新课标九年级数学最新九年级数学期末试题有答案

合集下载

2022—2023年部编版九年级数学下册期末考试及参考答案

2022—2023年部编版九年级数学下册期末考试及参考答案

2022—2023年部编版九年级数学下册期末考试及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .+2D .7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.2B.2 C.22D.39.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.因式分解:_____________.3.正五边形的内角和等于__________度.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________. 三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB=12,BM=5,求DE 的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、A5、A6、B7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、3、5404、25、332﹣3π6234+6 三、解答题(本大题共6小题,共72分)1、3x =2、23、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,2+-或317(1,2--. 4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

2023-2024学年全国初中九年级下数学人教版期末考试试卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期末考试试卷(含答案解析)

示例:20232024学年全国初中九年级下数学人教版期末考试试卷一、选择题(每题2分,共20分)1.下列选项中,正确的是()A. 2x + 3y = 6 是二元一次方程B. 3x^2 + 2x + 1 = 0 是一元二次方程C. 5x^3 + 2x^2 + 3x = 0 是一元二次方程D. 4x^4 + 3x^3 + 2x^2 = 0 是一元二次方程2.下列选项中,正确的是()A. a^2 + b^2 = c^2 是勾股定理B. a^2 + b^2 = c^2 是直角三角形的性质C. a^2 + b^2 = c^2 是等腰三角形的性质D. a^2 + b^2 = c^2 是等边三角形的性质3.下列选项中,正确的是()A. 当 x = 1 时,方程 2x 3 = 1 的解是 x = 1B. 当 x = 1 时,方程 2x 3 = 1 的解是 x = 2C. 当 x = 2 时,方程 2x 3 = 1 的解是 x = 1D. 当 x = 2 时,方程 2x 3 = 1 的解是 x = 24.下列选项中,正确的是()A. 一个圆的直径是它的半径的两倍B. 一个圆的半径是它的直径的两倍C. 一个圆的周长是它的直径的两倍D. 一个圆的周长是它的半径的两倍5.下列选项中,正确的是()A. 一个等边三角形的三个内角都是60度B. 一个等边三角形的三个内角都是90度C. 一个等边三角形的三个内角都是120度D. 一个等边三角形的三个内角都是150度6.下列选项中,正确的是()A. 一个等腰三角形的两个底角相等B. 一个等腰三角形的两个顶角相等C. 一个等腰三角形的两个腰角相等D. 一个等腰三角形的两个底边相等7.下列选项中,正确的是()A. 一个等腰梯形的两个底角相等B. 一个等腰梯形的两个顶角相等C. 一个等腰梯形的两个腰角相等D. 一个等腰梯形的两个底边相等8.下列选项中,正确的是()A. 一个等腰三角形的两个腰相等B. 一个等腰三角形的两个底角相等C. 一个等腰三角形的两个顶角相等D. 一个等腰三角形的两个底边相等9.下列选项中,正确的是()A. 一个等边三角形的三个内角都是60度B. 一个等边三角形的三个内角都是90度C. 一个等边三角形的三个内角都是120度D. 一个等边三角形的三个内角都是150度10.下列选项中,正确的是()A. 一个圆的直径是它的半径的两倍B. 一个圆的半径是它的直径的两倍C. 一个圆的周长是它的直径的两倍D. 一个圆的周长是它的半径的两倍二、填空题(每题2分,共20分)1.一元二次方程的一般形式是________________。

初三数学期末试题及答案

初三数学期末试题及答案

初三数学期末试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 22/7D. 3.14答案:B2. 一个等腰三角形的两边长分别为4和6,那么它的周长是多少?A. 14B. 16C. 18D. 20答案:C3. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 5x + 6 = 0C. x^2 - 3x + 2 = 0D. x^2 - 2x + 1 = 0答案:A4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)答案:B5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C7. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 120°C. 180°D. 240°答案:A8. 下列哪个图形是中心对称图形?A. 矩形B. 平行四边形C. 等边三角形D. 等腰梯形答案:B9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 一个二次函数y=ax^2+bx+c的顶点坐标是(1, -2),那么a的值是?A. -1B. 1C. 2D. -2答案:B二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是_________。

答案:±512. 一个直角三角形的两个锐角的度数之和是_________。

答案:90°13. 函数y=-3x+5与y轴的交点坐标是_________。

答案:(0, 5)14. 一个等差数列的首项是2,公差是3,那么第5项是_________。

答案:1715. 一个扇形的圆心角是60°,半径是4cm,那么它的面积是_________。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2023年部编版九年级数学下册期末考试(及参考答案)

2023年部编版九年级数学下册期末考试(及参考答案)

2023年部编版九年级数学下册期末考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A.6 B.5 C.4 D.339.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s 的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.分解因式:2x 2﹣8=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分) 1.解分式方程:21124x x x -=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、B6、C7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(x+2)(x ﹣2)3、0或14、140°5、40°6、3三、解答题(本大题共6小题,共72分)1、32x =-.2、3、(1)相切,略;(2).4、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)34;(2)1256、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

最新部编版九年级数学上册期末考试【含答案】

最新部编版九年级数学上册期末考试【含答案】

最新部编版九年级数学上册期末考试【含答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2019的相反数是()A. 2019B. -2019C.D.2.已知抛物线经过和两点, 则n的值为()A. ﹣2B. ﹣4C. 2D. 43.若式子有意义, 则实数m的取值范围是()A. B. 且C. D. 且4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.《九章算术》是我国古代数学名著, 卷七“盈不足”中有题译文如下: 今有人合伙买羊, 每人出5钱, 会差45钱;每人出7钱, 会差3钱.问合伙人数、羊价各是多少?设合伙人数为人, 所列方程正确的是()A. B.C. D.6.若三点, , 在同一直线上, 则的值等于()A. -1B. 0C. 3D. 47. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.8.如图, 一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1, 3), 则关于x的不等式x+b>kx+4的解集是()A. x>﹣2B. x>0C. x>1D. x<19.如图, 已知在△ABC, AB=AC.若以点B为圆心, BC长为半径画弧, 交腰AC 于点E, 则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE10.如图, 在矩形ABCD中, AB=10, , 点E从点D向C以每秒1个单位长度的速度运动, 以AE为一边在AE的左上方作正方形AEFG, 同时垂直于的直线也从点向点以每秒2个单位长度的速度运动, 当点F落在直线MN上, 设运动的时间为t, 则t的值为()A. B. 4 C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的算术平方根是__________.2. 分解因式: =________.3. 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根, 则k 的值为__________.4. 如图, △ABC中, ∠BAC=90°, ∠B=30°, BC边上有一点P(不与点B, C 重合), I为△APC的内心, 若∠AIC的取值范围为m°<∠AIC<n°, 则m+n=__________.5.如图, 在平面直角坐标系xOy中, 已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A, B, 过点B作 BD⊥x轴于点D, 交的图象于点C, 连结AC.若△ABC是等腰三角形, 则k的值是_________.6. 如图, 小军、小珠之间的距离为2.7 m, 他们在同一盏路灯下的影长分别为1.8 m, 1.5 m, 已知小军、小珠的身高分别为1.8 m, 1.5 m, 则路灯的高为__________m.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知关于x的方程.(1)当该方程的一个根为1时, 求a的值及该方程的另一根;(2)求证:不论a取何实数, 该方程都有两个不相等的实数根.3. 如图, 在△ABC中, AB=AC, 以AB为直径的⊙O分别与BC.AC交于点D.E, 过点D作DF⊥AC于点F.(1)若⊙O的半径为3, ∠CDF=15°, 求阴影部分的面积;(2)求证: DF是⊙O的切线;(3)求证:∠EDF=∠DAC.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 随着信息技术的迅猛发展, 人们去商场购物的支付方式更加多样、便捷. 某校数学兴趣小组设计了一份调查问卷, 要求每人选且只选一种你最喜欢的支付方式. 现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中, 表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整. 观察此图, 支付方式的“众数”是“”;(3)在一次购物中, 小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付, 请用画树状图或列表格的方法, 求出两人恰好选择同一种支付方式的概率.6. 某口罩生产厂生产的口罩1月份平均日产量为20000, 1月底因突然爆发新冠肺炎疫情, 市场对口罩需求量大增, 为满足市场需求, 工厂决定从2月份起扩大产能, 3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率, 预计4月份平均日产量为多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.B3.D4.A5.B6.C7、D8、C9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.3.2、x(x+2)(x﹣2).3.﹣34.255.5、k= 或.6.3三、解答题(本大题共6小题, 共72分)1.x=32.(1), ;(2)证明见解析.3.(1)阴影部分的面积为3π﹣;(2)略;(3)略.4.(1)略;(2)AC=2 .5.(1)200、81°;(2)补图见解析;(3)6.(1)10%;(2)26620个。

