广州一模理科数学试题与答案(全word版)

合集下载

广州市一模理科数学试题及标准答案精选文档

广州市一模理科数学试题及标准答案精选文档

广州市一模理科数学试题及标准答案精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2017年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

(1)复数()221i 1i+++的共轭复数是 (A )1i + (B )1i - (C )1i -+ (D )1i -- (2)若集合}{1M x x =≤,}{2,1N y y x x ==≤,则 (A )M N = (B )M N ⊆ (C )N M ⊆ (D )MN =∅(3)已知等比数列{}n a 的各项都为正数, 且35412a ,a ,a 成等差数列,则3546a a a a ++的值是 (A )512 (B )512(C )35- (D 35+ (4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为 (A )2 (B )3 (C )4 (D )5(5)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别 是双曲线C 的左,右焦点, 点P 在双曲线C 上, 且17PF =, 则2PF 等于 (A )1 (B )13 (C )4或10 (D )1或13 (6)如图, 网格纸上小正方形的边长为1, 粗线画出的是 某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为 (A )12 (B )1532 (C )1132(D )516 (8)已知1F ,2F 分别是椭圆C ()2222:10x y a b a b+=>>的左, 右焦点, 椭圆C 上存在点P使12F PF ∠为钝角, 则椭圆C 的离心率的取值范围是(A )22⎛⎫ ⎪ ⎪⎝⎭ (B )1,12⎛⎫ ⎪⎝⎭ (C )20,2⎛⎫ ⎪ ⎪⎝⎭(D )10,2⎛⎫ ⎪⎝⎭(9)已知:0,1x p x e ax ∃>-<成立, :q 函数()()1xf x a =--是减函数, 则p 是q 的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC ,2PA AB ==,4AC =, 三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表 面积为(A )8π (B )12π (C )20π (D )24π(11)若直线1y =与函数()2sin 2f x x =的图象相交于点()11,P x y ,()22,Q x y , 且12x x -=23π,则线段PQ 与函数()f x 的图象所围成的图形面积是 (A)23π+(B)3π(C )223π+ (D)23π (12)已知函数()32331248f x x x x =-++, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为 (A ) 0 (B )504 (C )1008 (D )2016第Ⅱ卷本卷包括必考题和选考题两部分。

2020年广东省广州市高考数学一模试卷(理科) (含答案解析)

2020年广东省广州市高考数学一模试卷(理科) (含答案解析)

