=-=cos sin x x ,,则μθ221+=表示单位圆
f x k ()=
--=32θμ
表示连接定点P (2,3)与单位圆上任一点(μ,θ)所得直线θμ---=k k ()320的斜率。
显然该直线与圆相切时,k 取得最值,此时,圆心(0,0)到这条直线的距离为1,即||32112-+=k k
所以k =±
2233 故22332233-
≤≤+f x ()
例 2. 已知三条不同的直线x y a sin sin 3αα+=,x y a sin sin 3ββ+=,x y a sin sin 3γγ+=共点,求sin sin sin αβγ++的值。
分析:由条件知sin sin sin αβγ,,为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。
解:设(m ,n )是三条直线的交点,则可构造方程m n a sin sin 3θθ+=,即 4303m n m)a sin (sin θθ-++=(*)
由条件知,sin sin sin αβγ,,均为关于sin θ的一元三次方程(*)的根。
由韦达定理知sin sin sin αβγ++=0
2. 由条件入手构造
例3. 已知实数x ,y ,z 满足x y z xy =-=-692,,求证:x y =
分析:由已知得x y xy z +==+692,,以x ,y 为根构造一元二次方程,再由判别式非负证得结论。
解:构造一元二次方程p p z 22690-++=
其中x ,y 为方程的两实根
所以∆=-+≥364902()z
即z 299+≤
z z 200≤=,
故△=0,即x y =
3. 由结论入手构造
例4. 求证:若n ≥3,n N ∈,则1314151112
3333++++< n 分析:待证式的左边求和的分母是三次式,为降低分母次数,构造一个恒不等式。
11111211113k k k k k k k k <-+=--+()()[()()
] 所以左边<⨯⨯+⨯⨯++-+12341345111 ()()
n n n =⨯-⨯+⨯-⨯++--+121231341341451111[()()
] n n n n =⨯-+<1212311112
[()]n n 故原式得证。
例5. 已知实数x ,y 满足02<<<<x y z π
,求证:
π
222222++>++sin cos sin cos sin sin sin x y y z x y z
分析:要证原式成立,即证
π
4++>++sin cos sin cos sin cos sin cos sin cos x y y z x x y y z z 即证π
4>-+-+sin (cos cos )sin (cos cos )sin cos x x y y y z z z
由三角函数线知可构造下图,此时不等式右边为图中三个矩形的面积之和
S S S 123++,而14单位圆的面积为π4
,所以
π4>-+-+
sin(cos cos)sin(cos cos)sin cos x x y y y z z z
故结论成立。