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。

7. 下列选项中,哪个不是等腰三角形的性质?________。

8. 若一个正方形的边长为5cm,则其对角线的长度为________。

9. 下列哪个选项是二次函数的一般形式?________。

10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。

答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。

根据题目,首项a1 = 2,公差d = 5 2 = 3。

所以,该数列的通项公式为an = 2 + (n 1)×3。

12. 一个正方形的边长为5cm,求其对角线的长度。

解答:正方形的对角线长度可以通过勾股定理来求解。

设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

2023-2024学年全国初中九年级上数学新人教版期末试卷(含解析)

2023-2024学年全国初中九年级上数学新人教版期末试卷(含解析)

2023-2024学年全国九年级上数学期末试卷考试总分:117 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 若将一个正方形的各边长扩大为原来的倍,则这个正方形的面积扩大为原来的( )A.倍B.倍C.倍D.倍2. 下列图形中,既是轴对称图形又是中心对称图形的是 ( ) A. B. C. D.3. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )试验种子数(粒)416842n 5020050010003000发芽频数发芽频率A.B.C.D.4. 以半径为的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是( )A.B.C.D.5. 在一个不透明的口袋中有若干个只有颜色不同的小球,如果口袋中装有个红球,且摸出红球的概率为,那么袋中共有球的个数为( )A.B.C.D.6. 如图,铁路道口的栏杆短臂长 ,长臂长.当短臂端点下降时,长臂端点升高(杆的宽度忽略不计)( )A.B.C.m451884769512850mn 0.90.940.9520.9510.950.80.90.95113–√83–√42–√42–√8413129761m 16m 0.5m 4m6m8mD.7. 下列说法正确的是( )A.分别在的边,的反向延长线上取点,,使,则是放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方8. 将 如图放置在直角坐标系中,并绕点顺时针旋转至的位置,已知,=.则旋转过程中所扫过的图形的面积为( )A.B.C.D.9. 下列说法中正确的是( )①三边对应成比例的两个三角形相似;②两边对应成比例且一个角对应相等的两个三角形相似;③一个锐角对应相等的两个直角三角形相似;④一个角对应相等的两个等腰三角形相似.A.①②B.②③C.③④D.①③10. 如图,为直径,为弦,于,连接,,=,下列结论中正确的有( )①=;②=;③;④=.12m△ABC AB AC D E DE//BC △ADE △ABC Rt △AOB O 90∘△COD A(−2,0)∠ABO 30∘△AOB +211π33–√3π+23–√3π+3–√+11π33–√AB ⊙O CD AB ⊥CD E CO AD ∠BAD 25∘CE OE ∠C 40∘AD 2OEA.①④B.②③C.②③④D.①②③④11. 如图所示,直线与直线平行,,,则下列判断不正确的是( )A.B.C.D.12. 在同一平面直角坐标中,直线与抛物线的图象可能是( ) A. B.l 1l 2BG ⊥l 2∠G =∠A =30∘BG ⊥l 1=2S △GEC S △FDG△FDG ∽△ABC∠EFD =120∘y =ax +b y =a +b x 2C. D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )13. 已知线段,,则、的比例中项线段等于________.14. 在一个不透明的布袋中装有标着数字,,,的个小球,这个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于的概率为________.15. 如图,已知直线与轴交于点,与轴的负半轴交于点,且=,点为轴的正半轴上一点,将线段绕点按顺时针方向旋转得线段,连接,若=,则点的坐标为________.16. 如图,在中,已知,,,则它的内切圆半径是________.17. 二次函数=的图象与轴交于,则=________.a =9b =4a b 2345449AB y A(0,2)x B ∠ABO 30∘C x CA C 60∘CD BD BD C △ABC ∠C =90∘BC =6AC =8y +bx −8x 2x (2,0)b ABCD P D DB B B18. 已知正方形的边长是,点从点出发沿向点运动,至点停止运动,连结,过点作于点,在点运动过程中,点所走过的路径长是________.三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )19. 如图,在三角形中,,,.将三角形绕着点旋转(规定这里的旋转角小于),使得点落在直线上的点,点落在点.画出旋转后的三角形,求线段在旋转的过程中所扫过的面积(保留);如果在三角形中,,,(其中,).其他条件不变,请你用含有,,的代数式,直接写出线段旋转的过程中所扫过的面积(保留).20. 小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.21. 如图,是的角平分线,,求证.22. 已知,二次函数.用配方法化为的形式,并写出顶点坐标.当时,求函数的取值范围. 23. 如图,已知在直角梯形中,,,,,,点是对角线上一动点,过点作,垂足为.求证:;如图,若以为圆心,为半径的圆和以为圆心、为半径的圆外切时,求的长;如图,点在延长线上,且满足,交于点,若和相似,求ABCD 2P D DB B B AP B BH ⊥AP H P H ABC AC =7BC =3∠ACB =60∘ABC C 180∘B AC B ′A A ′(1)C A ′B ′(2)AB π(3)ABC AC =b BC =a ∠C =n ∘b >a 0<n <90a b n AB πAD △ABC AB =AC +DC ∠C =2∠B y =2−4x +1x 2(1)y =a(x −h +k )2(2)0≤x ≤3y ABCD AD//BC ∠ABC=90∘AB=4AD=3sin ∠BCD =25–√5P BD P P H ⊥CD H (1)∠BCD=∠BDC (2)1P P B H HD DP (3)2E BC DP =CE P E DC F △ADH △ECF的长. 24. 如图,是的弦,是的直径,交于点,过点的直线交的延长线于点,且=.(1)求证:是的切线;(2)若的半径为,=,求的度数.25. 在平面直角坐标系中,点为坐标原点,抛物线交轴正半轴于点,交轴于点.求抛物线的解析式;如图,为第一象限内抛物线上一点,连接,将射线绕点逆时针旋转,与过点且垂直于的直线相交于点,设点横坐标为,点的横坐标为,求与之间的函数关系式(不要求写出的取值范围);如图,在()的条件下,过点作直线交轴于点,在轴上取点,连接,点为的中点,连接,若的横坐标为,,且,求的值.DP AB ⊙O AD ⊙O OP ⊥OA AB P B OP C CP CB BC ⊙O ⊙O 3–√OP 1∠BCP O y =a −4ax −x 23–√x A(5,0)y B (1)(2)1P AP AP A 60∘P AP C P t C m m t t (3)22C x D x F FP E AC ED F −75∠AFP =∠CDE ∠FAP +∠ACD =180∘m参考答案与试题解析2023-2024学年全国九年级上数学期末试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】A【考点】相似图形相似多边形的性质【解析】根据正方形的面积公式:,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的倍,那么正方形的面积是原来正方形面积的倍.故选.2.【答案】A【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答3.【答案】s =a 244×4=16AC【考点】利用频率估计概率【解析】根据批次种子粒数从粒增加到粒时,种子发芽的频率趋近于,所以估计种子发芽的概率为.【解答】∵种子粒数粒时,种子发芽的频率趋近于,∴估计种子发芽的概率为.4.【答案】D【考点】正多边形和圆【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】如图,∵,∴;如图,∵,55030000.950.9530000.950.951OC =1OD =1×sin =30∘122OB =1E =1×sin =–√∴;如图,∵,∴,则该三角形的三边分别为:,,,∵,∴该三角形是直角三角形,∴该三角形的面积是,5.【答案】A【考点】概率公式【解析】利用红球的概率公式列出方程求解即可.【解答】解:设袋中共有球的个数为,根据概率的公式列出方程:,解得:.故选.6.