2020年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设集合M={x|x<2},集合N={x|0<x<1},则M∩N=()A. {x|1<x<2}B. {x|0<x<1}C. {x|x<2}D. R2.设复数z=1−i,则z3=()A. −2+2iB. 2+2iC. −2−2iD. 2−2i3.若直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,则实数b的取值范围是()A. [−2,2]B. [−3,1]C. [−4,0]D. [−5,−1]4.条件p:|x−m|≤2,条件q:−1≤x≤n,若p是q的充要条件,则m+n=()A. 2B. 3C. 4D. 55.当0≤x≤π2时,函数f(x)=sinx+√3cosx的()A. 最大值是√3,最小值是12B. 最大值是√3,最小值是1C. 最大值是2,最小值是1D. 最大值是2,最小值是126.如图,在直三棱柱ABC−A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,,M是AA1的中点,则三棱锥A1−MBC1的体积为()A. 5B. 4C. 3D. 27.同文中学在高一年级进行“三城同创”演讲比赛,如果高一(8)班从3男1女4位同学中选派2位同学参加此次演讲比赛,那么选派的都是男生的概率是().A. 34B. 14C. 23D. 128.直线l:y=k(x−1)与抛物线C:y2=4x交于A、B两点,若线段AB的中点横坐标为3,则|AB|的值为()A. 8B. 8√3C. 6√3D. 69.若等差数列{a n}的前n项和为S n,a4=1,a8+a9=9,则S9=()A. 15B. 16C. 17D. 1810.曲线y=3x−lnx在点(1,3)处的切线方程为()A. y=−2x−1B. y=−2x+5C. y=2x+1D. y=2x−111.已知O为坐标原点,F1,F2是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,PM为∠F1PF2的角平分线,过F1作PM的垂线交PM于点M,则|OM|的长度为()A. aB. bC. a2D. b212.函数f(x)=x2−x−2的零点是()A. –2,–1B. 2,–1C. 1,2D. 1,–2二、填空题(本大题共4小题,共20.0分)13.如图,是一个几何体的三视图,其中正视图与侧视图完全相同,均为等边三角形与矩形的组合,俯视图为圆,若已知该几何体的表面积为16π,则x=______ .14.已知(2+x2)(ax+1a)6展开式中含x4项的系数为45,则正实数a的值为______.15.设单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,若(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),则实数k的值是______ .16.已知数列{a n}的前n项和S n=n3,则a6+a7+a8=______ .三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足sin(2A+B)sinA=2+2cos(A+B).(1)证明:b=2a;(2)若c=√7a,求∠C大小.18.“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)某调查人员在调查这200人时,有3张周末的马拉松训练活动体验卡要向他们发放,若被调查者为“热烈参与者”,即送其1张体验卡,否则不予送出.调查人员顺次调查完前3人后,剩余的体验卡数量为ξ,试根据统计表的数据,以200人中“热烈参与者”的频率作为概率,求ξ的分布列及期望.19.如图,三棱柱ABC−A1B1C1的所有棱长都是2,AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD;(2)求二面角D−BE−B1的余弦值.20.已知定点A(−3,0)、B(3,0),直线AM、BM相交于点M,且它们的斜率之积为−1,记动点M的9轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点T(1,0)的直线l与曲线C交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在请说明理由.21. 已知函数f(x)=ln(x +a)−x ,a ∈R .(1)当a =−1时,求f(x)的单调区间;(2)若x ≥1时,不等式e f(x)+a 2x 2>1恒成立,求实数a 的取值范围.22. 在平面直角坐标系xOy 中,已知直线l :{x =1+12t y =√32t(t 为参数),曲线C 1:{x =√2cosθy =sinθ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB|;(2)若Q 是曲线C 2:{x =cosαy =3+sinα(α为参数)上的一个动点,设点P 是曲线C 1上的一个动点,求|PQ|的最大值.23. 设f(x)=|x +1|−|2x −1|,(1)求不等式f(x)≤x +2的解集;(2)若不等式满足f(x)≤|x|(|a −1|+|a +1|)对任意实数x ≠0恒成立,求实数a 的取值范围.-------- 答案与解析 --------1.答案:B解析:本题考查交集的运算,属于基础题.求出集合M,N,即可求解.解:∵集合M={x|x<2},集合N={x|0<x<1},∴M∩N={x|0<x<1}.故选B.2.答案:C解析:本题考查了复数的运算法则、考查了计算能力,属于基础题.利用复数的运算法则求解即可.解:,故选C.3.答案:D解析:本题考查了直线与圆的位置关系,属于基础题.将圆的一般方程转化为标准方程,根据题意可知圆心(2,−1)到直线x−y+b=0的距离小于等于半径√2,即可求得b的取值范围.解:圆x2+y2−4x+2y+3=0转化成标准方程为(x−2)2+(y+1)2=2,圆心为(2,−1),半径为√2,因为直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,≤√2,解得−5≤b≤−1,所以√1+1故选:D.4.答案:C解析:解:条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,∴m−2=−1,m+2=n,解得m=1,n=3.则m+n=4.