2020年四川省乐山市中考数学试题及参考答案(word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐山市2020年初中学业水平考试
数学试题
(满分150分,考试时间120分)
第Ⅰ卷(选择题共30分)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
1.的倒数是()
A.﹣B.C.﹣2 D.2
2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100 B.1000 C.900 D.110
3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°
4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣10
5.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连结OA.则四边形AOED的周长为()
A.9+2B.9+C.7+2D.8
(第2题图)(第3题图)(第5题图)
6.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b
≤2的解集是()
A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣4
7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为
1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正
方形的是()
A.B.C.D.
8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()
A.8 B.4 C.2D.
9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()
A.B.C.D.π
10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)
为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()
A.﹣B.﹣C.﹣2 D.﹣
(第9题图)(第10题图)
第Ⅱ卷(非选择题共120分)
二、填空题:本大题共6个小题,每小题3分,共18分.
11.用“>”或“<”符号填空:﹣7﹣9.
12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.
13.如图是某商场营业大厅自动扶梯示意
图.自动扶梯AB的倾斜角为30°,
在自动扶梯下方地面C处测得扶梯顶
端B的仰角为60°,A、C之间的距
离为4m.则自动扶梯的垂直高度BD
=m.(结果保留根号)
14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.
15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为
AD的中点,连结BE交AC于点F.则=.
16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]
=﹣2.那么:
(1)当﹣1<[x]≤2时,x的取值范围是;
(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a 的范围是.
三、本大题共3个小题,每小题9分,共27分.
17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.
18.(9分)解二元一次方程组:
19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.
四、本大题共3个小题,每小题10分,共30分.
20.(10分)已知y=,且x≠y,求()÷的值.
21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).
(1)求直线AB的解析式;
(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.
22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
根据上面图表信息,回答下列问题:
(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;
(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.
五、本大题共2个小题,每小题10分,共20分.
23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
车型每车限载人数(人)租金(元/辆)
商务车 6 300
轿车 4
(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.
(1)求证:点D平分;
(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.
六、本大题共2个小题,第25题12分,第26题13分,共25分.
25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.
(1)如图1,当点P与点O重合时,线段OE和OF的关系是;
(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE 之间的关系.
26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,
求△BCF的面积的最大值;
②连结PB,求PC+PB的最小值.
答案与解析
第Ⅰ卷(选择题共30分)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
1.的倒数是()
A.﹣B.C.﹣2 D.2
【知识考点】倒数.
【思路分析】根据“倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数”解答即可.【解答过程】解:根据倒数的定义,可知的倒数是2.
故选:D.
【总结归纳】本题考查了倒数.解题的关键是掌握倒数的定义,明确分子分母交换位置是求一个数的倒数的关键.
2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()
A.1100 B.1000 C.900 D.110
【知识考点】用样本估计总体;条形统计图.
【思路分析】样本中,“优”和“良”占调查人数的,因此估计总体2000人的是“优”和“良”的人数.
【解答过程】解:2000×=1100(人),
故选:A.
【总结归纳】本题考查条形统计图的意义和制作方法,样本估计总体是统计中常用的方法.3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()
A.10°B.20°C.30°D.40°
【知识考点】角平分线的定义;垂线.
【思路分析】根据平角的定义得到∠CEF=180°﹣∠FEA=180°﹣40°=140°,由角平分线的定义可得,由GE⊥EF可得∠GEF=90°,可得∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,由∠GEB=∠CEB﹣∠CEG可得结果.
【解答过程】解:∵∠FEA=40°,GE⊥EF,
∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,
∵射线EB平分∠CEF,
∴,
∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,
故选:B.
【总结归纳】本题考查的是角平分线定义,补角的相关知识,熟练掌握角平分线的性质是解答此题的关键.
4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣10
【知识考点】数轴.
【思路分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B表示的数是多少即可.
【解答过程】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,
点A表示的数是﹣3,右移7个单位,得﹣3+7=4.
所以点B表示的数是4或﹣10.
故选:D.
【总结归纳】此题主要考查了数轴的特征和运用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.
5.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连结OA.则四边形AOED的周长为()
A.9+2B.9+C.7+2D.8
【知识考点】菱形的性质.
【思路分析】先利用菱形的性质得AD=AB=4,AB∥CD,∠ADB=∠CDB=30°,AO⊥BD,利用含30度的直角三角形三边的关系得到AO=2,OD=2,然后计算出OE、DE的长,最后计算四边形AOED的周长.
【解答过程】解:∵四边形ABCD为菱形,
∴AD=AB=4,AB∥CD,
∵∠BAD=120°,
∴∠ADB=∠CDB=30°,
∵O是对角线BD的中点,
∴AO⊥BD,
在Rt△AOD中,AO=AD=2,
OD=OA=2,
∵OE⊥CD,
∴∠DEO=90°,
在Rt△DOE中,OE=OD=,
DE=OE=3,
∴四边形AOED的周长=4+2++3=9+.