【答案】C【考点】相似三角形的应用【解析】OE =1×sin =45∘2–√23OA =1OD =1×cos =30∘3–√2122–√23–√2(+(=(12)22–√2)23–√2)2××=12122–√22–√8x =4x 13x =12A栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高米,则,∴解得:.故选.7.【答案】C【考点】位似变换【解析】如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,位似图形是特殊的相似形,因而满足相似形的性质,因而正确的是.【解答】解:∵分别在的边,的反向延长线上取点,,使,则是放大或缩小后的图形,∴错误.∵位似图形是特殊的相似形,满足相似形的性质,∴,错误,正确的是.故选.8.【答案】D【考点】坐标与图形变化-旋转【解析】由,得到=,求得=,=根据三角形和扇形的面积公式即可得到结论;【解答】∵,∴=,∵=,x =0.5x 116x =8C C △ABC AB AC D E DE//BC △ADE △ABC A B D C C A(−2,0)OA 2OB 23–√∠BAO 60∘A(−2,0)OA 2∠ABO 30∘OB 2–√∠BAO ∘∴=,=,∴旋转过程中所扫过的图形的面积=,9.【答案】D【考点】相似三角形的判定【解析】此题暂无解析【解答】解:①三边对应成比例的两个三角形相似,正确;②两边对应成比例且夹角对应相等的两个三角形相似,错误;③一个锐角对应相等的两个直角三角形相似,正确,相当于两角对应相等,两三角形相似;④有一个角对应相等的两个等腰三角形相似,错误.故选.10.【答案】B【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】OB 23–√∠BAO 60∘△AOB ++=×1×2++=π+S △BC'0S 扇形AOC'S 扇形BOD123–√60⋅π×2236090⋅π×(23–√)23601133–√D此题暂无解析【解答】此题暂无解答11.【答案】B【考点】相似三角形的判定【解析】根据平行线的性质得到,故正确;根据相似三角形的判定得到,故正确;根据三角形的外角的性质得到,故正确;于是得到结论.【解答】解:∵直线与直线平行,,∴,故正确;∴,∵,∴,故正确;∵,,∴,故正确;故选.12.【答案】A【考点】二次函数的图象【解析】根据各选项中直线经过的象限可得出、的符号,再依此找出二次函数图象的开口、对称轴以及顶点坐标,对照图象即可得出结论.【解答】解:、∵直线经过第一、二、三象限,∴,,∴抛物线开口向上,对称轴为轴,顶点为,∴该选项图象符合题意;、∵直线经过第一、二、四象限,∴,,BG ⊥l 1A △FDG ∽△ABC C ∠EFD =∠FDG +∠G =120∘D l 1l 2BG ⊥l 2BG ⊥l 1A ∠FDG =∠ACB =90∘∠G =∠A =30∘△FDG ∽△ABC C ∠FDG =90∘∠G =30∘∠EFD =∠FDG +∠G =120∘D B a b A y =ax +b a >0b >0y =a +b x 2y (0,b)B y =ax +b a <0b >0y =a +b2∴抛物线开口向下,对称轴为轴,顶点为,∴该选项图象不符合题意;、∵直线与抛物线的交点坐标为,∴该选项图象不符合题意;、∵直线经过第一、二、三象限,∴,,∴抛物线开口向上,对称轴为轴,顶点为,∴该选项图象不符合题意.故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )13.【答案】【考点】比例线段【解析】设线段是线段,的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.【解答】解:设线段是线段,的比例中项,∵,,∴,∴,∴,(舍去).故答案为:.14.【答案】【考点】列表法与树状图法【解析】【解答】y =a +b x 2y (0,b)C y =ax +b y =a +b x 2(0,b)D y =ax +b a >0b >0y =a +b x 2y (0,b)A 6x a b x a b a =4b =9=a x x b =ab =4×9=36x 2x =±6x =−6623解:根据题意列表得:------------由表可知所有可能结果共有种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于的有种,所以两个小球上的数字之积大于的概率为;15.【答案】,【考点】坐标与图形变化-旋转【解析】此题暂无解析【解答】此题暂无解答16.【答案】【考点】三角形的内切圆与内心正方形的判定正方形的性质勾股定理【解析】根据勾股定理求出,根据圆是直角三角形的内切圆,推出,,,,,证四边形是正方形,推出,根据切线长定理得到,代入求出即可.【解答】解:根据勾股定理得:,设三角形的内切圆的半径是,23452(3,2)(4,2)(5,2)3(2,3)(4,3)(5,3)4(2,4)(3,4)(5,4)5(2,5)(3,5)(4,5)12989=81223(5−20)2AB O ABC OD =OE BF =BD CD =CE AE =AF ∠ODC =∠C =∠OEC =90∘ODCE CE =CD =r AC −r +BC −r =AB AB ==10A +B C 2C 2−−−−−−−−−−√ABC O r O ABC∵圆是直角三角形的内切圆,∴,,,,,∴四边形是正方形,∴,∴,,∴.故答案为:.17.【答案】【考点】抛物线与x 轴的交点【解析】根据二次函数=的图象与轴交于,可以求得的值,本题得以解决.【解答】∵二次函数=的图象与轴交于,∴=,解得=,18.【答案】【考点】轨迹正方形的性质【解析】由题意点在以为直径的半圆上运动,根据圆的周长公式即可解决问题.【解答】解:如图,∵,∴,∴点在以为直径的半圆上运动,由题意∵,∴点所走过的路径长,故答案为O ABC OD =OE BF =BD CD =CE AE =AF ∠ODC =∠C =∠OEC =90∘ODCE OD =OE =CD =CE =r AC −r +BC −r =AB 8−r +6−r =10r =222y +bx −8x 2x (2,0)b y +bx −8x 2x (2,0)0+2b −822b 2πH AB BH ⊥AP ∠AHB =90∘H AB OA =OB =1H =×2π⋅1=π12π三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )19.【答案】解:分两种情况:逆时针旋转,如图所示,顺时针旋转,如图所示.逆时针转度:;顺时针转度:.由可知,当时,需要逆时针旋转或顺时针旋转,同的面积计算可得:逆时针转度:,顺时针转度:.【考点】作图-旋转变换扇形面积的计算【解析】(1)分种顺时针和逆时针作图即可;(2)根据逆时针转度,顺时针转度,分别计算面积;(1)60∘120∘(2)60=(−)60π3607232=π203120=−S 2120π72360120π32360=π403(3)(1)∠C =n ∘n ∘(180−n)∘(2)n =−+−=(−)S 1nπb 2360S △C A ′B ′S △ABC nπa 2360nπ360b 2a 2(180−n)=+−−S 2(180−n)πb 2360S △C A ′B ′S △ABC (180−n)πa 2360=(−)(180−n)π360b 2a 260120(3)利用(1)的旋转图形与(2)的面积计算进行求解.【解答】解:分两种情况:逆时针旋转,如图所示,顺时针旋转,如图所示.逆时针转度:;顺时针转度:.由可知,当时,需要逆时针旋转或顺时针旋转,同的面积计算可得:逆时针转度:,顺时针转度:.20.【答案】根据题意画树状图如下:共有种等情况数,其中小丽和小明在同一天值日的有种,则小丽和小明在同一天值日的概率是.【考点】(1)60∘120∘(2)60=(−)60π3607232=π203120=−S 2120π72360120π32360=π403(3)(1)∠C =n ∘n ∘(180−n)∘(2)n =−+−=(−)S 1nπb 2360S △C A ′B ′S △ABC nπa 2360nπ360b 2a 2(180−n)=+−−S 2(180−n)πb 2360S △C A ′B ′S △ABC (180−n)πa 2360=(−)(180−n)π360b 2a 293=3913列表法与树状图法【解析】根据题意画出树状图得出所有等情况数和小丽和小明在同一天值日的情况数,然后根据概率公式即可得出答案.【解答】根据题意画树状图如下:共有种等情况数,其中小丽和小明在同一天值日的有种,则小丽和小明在同一天值日的概率是.21.【答案】证明:在上截取,连接.∵,,∴,∵是的角平分线,∴,在和中,∴,∴,∴,∴.∵,∴,∴.【考点】相似三角形的性质与判定【解析】此题暂无解析【解答】证明:在上截取,连接.∵,,∴,∵是的角平分线,∴,93=3913AB AE =AC DE AB =AC +DC,AE =AC AB =AE +BE BE =DC AD △ABC ∠EAD =∠CAD △AED △ACD AE =AC,∠EAD =∠CAD AD =AD,△AED ≅△ACD(SAS)DE =DC,∠AED =∠C ED =EB ∠B =∠EDB ∠AED =∠B +∠EDB ∠AED =2∠B ∠C =2∠B AB AE =AC DE AB =AC +DC,AE =AC AB =AE +BE BE =DC AD △ABC ∠EAD =∠CAD AE =AC,在和中,∴,∴,∴,∴.∵,∴,∴.22.【答案】解:.顶点坐标为.当时,此函数随着的增大而减小,当时,此函数随着的增大而增大,∴当时,当时,.∴取值范围是.【考点】二次函数的三种形式二次函数的最值【解析】(1)利用配方法整理即可得解;(3)根据增减性结合对称轴写出最大值即可;【解答】解:.