故选:C.条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,可得m−2=−1,m+2=n,解出即可得出.本题考查了不等式与方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.答案:C解析:利用辅助角公式将函数f(x)化简,根据三角函数的有界限求解即可.本题考查三角函数的图象及性质的运用,考查转化思想以及计算能力.解:函数f(x)=sinx+√3cosx=2sin(x+π3).当0≤x≤π2时,则π3≤x+π3≤5π6,那么:当x+π3=5π6时,函数f(x)取得最小值为1.当x+π3=π2时,函数f(x)取得最大值为2.故选C.6.答案:B解析:本题考查三棱柱体积的求法,属于基础题.根据题意可得sin∠MA1B=35,A1B=5,,A1M=2,即可得到S△A1MB,进而求出三棱锥A1−MBC1的体积.解:直三棱柱ABC−A1B1C1中,四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则sin∠MA1B=35,A1B=5,,A1M=2,所以S△A1MB =12·A1M·A1B·sin∠MA1B=12×2×5×35=3,所以棱锥A1−MBC1的体积为 VA1−MBC1=VC−A1MB=13×C1A1·S△A1MB=13×4×3=4.7.答案:D解析:本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.基本事件总数n=C42=6,选派的都是男生包含的基本事件个数m=C32=3,由此能求出选派的都是男生的概率.解:高二8班从3男1女4位同学中选派2位同学参加某演讲比赛,三男一女分别记为A,B,C,D,则4位同学中选派2位同学的结果有AB,AC,AD,BC,BD,CD,共6种,选派的都是男生包含的结果有AB,AC,BC,共三种,∴选派的都是男生的概率p=36=12.故选D.8.答案:A解析:本题考查抛物线的性质和应用,正确运用抛物线的定义是关键.线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知|AB|的值.解:由题设知直线l:y=k(x−1)经过抛物线C:y2=4x的焦点坐标,线段AB的中点到准线的距离为3+1=4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选:A.9.答案:B解析:本题考查等差数列的通项公式及前n 项和公式,属于基础题.由a 8+a 9=9,a 4=1联立解方程组即可求出等差数列的的公差和首项,然后代入求和公式. 解:因为{a n }是等差数列,所以可设a n =a 1+(n −1)d ,所以a 4=a 1+3d =1,a 8+a 9=2a 4+9d =9,所以d =79,a 1=−43,所以S 9=9×(−43)+9×82×79=16. 故选B . 10.答案:C解析:本题考查曲线的切线方程,考查导数的几何意义,属于基础题.求导数,确定切线的斜率,即可求出曲线y =3x −lnx 在点(1,3)处的切线方程. 解:由题意,y ′=3−1x ,所以曲线过点(1,3)处的切线斜率为k =3−1=2,所以切线方程为y −3=2(x −1),即y =2x +1,故选C . 11.答案:A解析:解:依题意如图,延长F 1M ,交PF 2于点T ,∵PM 是∠F 1PF 2的角分线.TF 1是PM 的垂线,∴PM 是TF 1的中垂线,∴|PF 1|=|PT|,∵P为双曲线x2a2−y2b2=1上一点,∴|PF1|−|PF2|=2a,∴|TF2|=2a,在三角形F1F2T中,MO是中位线,∴|OM|=a.故选:A.先画出双曲线和焦点三角形,由题意可知PM是TF1的中垂线,再利用双曲线的定义,数形结合即可得结论.本题考查了双曲线的定义的运用以及双曲线标准方程的意义,解题时要善于运用曲线定义,数形结合的思想解决问题.12.答案:B解析:本题主要考查函数零点的判定定理.由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点,也就是求函数的图象与x轴的交点的横坐标.令f(x)=0,由二次方程的解法,运用因式分解解方程即可得到所求函数的零点.解:令f(x)=0,即x2−x−2=0,即有(x−2)(x+1)=0,解得x=2或x=−1.即函数f(x)的零点为2或−1.故选B.13.答案:2√3解析:解:由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,∵正视图与侧视图完全相同,均为等边三角形与矩形的组合,∴圆锥的高是x,则半径为xtan60°=√3,母线长是xsin60°=2√3x3,则圆柱的底面半径是√3,高是1,∵该几何体的表面积为16π,∴π×(√3)2+2π×√3×1+π√3× 2√3x 3=16π,化简得,√3x 2+2x −16√3=0, 解得x =2√3或x =3舍去), 故答案为:2√3.由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,由条件和直角三角形的三角函数求出半径、圆锥母线长,利用圆柱、圆锥的表面积公式列出方程求出x 的值.本题考查了由三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力,计算能力.14.答案:√22或1解析:本题考查了二项式定理的应用以及利用二项展开式的通项公式求展开式中某项系数的问题,是综合性题目,属于基础题.根据(ax +1a )6展开式的通项公式求出展开式中含x 4与x 2,从而求出(2+x 2)(ax +1a )6展开式中含x 4项的系数,列出方程求出正实数a 的值. 解:∵(ax +1a )6展开式的通项公式为:T r+1=C 6r ⋅(ax)6−r ⋅(1a )r =C 6r⋅a 6−2r ⋅x 6−r ,令6−r =4,得r =2,∴T 2+1=C 62⋅a 2⋅x 4=15a 2x 4,令6−r =2,得r =4,∴T 4+1=C 64⋅a −2⋅x 2=15a −2x 2,∴(2+x 2)(ax +1a )6展开式中含x 4项的系数为: 2×15a 2+15a −2=45, 整理得2a 4−3a 2+1=0, 解得a 2=1或a 2=12, ∴正实数a =1或a =√22.故答案为√22或1.15.答案:54解析:本题考查了平面向量的数量积公式的应用以及向量垂直的性质;属于常规题.