故选:B.
【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
6.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()
A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣4
【知识考点】一次函数的图象;一次函数与一元一次不等式.
【思路分析】根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.
【解答过程】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),
∴,解得
∴直线为y=﹣+1,
当y=2时,2=﹣+1,解得x=﹣2,
由图象可知:不等式kx+b≤2的解集是x≥﹣2,
故选:C.
【总结归纳】本题考查了待定系数法求一次函数的解析式,一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()
A.B.C.D.
【知识考点】图形的剪拼.
【思路分析】先根据拼剪前后的面积不变,求出拼成正方形的边长,再依此裁剪可得.
【解答过程】解:由题意,选项D阴影部分面积为6,A,B,C的阴影部分的面积为5,
如果能拼成正方形,选项D的正方形的边长为,选项A,B,C的正方形的边长为,观察图象可知,选项A,B,C阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,
故选:D.
【总结归纳】本题考查图形的拼剪,正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.
8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()
A.8 B.4 C.2D.
【知识考点】算术平方根;幂的乘方与积的乘方;同底数幂的除法.
【思路分析】根据幂的乘方以及同底数幂的除法法则计算即可求出n的值,再根据算术平方根的定义即可求出x 的值.
【解答过程】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.
∴42÷(3n)4=2,
∴(3n)4=42÷2=8,
又∵9n=32n=x,
∴(3n)4=(32n)2=x2,
∴x2=8,
∴x==.
故选:C.
【总结归纳】本题主要考查了同底数幂的除法以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.
9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()
A.B.C.D.π
【知识考点】含30度角的直角三角形;扇形面积的计算;旋转的性质.
【思路分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.
【解答过程】解:∵∠ABC=90°,∠BAC=30°,BC=1,
∴AB=BC=,AC=2BC=2,
∴﹣﹣=,
故选:B.
【总结归纳】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.
10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()
A.﹣B.﹣C.﹣2 D.﹣
【知识考点】反比例函数与一次函数的交点问题.
【思路分析】确定OQ是△ABP的中位线,OQ的最大值为2,故BP的最大值为4,则BC=BP ﹣PC=4﹣1=3,则(m﹣2)2+(﹣m﹣2)2=32,即可求解.
【解答过程】解:点O是AB的中点,则OQ是△ABP的中位线,
当B、C、P三点共线时,PB最大,则OQ=BP最大,
而OQ的最大值为2,故BP的最大值为4,
则BC=BP﹣PC=4﹣1=3,
设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,
解得:m2=,
∴k=m(﹣m)=﹣,
故选:A.
【总结归纳】本题考查的是反比例函数与一次函数的交点问题,确定OQ是△ABP的中位线是本题解题的关键.
第Ⅱ卷(非选择题共120分)
二、填空题:本大题共6个小题,每小题3分,共18分.
11.用“>”或“<”符号填空:﹣7﹣9.
【知识考点】有理数大小比较.
【思路分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.
【解答过程】解:∵|﹣7|=7,|﹣9|=9,7<9,
∴﹣7>﹣9,
故答案为:>.
【总结归纳】本题考查了有理数大小比较,解题的关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.
12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.
【知识考点】中位数.
【思路分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.
【解答过程】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,
其中第四个数据为39,
所以这组数据的中位数为39.
故答案为39.
【总结归纳】本题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
13.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)
【知识考点】含30度角的直角三角形;解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.
【思路分析】根据等腰三角形的性质和三角形的外角的性质得到BC=AC=4,根据三角函数的定义即可得到结论.
【解答过程】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,
∴∠ABC=∠BCD﹣∠BAC=30°,
∴∠BAC=∠ABC,
∴BC=AC=4,
在Rt△BDC中,sin∠BCD=,
∴sin60°==,
∴BD=2(m),
故答案为:2.
【总结归纳】此题主要考查了解直角三角形的应用,关键是证明AC=BC,需要熟练掌握三角形函数定义,此题难度不大.
14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.
【知识考点】因式分解﹣十字相乘法等.
【思路分析】将已知等式的左边利用十字相乘法分解因式,可得x与y的关系,从而可得结论.【解答过程】解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,
可得x=4y或x=﹣y,
∴或,
即的值是4或﹣1;
故答案为:4或﹣1.
【总结归纳】此题考查了分式的化简求值,熟练掌握利用十字相乘法因式分解是解本题的关键.15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.
【知识考点】直角三角形斜边上的中线;相似三角形的判定与性质.