顶点坐标为.当时,此函数随着的增大而减小,当时,此函数随着的增大而增大,∴当时,当时,.∴取值范围是.23.【答案】证明:作,如图,△AED △ACD AE =AC,∠EAD =∠CAD AD =AD,△AED ≅△ACD(SAS)DE =DC,∠AED =∠C ED =EB ∠B =∠EDB ∠AED =∠B +∠EDB ∠AED =2∠B ∠C =2∠B (1)y =2−4x +1x 2=2(−2x)+1x 2=2(x −1−2+1)2=2(x −1−1)2(1,−1)(2)0≤x ≤1y x 1<x ≤3y x x =0y =1,x =3y =7−1≤y ≤7(1)y =2−4x +1x 2=2(−2x)+1x 2=2(x −1−2+1)2=2(x −1−1)2(1,−1)(2)0≤x ≤1y x 1<x ≤3y x x =0y =1,x =3y =7−1≤y ≤7(1)DQ ⊥BC 1则,,,,∴,∴.解:设,则,,.当与外切时,,即,解得:.解:设.作,如图.则,,由,,当时,,即,解得:(舍去).当时,,即,解得:.∴的长是.BQ =AD=3DQ =AB=4∴CD ==2DQ sin ∠BCD 5–√CQ=2BC =5=BD ∠BCD=∠BDC (2)DP =x DH =x 5–√5P H =x 25–√5BP =5−x ⊙P ⊙H P H =DH +BP x =x +5−x 25–√55–√5x =25−55–√4(3)DP =x P M //BE P M =DP =x DH =HM =x 5–√5==1P M CE FM CF CF =FM =−x 5–√5–√5△ADH ∽△FCE =AD CF DH CE =3−x 5–√5–√5x 5–√5x x=−10△ADH ∽△ECF =AD CE DH CF =3x x 5–√5−x 5–√5–√5x =−3+69−−√2DP −3+69−−√2【考点】四边形综合题勾股定理锐角三角函数的定义等腰三角形的性质圆与圆的位置关系相似三角形的性质【解析】(1)作,在直角中利用三角函数即可求解;(2)设=,当与外切时,=,据此即可列方程求得;(3)作,分和两种情况进行讨论,依据相似三角形的对应边的比相等求解.【解答】证明:作,如图,则,,,,∴,∴.解:设,则,,.当与外切时,,即,解得:.解:设.作,如图.DQ ⊥BC △CDQ DP x ⊙P ⊙H P H DH +BP P M //BE △ADH ∽△FCE △ADH ∽△ECF (1)DQ ⊥BC 1BQ =AD=3DQ =AB=4∴CD ==2DQ sin ∠BCD 5–√CQ=2BC =5=BD ∠BCD=∠BDC (2)DP =x DH =x 5–√5P H =x 25–√5BP =5−x ⊙P ⊙H P H =DH +BP x =x +5−x 25–√55–√5x =25−55–√4(3)DP =x P M //BE则,,由,,当时,,即,解得:(舍去).当时,,即,解得:.∴的长是.24.【答案】证明:连接,如图,∵=,∴=,而=,∴=,∵,∴=,而=,∴=,∴=,即=,∴;在中,∵=,,∴,∴=,∴=,∴=.P M =DP =x DH =HM =x 5–√5==1P M CE FM CF CF =FM =−x 5–√5–√5△ADH ∽△FCE =AD CF DH CE =3−x 5–√5–√5x 5–√5x x=−10△ADH ∽△ECF =AD CE DH CF =3x x 5–√5−x 5–√5–√5x =−3+69−−√2DP −3+69−−√2OB CP CB ∠1∠2∠1∠3∠2∠3CO ⊥AD ∠3+∠A 90∘OA OB ∠A ∠OBA ∠2+∠OBA 90∘∠OBC 90∘OB ⊥BC Rt △OAP OP 1OA =3–√tan ∠3=3–√∠360∘∠260∘∠BCP 60∘【考点】切线的判定与性质【解析】(1)连接,如图,利用=得到=,再证明=,再根据垂直的定义得到=,则可得到=,然后根据切线的判定定理可得到结论;(2)在中利用三角函数和得到=,则=,然后根据三角形内角和得到的度数.【解答】证明:连接,如图,∵=,∴=,而=,∴=,∵,∴=,而=,∴=,∴=,即=,∴;在中,∵=,,∴,∴=,∴=,∴=.25.【答案】解:()将代入得.∴.OB CP CB ∠1∠2∠2∠3∠3+∠A 90∘∠2+∠OBA 90∘Rt △OAP ∠360∘∠260∘∠BCP OB CP CB ∠1∠2∠1∠3∠2∠3CO ⊥AD ∠3+∠A 90∘OA OB ∠A ∠OBA ∠2+∠OBA 90∘∠OBC 90∘OB ⊥BC Rt △OAP OP 1OA =3–√tan ∠3=3–√∠360∘∠260∘∠BCP 60∘1A(5,0)y =a −4ax −x 23–√a =3–√5y =−x −3–√5x 243–√53–√(2)P P H ⊥H C CK ⊥HP HP K过作轴于,过作,交延长线于.则.∴.∴.∵在上,∴.∴.∵,.即,∴.过作轴于,在轴上取点,使,连接,.则.∴,.∵,,∴∴.∵,∴.∵,,∴.∴.∵,∴ .∴.∵,∴.过作于,交延长线于点.易证四边形为矩形.∴.(2)P P H ⊥x H C CK ⊥HP HP K ∠CKP =∠CP A =90∘∠AP H =∠KCP cos ∠AP H =cos ∠KCP P y =−x −3–√5x 243–√53–√P (t,−t −3)3–√5t 243–√5P H =−t −3,CK =t −m 3–√5t 243–√5tan ∠P AC ==CP AP 3–√∴=CK P H 3–√t −m =(−t −)3–√3–√5t 243–√53–√m =−+t +335t 2175(3)P P H ⊥x H x G HG =AH P C P E △AHP ≅△GHP AP =P G ∠P AG =∠P GA ∠CP A =90∘∠CAP =60∘∠ACP =.30∘AP =AC 12AE =CE CE =AP =P G FAP +∠ACD =180∘∠FAP +∠P AG =180∘∠P AG =∠DCA ∠DCA =P GA ∠CDE =∠P FA △CDE ≅△GFP CD =FG ∠CAG =∠CDF +∠DCA =∠CAP +∠P AG ∠CDF =60∘C CM ⊥OD M CK ⊥P H.HP K CMHK CM =KH AH =HG =t −5∵,.∴.易证.∴.∴.即.∵,∴.∴.∴ .∴ 解得或(舍去)∴.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()将代入得.∴.过作轴于,过作,交延长线于.则.∴.∴.∵在上,∴.AH =HG =t −5∴FG =2t −=CD 185CM =CD ⋅sin =(2t −)60∘3–√2185∠P AH =∠CP K cos ∠P AH =cos ∠CP K =AH AP KP CP =AP CP AH KP tan =30∘AP CP =AH KP 3–√3KP =AH =(t −5)3–√3–√KH =(t −5)+−t −3–√3–√5t 2453–√3–√(2t −)=(t −5)+−t −3–√21853–√3–√5t 2453–√3–√t =7t =−3m =−×+×7+3=−35721751351A(5,0)y =a −4ax −x 23–√a =3–√5y =−x −3–√5x 243–√53–√(2)P P H ⊥x H C CK ⊥HP HP K ∠CKP =∠CP A =90∘∠AP H =∠KCP cos ∠AP H =cos ∠KCP P y =−x −3–√5x 243–√53–√P (t,−t −3)3–√5t 243–√5H =−t −3,CK =t −m–√4–√∴.∵,.即,∴.过作轴于,在轴上取点,使,连接,.则.∴,.∵,,∴∴.∵,∴.∵,,∴.∴.∵,∴ .∴.∵,∴.过作于,交延长线于点.易证四边形为矩形.∴.∵,.∴.易证.∴.∴.即.∵,∴.∴.P H =−t −3,CK =t −m 3–√5t 243–√5tan ∠P AC ==CP AP 3–√∴=CK P H 3–√t −m =(−t −)3–√3–√5t 243–√53–√m =−+t +335t 2175(3)P P H ⊥x H x G HG =AH P C P E △AHP ≅△GHP AP =P G ∠P AG =∠P GA ∠CP A =90∘∠CAP =60∘∠ACP =.30∘AP =AC 12AE =CE CE =AP =P G FAP +∠ACD =180∘∠FAP +∠P AG =180∘∠P AG =∠DCA ∠DCA =P GA ∠CDE =∠P FA △CDE ≅△GFP CD =FG ∠CAG =∠CDF +∠DCA =∠CAP +∠P AG ∠CDF =60∘C CM ⊥OD M CK ⊥P H.HP K CMHK CM =KH AH =HG =t −5∴FG =2t −=CD 185CM =CD ⋅sin =(2t −)60∘3–√2185∠P AH =∠CP K cos ∠P AH =cos ∠CP K =AH AP KP CP =AP CP AH KP tan =30∘AP CP =AH KP 3–√3KP =AH =(t −5)3–√3–√H =(t −5)+−t −–√∴ .∴ 解得或(舍去)∴.KH =(t −5)+−t −3–√3–√5t 2453–√3–√(2t −)=(t −5)+−t −3–√21853–√3–√5t 2453–√3–√t =7t =−3m =−×+×7+3=−3572175135。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

部编版九年级数学上册期末考试卷及答案【完整版】

部编版九年级数学上册期末考试卷及答案【完整版】

部编版九年级数学上册期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3.已知α、β是方程x2﹣2x﹣4=0的两个实数根, 则α3+8β+6的值为()A. ﹣1B. 2C. 22D. 304.若x取整数, 则使分式的值为整数的x值有()A. 3个B. 4个C. 6个D. 8个5. 某排球队名场上队员的身高(单位: )是: , , , , , .现用一名身高为的队员换下场上身高为的队员, 与换人前相比, 场上队员的身高()A. 平均数变小, 方差变小B. 平均数变小, 方差变大C. 平均数变大, 方差变小D. 平均数变大, 方差变大6.对于①, ②, 从左到右的变形, 表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解, ②是乘法运算D. ①是乘法运算, ②是因式分解7.如图, 直线y=kx+b(k≠0)经过点A(﹣2, 4), 则不等式kx+b>4的解集为()A. x>﹣2B. x<﹣2C. x>4D. x<48.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 将△ABC绕点C顺时针旋转90°得到△EDC.若点A, D, E在同一条直线上, ∠ACB=20°, 则∠ADC的度数是A. 55°B. 60°C. 65°D. 70°10.已知, 一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ____________.2. 因式分解: (x+2)x﹣x﹣2=_______.3. 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根, 则k 的值为__________.41. 如图, 圆锥侧面展开得到扇形, 此扇形半径 CA=6, 圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图, 矩形中, , , 以为直径的半圆与相切于点, 连接, 则阴影部分的面积为__________.(结果保留6. 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, 点E、F分别是AO、AD 的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.3. 如图, 以D为顶点的抛物线y=﹣x2+bx+c交x轴于A.B两点, 交y轴于点C, 直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P, 使PO+PA的值最小, 求点P的坐标;(3)在x轴上是否存在一点Q, 使得以A、C、Q为顶点的三角形与△BCD相似?若存在, 请求出点Q的坐标;若不存在, 请说明理由.4. 周末, 小华和小亮想用所学的数学知识测量家门前小河的宽. 测量时, 他们选择了河对岸边的一棵大树, 将其底部作为点A, 在他们所在的岸边选择了点B, 使得AB与河岸垂直, 并在B点竖起标杆BC, 再在AB的延长线上选择点D竖起标杆DE, 使得点E与点C.A共线.已知:CB⊥AD, ED⊥AD, 测得BC=1m, DE=1.5m, BD=8.5m.测量示意图如图所示.请根据相关测量信息, 求河宽AB.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.61. 某企业设计了一款工艺品, 每件的成本是50元, 为了合理定价, 投放市场进行试销. 据市场调查, 销售单价是100元时, 每天的销售量是50件, 而销售单价每降低1元, 每天就可多售出5件, 但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时, 每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元, 那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、B5、A6、C7、A8、D9、C10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、2+2.(x+2)(x﹣1)3、﹣34、5、π.6、9三、解答题(本大题共6小题, 共72分)x=1、42.(1)证明见解析(2)1或23、(1)y=﹣x2+2x+3;(2)P ( , );(3)当Q的坐标为(0, 0)或(9, 0)时, 以A.C.Q为顶点的三角形与△BCD相似.4.河宽为17米5、(1)50;(2)见解析;(3).6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时, y最大值=4500;(3)70≤x≤90.。

2023-2024学年全国初中九年级下数学人教版期末考卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期末考卷(含答案解析)

样题1:一、选择题(每题2分,共20分)1. 若a=3,b=4,则a²+b²的值为()A. 5B. 7C. 9D. 252. 下列哪个数是质数?A. 15B. 19C. 21D. 273. 若一个等腰三角形的底边长为10,腰长为x,则x的取值范围是()A. x>10B. x≥10C. x<10D. x≤10答案解析:1. 答案:D。

根据勾股定理,a²+b²=3²+4²=9+16=25。

2. 答案:B。

质数是指只能被1和它本身整除的数,19符合这个条件。

3. 答案:B。

等腰三角形的底边和腰长相等,所以x≥10。

样题2:二、填空题(每题2分,共20分)1. 若x²=16,则x的值为______。

2. 若a+b=10,ab=21,则a²+b²的值为______。

3. 在等腰三角形ABC中,若底边BC的长度为6,腰长AB=AC=8,则三角形ABC的周长为______。

答案解析:1. 答案:±4。

x²=16,所以x=±√16=±4。

2. 答案:149。

根据(a+b)²=a²+2ab+b²,可以得到a²+b²=(a+b)²2ab=10²2×21=10042=58。

3. 答案:22。

等腰三角形ABC的周长为AB+AC+BC=8+8+6=22。

样题3:三、解答题(每题10分,共30分)1. 解方程:2x5=3x+1。

2. 已知a²+b²=25,ab=10,求a+b的值。

3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,求AB的长度。

答案解析:1. 答案:x=6。

将方程2x5=3x+1移项得x=6。

2. 答案:5或5。

根据(a+b)²=a²+2ab+b²,可以得到(a+b)²=(a²+b²)+2ab=25+2×10=45,所以a+b=±√45=±5。

最新部编版九年级数学上册期末考试题及答案【完整版】

最新部编版九年级数学上册期末考试题及答案【完整版】

最新部编版九年级数学上册期末考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣1 6.设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-47.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.因式分解:a 3-ab 2=____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).5.如图,在△ABC 中,AB=AC=5,BC=45,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为__________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、a(a+b)(a﹣b)3、20204、a+8b5、86、5三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x=-2、(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x1=x2=﹣1.3、(1)略;(2)略.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 2是偶数。

()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。

2. 两个角的和为90°,这两个角互为__________。

3. 两个角的和为360°,这两个角互为__________。

4. 两个角的和为270°,这两个角互为__________。

5. 两个角的和为__________°,这两个角互为补角。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明无理数的定义。