【思路分析】连接CE,解直角三角形,用AD表示AB,根据直角三角形的性质,用AD表示CE,再证明CE∥AB得△ABF∽△CEF,由相似三角形的性质得,进而得便可.
【解答过程】解:连接CE,
∵∠CAD=30°,∠ACD=90°,E是AD的中点,
∴AC=AD,CE=AD=AE,
∴∠ACE=∠CAE=30°
∵∠BAC=30°,∠ABC=90°,
∴AB=AC=AD,∠BAC=∠ACE,
∴AB∥CE,
∴△ABF∽△CEF,
∴,
∴,
故答案为.
【总结归纳】本题主要考查了解直角三角形,直角三角形的性质,相似三角形的性质与判定,关键是证明三角形相似.
16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;
(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a 的范围是.
【知识考点】二次函数图象与系数的关系.
【思路分析】(1)根据[x]表示不大于x的最大整数,解决问题即可.
(2)由题意,构建不等式即可解决问题.
【解答过程】解:(1)由题意∵﹣1<[x]≤2,
∴0≤x<3,
故答案为0≤x<3.
(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,
或x<2时,4﹣2a+3≤1+3,解得a≥,
故答案为a<﹣1或a≥.
【总结归纳】本题考查二次函数图象与系数的关系,解题的关键是理解题意,学会用转化的思想思考问题.
三、本大题共3个小题,每小题9分,共27分.
17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.
【知识考点】实数的运算;零指数幂;特殊角的三角函数值.
【思路分析】直接利用绝对值的性质和零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答过程】解:原式=
=2.
【总结归纳】此题主要考查了实数运算,正确化简各数是解题关键.
18.(9分)解二元一次方程组:
【知识考点】解二元一次方程组.
【思路分析】方程组利用加减消元法与代入消元法求出解即可.
【解答过程】解:,
法1:②﹣①×3,得2x=3,
解得:x=,
把x=代入①,得y=﹣1,
∴原方程组的解为;
法2:由②得:2x+3(2x+y)=9,
把①代入上式,
解得:x=,
把x=代入①,得y=﹣1,
∴原方程组的解为.
【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.
【知识考点】勾股定理;矩形的性质;相似三角形的判定与性质.
【思路分析】由矩形的性质可得出DC的长及∠ADC=∠C=90°,利用勾股定理可求出DE的长,由垂直的定义可得出∠AFD=∠C,利用同角的余角相等可得出∠EDC=∠DAF,进而可得出△EDC∽△DAF,再利用相似三角形的性质可求出DF的长度.
【解答过程】解:∵四边形ABCD是矩形,
∴DC=AB=3,∠ADC=∠C=90°.
∵CE=1,
∴DE==.
∵AF⊥DE,
∴∠AFD=90°=∠C,∠ADF+∠DAF=90°.
又∵∠ADF+∠EDC=90°,
∴∠EDC=∠DAF,
∴△EDC∽△DAF,
∴=,即=,
∴FD=,即DF的长度为.
【总结归纳】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用“两角对应相等,两个三角形相似”证出△EDC∽△DAF是解题的关键.
四、本大题共3个小题,每小题10分,共30分.
20.(10分)已知y=,且x≠y,求()÷的值.
【知识考点】分式的化简求值.
【思路分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.
【解答过程】解:原式=
=
=,
∵,
∴原式=
解法2:同解法1,得原式=,
∵,
∴xy=2,
∴原式==1.
【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).
(1)求直线AB的解析式;
(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.
【知识考点】反比例函数与一次函数的交点问题.
【思路分析】(1)用待定系数法即可求解;
(2)利用面积法:,即可求解.
【解答过程】解:(1)将点A(﹣2,﹣2)代入,得k=4,
即,
将B(1,a)代入,得a=4,
即B(1,4),
设直线AB的解析式为y=mx+n,
将A(﹣2,﹣2)、B(1,4)代入y=mx+n,得,解得,
∴直线AB的解析式为y=2x+2;
(2)∵A(﹣2,﹣2)、B(1,4),
∴,
∵,
∴.
【总结归纳】本题考查了反比例函数与一次函数的交点问题和三角形的面积公式,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
根据上面图表信息,回答下列问题:
(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;
(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.
【知识考点】扇形统计图;折线统计图;加权平均数;概率公式.
【思路分析】(1)由60﹣79岁的人数及其所占百分比可得总人数,再用360°乘以40﹣59岁感染人数所占比例即可得;
(2)先求出20﹣39岁人数,再补全折线图;
(3)利用频率估计概率即可得;
(4)利用加权平均数的定义求解可得.
【解答过程】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,
故答案为:20,72;
(2)20﹣39岁人数为20×10%=2(万人),
补全的折线统计图如图2所示;
(3)该患者年龄为60岁及以上的概率为:=0.675;
(4)该国新冠肺炎感染病例的平均死亡率为:
.
【总结归纳】本题主要考查概率公式,解题的关键是根据折线统计图和扇形统计图得出解题所需数据及加权平均数的定义、利用频率估计概率.
五、本大题共2个小题,每小题10分,共20分.
23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
车型每车限载人数(人)租金(元/辆)
商务车 6 300
轿车 4
(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
【知识考点】一元一次方程的应用;一次函数的应用.
【思路分析】(1)设租用一辆轿车的租金为x元,根据“单程租赁2辆商务车和3辆轿车共需付租金1320元”列方程解答即可;
(2)分三种情况讨论:①只租用商务车;②只租用轿车;③混和租用两种车.分别求出每种情况所需租金,再比较大小即可解答.
【解答过程】解:(1)设租用一辆轿车的租金为x元,
由题意得:300×2+3x=1320,
解得x=240,
答:租用一辆轿车的租金为240元;
(2)①若只租用商务车,
∵,
∴只租用商务车应租6辆,所付租金为300×6=1800(元);
②若只租用轿车,
∵,
∴只租用轿车应租9辆,所付租金为240×9=2160(元);
③若混和租用两种车,设租用商务车m辆,租用轿车n辆,租金为W元.
由题意,得,
由6m+4n=34,得4n=﹣6m+34,
∴W=300m+60(﹣6m+34)=﹣60m+2040,
∵﹣6m+34=4n≥0,
∴,
∴1≤m≤5,且m为整数,
∵W随m的增大而减小,
∴当m=5时,W有最小值1740,此时n=1.
综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.
【总结归纳】此题主要考查了二元一次方程组的应用以及一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.
(1)求证:点D平分;
(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:
DH是⊙O的切线.
【知识考点】圆周角定理;切线的判定.
【思路分析】(1)如图1,连接AD、BC,根据圆周角定理得到∠ADB=90°,根据直角三角形的性质得到DF=AF,于是得到∠ABD=∠DBC,得到=,于是得到结论;
(2)如图2所示,连接OD、AD,根据直角三角形的性质得到,推出△OAD是等边三角形,得到AD=AO=AH,根据切线的判定定理即可得到结论.
【解答过程】证明:(1)如图1,连接AD、BC,
∵AB是半圆O的直径,
∴∠ADB=90°,
∵DE⊥AB,
∴∠ADE=∠ABD,
又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,
∴DF=AF,
∴∠DAF=∠ADF=∠ABD,
又∵∠DAC=∠DBC,
∴∠ABD=∠DBC,
∴=,
∴即点D平分;
(2)如图2所示,连接OD、AD,
∵点E是线段OA的中点,
∴,
∴∠AOD=60°,
∴△OAD是等边三角形,
∴AD=AO=AH,
∴△ODH是直角三角形,且∠HDO=90°,
∴DH是⊙O的切线.
【总结归纳】本题考查了切线的判定,圆周角定理,等边三角形的判定和性质,正确的作出辅助线是解题的关键.
六、本大题共2个小题,第25题12分,第26题13分,共25分.
25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.
(1)如图1,当点P与点O重合时,线段OE和OF的关系是;
(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE 之间的关系.
【知识考点】四边形综合题.
【思路分析】(1)由“AAS”可证△AEO≌△CFO,可得OE=OF;
(2)由题意补全图形,由“AAS”可证△AOE≌△COG,可得OE=OG,由直角三角形的性质可得OG=OE=OF;
(3)延长EO交FC的延长线于点H,由全等三角形的性质可得AE=CH,OE=OH,由直角三角形的性质可得HF=EH=OE,可得结论.
【解答过程】解:(1)∵四边形ABCD是平行四边形,
∴AO=CO,
又∵∠AEO=∠CFO,∠AOE=∠COF=90°,
∴△AEO≌△CFO(AAS),
∴OE=OF,
故答案为:OE=OF;
(2)补全图形如图所示,
结论仍然成立,
理由如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
∵点O为AC的中点,
∴AO=CO,
又∵∠AOE=∠COG,
∴△AOE≌△COG(AAS),
∴OE=OG,
∵∠GFE=90°,
∴OE=OF;
(4)点P在线段OA的延长线上运动时,线段CF、AE、
OE之间的关系为OE=CF+AE,
证明如下:如图,延长EO交FC的延长线于点H,
由(2)可知△AOE≌△COH,
∴AE=CH,OE=OH,
又∵∠OEF=30°,∠HFE=90°,
∴HF=EH=OE,
∴OE=CF+CH=CF+AE.
【总结归纳】本题是四边形综合题,考查了全等三角形的判定和性质,平行四边形的性质,直角三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.
26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,
求△BCF的面积的最大值;
②连结PB,求PC+PB的最小值.。