3. 请简要说明实数的定义。

4. 请简要说明函数的定义。

5. 请简要说明奇函数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。

最新部编版九年级数学上册期末测试卷及参考答案

最新部编版九年级数学上册期末测试卷及参考答案

最新部编版九年级数学上册期末测试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2019的相反数是()A. 2019B. -2019C.D.2.关于二次函数, 下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时, 的值随值的增大而减小D. 的最小值为-33.若式子有意义, 则实数m的取值范围是()A. B. 且C. D. 且4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.下列关于一次函数的说法, 错误的是()A. 图象经过第一、二、四象限B. 随的增大而减小C. 图象与轴交于点D. 当时,6.用配方法解一元二次方程, 配方正确的是().A. B.C. D.7.四边形ABCD中, 对角线AC、BD相交于点O, 下列条件不能判定这个四边形是平行四边形的是()A. AB∥DC, AD∥BCB. AB=DC, AD=BCC.AO=CO, BO=DO D.AB∥DC, AD=BC8. 下列图形具有稳定性的是()A. B. C. D.9.如图, 在矩形AOBC中, A(–2, 0), B(0, 1).若正比例函数y=kx的图象经过点C, 则k的值为()A. –B.C. –2D. 210.如图, 在平行四边形ABCD中, E是DC上的点, DE:EC=3:2, 连接AE交BD于点F, 则△DEF与△BAF的面积之比为()A. 2: 5B. 3: 5C. 9: 25D. 4: 25二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的平方根是__________.2. 分解因式: =________.3. 如果不等式组的解集是, 那么的取值范围是__________.4. 如图, 点A在双曲线上, 点B在双曲线上, 且AB∥x轴, C、D在x轴上, 若四边形ABCD为矩形, 则它的面积为__________.5.如图, 在一块长12m, 宽8m的矩形空地上, 修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行), 剩余部分栽种花草, 且栽种花草的面积77m², 设道路的宽为x m, 则根据题意, 可列方程为__________.6. 如图, △ABC中, AD是BC边上的中线, BE是△ABD中AD边上的中线, 若△ABC的面积是24, 则△ABE的面积__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根, 求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长, 且k=2, 求该矩形的对角线L 的长.3. 已知A(﹣4, 2)、B(n, ﹣4)两点是一次函数y=kx+b和反比例函数y= 图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象, 直接写出不等式kx+b﹣>0的解集.4. 在▱ABCD中, ∠BAD的平分线交直线BC于点E, 交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°, G是EF的中点(如图2), 直接写出∠BDG的度数;(3)若∠ABC=120°, FG∥CE, FG=CE, 分别连接DB、DG(如图3), 求∠BDG 的度数.5. 为了解某中学学生课余生活情况, 对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计. 现从该校随机抽取名学生作为样本, 采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项). 并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图. 由图中提供的信息, 解答下列问题:(1)求n的值;(2)若该校学生共有1200人, 试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生, 现从这4名学生中任意抽取2名学生, 求恰好抽到2名男生的概率.6. 我区“绿色科技公司”研发了一种新产品, 该产品的成本为每件3000元. 在试销期间, 营销部门建议: ①购买不超过10件时, 每件销售价为3600元;②购买超过10件时, 每多购买一件, 所购产品的销售单价均降低5元, 但最低销售单价为3200元. 根据以上信息解决下列问题:(1)直接写出: 购买这种产品件时, 销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10, 且x为整数), 该公司所获利润为y 元, 求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时, 会出现随着数量的增多, 公司所获利润反而减少这一情况.为使销售数量越多, 公司所获利润越大, 公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.D3.D4.A5.D6.A7、D8、A9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.±2.2、x(x+2)(x﹣2).3. .4.25.(12-x)(8-x)=776.6三、解答题(本大题共6小题, 共72分)1.2.(1)k>;(2).3、(1)反比例函数解析式为y=﹣, 一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4.(1)略;(2)45°;(3)略.5.(1)50;(2)240;(3).6、(1)90;(2) ;(3)3325元.。

2022年部编版九年级数学上册期末考试卷【参考答案】

2022年部编版九年级数学上册期末考试卷【参考答案】

2022年部编版九年级数学上册期末考试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.不等式组有3个整数解, 则的取值范围是()A. B. C. D.3.如果, 那么代数式的值为()A. B. C. D.4.在平面直角坐标中, 点M(-2, 3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知关于x的一元二次方程有一个根为, 则a的值为()A. 0B.C. 1D.6.用配方法解方程时, 配方后所得的方程为()A. B. C. D.7.如图, 点B、F、C、E在一条直线上, AB∥ED, AC∥FD, 那么添加下列一个条件后, 仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC8.如图, 一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1, 3), 则关于x的不等式x+b>kx+4的解集是()A. x>﹣2B. x>0C. x>1D. x<19.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.下列图形是我国国产品牌汽车的标识, 在这些汽车标识中, 是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是__________.2. 因式分解: a3-ab2=____________.3. 若代数式有意义, 则实数x的取值范围是__________.4. (2017启正单元考)如图, 在△ABC中, ED∥BC, ∠ABC和∠ACB的平分线分别交ED于点G、F, 若FG=4, ED=8, 求EB+DC=________.5. 如图, 从一块半径为的圆形铁皮上剪出一个圆周角为120°的扇形, 如果将剪下来的扇形围成一个圆锥, 则该圆锥的底面圆的半径为_________ .6. 如图, 在矩形ABCD中, AB=4, AD=3, 以顶点D为圆心作半径为r的圆, 若要求另外三个顶点A, B, C中至少有一个点在圆内, 且至少有一个点在圆外, 则r的取值范围是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. “扬州漆器”名扬天下, 某网店专门销售某种品牌的漆器笔筒, 成本为30元/件, 每天销售量(件)与销售单价(元)之间存在一次函数关系, 如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件, 当销售单价为多少元时, 每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业, 决定从每天的销售利润中捐出150元给希望工程, 为了保证捐款后每天剩余利润不低于3600元, 试确定该漆器笔筒销售单价的范围.5. 近几年购物的支付方式日益增多, 某数学兴趣小组就此进行了抽样调查. 调查结果显示, 支付方式有: A微信、B支付宝、C现金、D其他, 该小组对某超市一天内购买者的支付方式进行调查统计, 得到如下两幅不完整的统计图.请你根据统计图提供的信息, 解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者, 请你估计使用A和B两种支付方式的购买者共有多少名?6. 某商店在2014年至2016年期间销售一种礼盒. 2014年, 该商店用3500元购进了这种礼盒并且全部售完;2016年, 这种礼盒的进价比2014年下降了11元/盒, 该商店用2400元购进了与2014年相同数量的礼盒也全部售完, 礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同, 问年增长率是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、B3、A4、B5、D6、D7、C8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2.a (a+b )(a ﹣b )3.x ≥-3且x ≠24、125、136、35r <<.三、解答题(本大题共6小题, 共72分)1.x=52、3.3.(1)抛物线的解析式为y=﹣ x2+ x+1;(2)点P 的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1);(2)单价为46元时, 利润最大为3840元.(3)单价的范围是45元到55元.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析, A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)35元/盒;(2)20%.。

部编版九年级数学上册期末考试卷及参考答案

部编版九年级数学上册期末考试卷及参考答案

部编版九年级数学上册期末考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ﹣3的绝对值是()A. ﹣3B. 3C. -D.2. 已知则的大小关系是()A. B. C. D.3.已知α、β是方程x2﹣2x﹣4=0的两个实数根, 则α3+8β+6的值为()A. ﹣1B. 2C. 22D. 304.下列各数: -2, 0, , 0.020020002…, , , 其中无理数的个数是()A. 4B. 3C. 2D. 15.已知正多边形的一个外角为36°, 则该正多边形的边数为().A. 12B. 10C. 8D. 66. 函数的自变量x的取值范围是()A. , 且B.C.D. , 且7.如图, 正方形ABCD的边长为2cm, 动点P从点A出发, 在正方形的边上沿A →B→C的方向运动到点C停止, 设点P的运动路程为x(cm), 在下列图象中, 能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.8.如图, 在△ABC中, CD平分∠ACB交AB于点D, 过点D作DE∥BC交AC于点E,若∠A=54°, ∠B=48°, 则∠CDE的大小为()A. 44°B. 40°C. 39°D. 38°9.图甲和图乙中所有的正方形都全等, 将图甲的正方形放在图乙中的①②③④某一位置, 所组成的图形不能围成正方体的位置是()A. ①B. ②C. ③D. ④10.如图, 矩形的对角线, 交于点, , , 过点作, 交于点, 过点作, 垂足为, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 4的算术平方根是__________.2. 因式分解: x3﹣4x=_______.3. 若函数y=mx2+2x+1的图象与x轴只有一个公共点, 则常数m的值是_____.4. 已知二次函数的部分图象如图所示, 则关于的一元二次方程的根为________.5. 如图,已知AB是⊙O的直径,AB=2,C.D是圆周上的点,且∠CDB=30°,则BC的长为______.6. 如图是一张长方形纸片ABCD, 已知AB=8, AD=7, E为AB上一点, AE=5, 现要剪下一张等腰三角形纸片(△AEP), 使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中.3. 如图, 在▱ABCD中, AE⊥BC, AF⊥CD, 垂足分别为E, F, 且BE=DF(1)求证: ▱ABCD是菱形;(2)若AB=5, AC=6, 求▱ABCD的面积.4. 如图, 是菱形的对角线, , (1)请用尺规作图法, 作的垂直平分线, 垂足为, 交于;(不要求写作法, 保留作图痕迹)(2)在(1)条件下, 连接, 求的度数.5. “校园安全”越来越受到人们的关注, 我市某中学对部分学生就校园安全知识的了解程度, 采用随机抽样调查的方式, 并根据收集到的信息进行统计, 绘制了下面两幅尚不完整的统计图. 根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人, 条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人, 根据上述调查结果, 可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛, 请用列表或画树状图的方法, 求恰好抽到1名男生和1名女生的概率.6. 某公司今年1月份的生产成本是400万元, 由于改进技术, 生产成本逐月下降, 3月份的生产成本是361万元. 假设该公司2.3.4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、A3、D4、C5、B6、A7、B8、C9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、2.2.x(x+2)(x﹣2)3.0或14. 或5、16. 或或5三、解答题(本大题共6小题, 共72分)1.原方程无解.2.3.(1)略;(2)S平行四边形ABCD =244.(1)答案略;(2)45°.5、(1)60, 10;(2)96°;(3)1020;(4)6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

新部编版九年级数学(上册)期末试卷及参考答案(精品)

新部编版九年级数学(上册)期末试卷及参考答案(精品)

新部编版九年级数学(上册)期末试卷及参考答案(精品)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ()A. 2019B. -2019C.D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3.已知m= , 则以下对m的估算正确的()A. 2<m<3B. 3<m<4C. 4<m<5D. 5<m<64.已知一个多边形的内角和等于900º, 则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形5. 下列说法正确的是()A. 负数没有倒数B. ﹣1的倒数是﹣1C. 任何有理数都有倒数D. 正数的倒数比自身小6.不等式组的解集是, 那么m的取值范围()A. B. C. D.7.如图, 将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上, 若, 则的大小为()A. B. C. D.8.在同一坐标系内, 一次函数与二次函数的图象可能是()A. B.C. D.9.如图, 边长为1的小正方形构成的网格中, 半径为1的⊙O的圆心O在格点上, 则∠BED的正切值等于()A. B. C. 2 D.10.如图, 正五边形内接于⊙, 为上的一点(点不与点重合), 则的度数为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 分解因式: a2﹣4b2=_______.3. 已知、为两个连续的整数, 且, 则=________.4.如图, 在矩形ABCD中, AD=3, 将矩形ABCD绕点A逆时针旋转, 得到矩形AEFG, 点B的对应点E落在CD上, 且DE=EF, 则AB的长为__________.5. 如图所示, 一次函数y=ax+b的图象与x轴相交于点(2, 0), 与y轴相交于点(0, 4), 结合图象可知, 关于x的方程ax+b=0的解是__________.6. 如图, 已知Rt△ABC中, ∠B=90°, ∠A=60°, AC=2 +4, 点M、N分别在线段AC.AB上, 将△ANM沿直线MN折叠, 使点A的对应点D恰好落在线段BC 上, 当△DCM为直角三角形时, 折痕MN的长为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中.3. 如图, 在▱ABCD中, AE⊥BC, AF⊥CD, 垂足分别为E, F, 且BE=DF(1)求证: ▱ABCD是菱形;(2)若AB=5, AC=6, 求▱ABCD的面积.4. 如图, AB是圆O的直径, O为圆心, AD.BD是半圆的弦, 且∠PDA=∠PBD. 延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线, 并说明理由;(2)如果∠BED=60°, PD= , 求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF, 点F正好在圆O上, 如图2, 求证:四边形DFBE为菱形.485的选修情况, 学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门). 对调查结果进行了整理, 绘制成如下两幅不完整的统计图, 请结合图中所给信息解答下列问题:(1)本次调查的学生共有人, 在扇形统计图中, m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中, 选修书法的有2名女同学, 其余为男同学, 现要从中随机抽取2名同学代表学校参加某社区组织的书法活动, 请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6. 随着中国传统节日“端午节”的临近, 东方红商场决定开展“欢度端午, 回馈顾客”的让利促销活动, 对部分品牌粽子进行打折销售, 其中甲品牌粽子打八折, 乙品牌粽子打七五折, 已知打折前, 买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后, 买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒, 乙品牌粽子100盒, 问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、C3、B4、C5、B6、A7、A8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、±32.(a+2b)(a﹣2b)3、114、5.x=26. 或三、解答题(本大题共6小题, 共72分)1.原方程无解.2.3.(1)略;(2)S平行四边形ABCD =244.(1)略;(2)1;(3)略.5、(1)50、30%.(2)补图见解析;(3).6、(1)打折前甲品牌粽子每盒40元, 乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★★★启用前 试卷类型:A最新九年级数学期末试题一、选择题:(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,每小题选出答案后,将答案填写在答题卡上,不能答在试题卷上.)1.如果关于x 的方程2(1)320a x x --+=是一元二次方程,则(A )a >0 (B )a ≠0 (C )a =1 (D )1a ≠ 2.当2x =时,下列各式中没有意义....的是 (A (B (C (D 3. 下列说法正确的是(A )可能性很小的事件也可能发生 (B )可能性很大的事件必然发生(C )如果一件事情可能不发生,那么它就是必然事件 (D )如果一件事情发生的概率非常小,那么它就不发生 4.已知A ∠为锐角,1sin 2A =,则 (A )60A ∠=︒(B )30A ∠=︒ (C )45A ∠=︒(D )A ∠的大小不能确定5.下面两个图形一定相似的是(A )两个长方形 (B )两个平行四边形 (C )两个正方形 (D )两个菱形6.在平面直角坐标系中,已知点(0,0)O ,(3,2)M .将线段OM 沿x 轴向左平移2个单位,如果点O 、M 的对应点分别为点1O 、1M ,则点1O 、1M 的坐标分别是 (A )(0,0),(1,2) (B )(-1,0),(1,2) (C )(-3,0),(1,2) (D )(-2,0),(1,2) 7.如图(1), EF ∥BC ,下面的各比例式:①AE AFAB AC=; FE A②AE EF AB BC =;③BE AE CF AF =;④BE AECB AF= 中,正确的个数有 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个8.由x 的取值和二次函数2y ax bx c =++(0a ≠,a 、b 、c 为常数)的函数值,列出下表根据表格判断方程20ax bx c ++= (0a ≠,a 、b 、c 为常数)的一个解x 的取值范围是(A )3 3.23x << (B )3.23 3.24x << (C )3.24 3.25x << (D )3.25 3.26x << 9.函数ay x=与2y ax a =- (0a ≠)在同一直角坐标系中的图象可能是10.若一次函数3y mx =+经过第一、二、四象限,则抛物线22y x mx =-的顶点必在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 11.某商场一月份的营业额为300万元,一月、二月、三月的营业额共1200万元,如果平均每月增长率为x ,则由题意列方程为(A )2300(1)1200x += (B )30030021200x +⨯=(C )30030031200x +⨯= (D )23001(1)(1)1200x x ⎡⎤++++=⎣⎦12.方程23(1)1x x x ++-=的所有整数解的个数是(A )5个(B )4个 (C )3个(D )2个二、填空题:(本大题共8个小题,每小题3分,共24分.请把答案填在题中的横线上.)13.化简:=__________.(A )(B ) (C ) (D )14.如图(2),D 、E 两点分别在ABC ∆的AB 、AC 边上,请填上一个你认为合适的条件,使得△ADE ∽△ACB , 你填的条件是_______________. 15.在Rt ABC ∆中,∠90ACB =︒,3sin 7A =,则cos B =________. 16.如图(3),一个小球从A 点沿制定的轨道下落,在每个交叉口都有 向左或向右两种机会均等的结果,小球最终到达F 点的概率是 .17.若线段c 满足a cc b=,且线段4a =cm ,9b =cm ,则线段c =____cm .18.如图(4),在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且12AC =,9BD =,•则此梯形的中位线长是___________. 19.在实数范围内定义一种新运算“*”,其规则为22a b a b *=-,根据这个规则,方程(2)50x +*=的解为 ____________ . 20.抛物线()(3)2y x m x k m =----+与抛物线2(3)4y x =-+关于原点对称,则m k +=____.三、(本大题共4个小题,每小题6分,共24分.)21.计算:(. 22.解方程:2220x x --=.23.解方程:2103y y -=.24.如图(5),在Rt ABC ∆中,90ACB ∠=︒,CD 是中线,6BC =,5CD =,求sin A ∠,和tan B ∠.图(4)A BCD四、(本大题共4个小题,每小题7分,共28分.)25.如图(6),在△ABC 中,D 是AC 上一点,已知ABD C ∠=∠,且:1:2ABD BDC S S ∆∆=,BC =BD 的长.26.湖南电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)用M 表示“待定”,用N 表示“通过”,写出三位评委给出A 选手的所有可能的结论; (2)对于选手A ,只有甲、乙两位评委给出相同结论的概率是多少?27.已知抛物线23y x x =+-. (1)求抛物线的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.ABCD图(6)28.关于x 的一元二次方程(2)(3)x x m --=的两个不相等的实数根为1x 、2x ,若1x 、2x 满足等式121220x x x x --+=,求m 的值.五、(本大题共2个小题,每题9分,共18分.)29.将一条长为16cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于210cm ,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于26cm 吗? 若能,求出两段铁丝的长度;若不能,请说明理由.30.如图(7),家住红星小区的李刚到学校上学有两条路线,甲路线经岷江一桥为A →B →C →D ,乙路线经岷江二桥为A →F →E →D ,已知BC ∥EF ,BF ∥CE ,AB BF ⊥,CD ⊥DE ,2000AB =米,1000BC =米,∠37AFB =︒,53DCE ∠=︒. 请你计算李刚上学的哪条路线更近,近多少?(提示:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈),(结果保留整数).六、(本大题共2个小题,每题10分,共20分.)31.在图(8)中,每个边长为n 的正方形都是由边长为1 的小正方形组成:E学校岷江一桥岷江二桥图(7)(1)观察图形,请填写下列表格:(2)在边长为(1n ≥)的正方形中,设黑色小正方形的个数为1P ,白色小正方形的个数为2P ,问是否存在偶数n ,使215P P =?若存在,请写出n 的值;若不存在,请说明理由.32.如图(9)甲,AB ⊥BD ,CD ⊥BD ,AP ⊥PC ,垂足分别为B 、P 、D ,且三个垂...足在同一直线上.......,我们把这样的图形叫“三垂图” . (1)证明:AB ·CD =PB ·PD (这是一个非常有用的结论). A(2)如图(9)乙,也是一个“三垂图”,上述结论成立吗?如成立,请写出结论,如不成立请说明理由.(3)已知抛物线223y x x =--与x 轴的交点为A 、B ,顶点为P ,如图(9)丙所示,若Q是抛物线上异于A 、B 、P 的点,使得∠90QAP =︒,求Q 点坐标.参考答案与评分建议一、选择题:DBABC DCCDC DBACDP图(9)乙图(9)丙二、填空题:13.- 14.略 15.37 16.14 17.6 18.15219.127,3x x =-= 20.9-三、21.解:原式(=-…………………………(3分)3=-…………………………(3分)22.解:x =…………………………(4分)1x =…………………………(6分) 23.解:23100y y --= ………………(1分)(5)(2)10y y -+= …………………………(4分)125,2y y ==- ………………(6分)24.解:∵CD 是Rt ABC ∆斜边上的中线,且5CD =∴210AB CD == …………………………(2分) 在Rt ABC ∆中,又∵6BC =,∴8AC == ………(4分) ∴63sin 105BC A AB ∠=== 84tan 63AC B BC ∠=== …………………………(6分)四、25.证明:∵ABD C ∠=∠,A A ∠=∠, ∴ABD ACB ∆∆ ………(2分)又∵:1:2ABD BDC S S ∆∆=∴:1:3ABD ABC S S ∆∆= ……………………(3分)∴ABD ∆与ACB ∆=…………………(5分)∵BC =∴BD BC =BD ==…………………………(7分)26.解:(1)甲、乙、丙三位评委给出A 选手的所有可能的结论为:(,,)M M N ,(,,)M N M ,(,,)M N N ,(,,)M M M ,(,,)N M N ,(,,)N N M , (,,)N M M ,(,,)N N N ……………(4分)(2)甲、乙两位评委给出相同结论的概率4182P == …………………………(7分) 27.解:221133()24y x x x =+-=+-∴顶点坐标为113(,)24--, 对称轴12x =- ………………(3分)(2)设抛物线与x 轴的两个交点为1(,0)A x 和2(,0)B x ,12x x <21AB x x =-== ……………(5分)121x x +=-,123x x =-∴AB ==……………(7分)28.解:∵(2)(3)x x m --= ∴2560x x m -+-= ……………………(1分)125x x +=,126x x m =- …………………………(3分)∵121220x x x x --+=∴6520m --+=,3m =…………………………(6分)∵2(5)4(63)0∆=---> ∴3m =…………………………(7分) 五、29.解:(1)设一个正方形的边长为x ,则另一个正方形的边长为16444xx -=- ……(1分) 根据题意列出方程为:22(4)10x x +-= …………………………(3分) 解方程得:121,3x x == …………………………(4分)∴剪成的两段铁丝长度分别是4和12 ………………………(5分)(2)不能 …………………………(6分)22(4)6x x +-=, 化简得:2450x x -+=∵2(4)450∆=--⨯<,∴方程无解,∴不能 …………………………(8分)30.解:∵AB BF ⊥,∴20002666.7tan 370.75AB BF =≈≈︒ …………………(1分) 20003333.3sin 370.6AB AF =≈≈︒ …………………………(2分) ∵BC ∥EF ,BF ∥CE ,AB BF ⊥,∴CE BF =,EF BC = ………………………(3分) 又∵53DCE ∠=︒ CD ⊥DE ,∴905337CED ∠=︒-︒=︒ …………………………(4分)∴sin 1600CD CE CED =⨯∠≈,cos 2133.3DE CE CED =⨯∠≈…………(6分)∴ ()1867AF EF ED AB BC CD ++-++≈ …………………………(7分) 答:甲路线大约近1867千米. …………………………(8分)六、31.解:(1)1,5,9,13,4(1)1212n n -+=- …………………(3分) 4,8,12,16,2n …………………(6分)(2)存在 …………………(7分)设2n m =(m 是正整数)由题意得:254(2)4m m m ⨯=-, …………………(9分)解方程得:126,0m m ==(不合题意,舍去)∴边长2612n =⨯=时,使215P P = …………………(11分)32.解:(1)证明:∵AP PC ⊥,∴∠APB +∠90CPD =︒ 又∵AB BD ⊥ ,CD BD ⊥∴∠90APB A CPD C +∠=∠+∠=︒∴∠A =∠CPD∴△ABP △CDP ………………………(3分) ∴AB BP PD CD=, AB ·CD =PB ·PD ………………(4分) (2)成立,AB ·PD =AC ·PC ………………(6分)(3)过P 作PE x ⊥轴于E ,过Q 作QF x ⊥轴于F ,(如图) ……(7分) 解方程2230x x --=得:121,3x x =-=∴(1,0)A -,(3,0)B ,2223(1)4y x x x =--=--∴4PE =,1OE = ………………(8分)设Q 的坐标为(,)x y∵Q 在抛物线223y x x =--上∴223y x x =--∵∠90QAP =︒,PE x ⊥,QF x ⊥∴PE QF AE AF = ………………(9分)即:42(1)y x =+解方程组22342(1)y x xy x⎧=--⎨=+⎩得:117294xy⎧=⎪⎪⎨⎪=⎪⎩,221xy=-⎧⎨=⎩(不合题意,舍去)………(10分)∴Q点坐标是79(,)24………………(11分)备注:如有与参考答案的方法不同的只要正确都给满分.。

相关文档
最新文档