首先求出单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的数量积,再根据(e1⃗⃗⃗ −2e2⃗⃗⃗ )·(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,得到关于k的方程解之即可.解:因为单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,所以e1⃗⃗⃗ ⋅e2⃗⃗⃗ =1×1×cos2π3=−12,并且(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),所以(e1⃗⃗⃗ −2e2⃗⃗⃗ )⋅(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,展开得k e1⃗⃗⃗ 2−2e2⃗⃗⃗ 2+(1−2k)e1⃗⃗⃗ ⋅e2⃗⃗⃗ =0,即k−2−12(1−2k)=0,解得k=54.故答案为:54.16.答案:387解析:本题考查数列递推式,考查了由数列的前n项和求数列部分项的和,是基础的计算题.由已知数列的前n项和,利用a6+a7+a8=S8−S5求得结果.解:由S n=n3,得a6+a7+a8=S8−S5=83−53=387.故答案为:387.17.答案:解:(1)sin(2A+B)sinA=2+2cos(A+B).∴sin(2A+B)=2sinA+2sinAcos(A+B),∴sinAcos(A+B)+cosAsin(A+B)=2sinA+2sinAcos(A+B),∴−sinAcos(A+B)+cosAsin(A+B)=2sinA,即sinB=2sinA,故由正弦定理可得b=2a.(2)由余弦定理可得cosC =a 2+b 2−c 22ab=a 2+4a 2−7a 24a 2=−12,因为∠C 是△ABC 的内角, 故∠C =2π3.解析:(1)等式可化简为sinB =2sinA ,故由正弦定理可得b =2a ; (2)由余弦定理可得cosC =−12,∠C 是△ABC 的内角,故可得∠C =2π3.本题主要考查了余弦定理的综合应用,属于基础题.18.答案:解:(1)以200人中,“热烈参与者”的频率作为概率,则估计该市“热烈参与者”的人数约为:20000×15=4000; (2)根据题意可知,ξ~B(3,45),P(ξ=0)=C 30×(15)3=1125, P(ξ=1)=C 31×45×(15)2=12125, P(ξ=2)=C 32×(45)2×15=48125, P(ξ=3)=C 33×(45)3=64125,∴ξ的分布列为:E(ξ)=3×45=125.解析:本题考查离散型随机变量的分布列、数学期望的求法,考查二项分布的性质等基础知识,考查运算求解能力,是中档题.(1)以200人中,“热烈参与者”的频率作为概率,可估计该市“热烈参与者”的人数; (2)根据题意可知,ξ~B(3,45),由此能求出ξ的分布列和E(ξ).19.答案:证明:(1)∵AB =BC =CA ,D 是AC 的中点,∴BD ⊥AC ,∵AA 1⊥平面ABC ,AA 1⊂平面AA 1C 1C ,∴平面AA 1C 1C ⊥平面ABC ,又平面AA 1C 1C ∩平面ABC =AC ,BD ⊂平面ABC , ∴BD ⊥平面AA 1C 1C , 又AE ⊂平面AA 1C 1C , ∴BD ⊥AE .又∵在正方形AA 1C 1C 中,D ,E 分别是AC ,CC 1的中点, 根据相似三角形,易得A 1D ⊥AE . 又A 1D ∩BD =D ,A 1D 、BD ⊂平面A 1BD , ∴AE ⊥平面A 1BD .解:(2)因为BD ⊥平面AA 1C 1C ,根据题意,取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系, D(0,0,0),E(1,−1,0),B(0,0,√3),B 1(2,0,√3),DB ⃗⃗⃗⃗⃗⃗ =(0,0,√3),DE ⃗⃗⃗⃗⃗⃗ =(1,−1,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(2,0,0),EB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3), 设平面DBE 的一个法向量为m⃗⃗⃗ =(x,y ,z), 则{DB ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =√3z =0DE ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =x −y =0,令x =1,则m⃗⃗⃗ =(1,1,0), 设平面BB 1E 的一个法向量为n⃗ =(a,b ,c), 则{BB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =2a =0EB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =a +b +√3c =0,令c =√3,则n ⃗ =(0,−3,√3) 设二面角D −BE −B 1的平面角为θ,观察可知θ为钝角, cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−√64,∴cosθ=−√64,故二面角D −BE −B 1的余弦值为−√64.解析:本题考查线面垂直的证明,考查向量法求解二面角的余弦值,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出BD ⊥AC ,从而平面AA 1C 1C ⊥平面ABC ,进而BD ⊥平面AA 1C 1C ,BD ⊥AE ,再求出A 1D ⊥AE ,由此能证明AE ⊥平面A 1BD .(2)取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出二面角D −BE −B 1的余弦值.20.答案:解:(Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3), ∵k MA k MB =−19,即yx+3⋅yx−3=−19. 化简得x 29+y 2=1,由已知x ≠±3, 故曲线C 的方程为x 29+y 2=1(x ≠±3).(Ⅱ)由已知直线l 过点T(1,0), 设l 的方程为x =my +1, 则联立方程组{x =my +1x 2+9y 2=9,消去x 得 (m 2+9)y 2+2my −8=0, 设P(x 1,y 1),Q(x 2,y 2),则{y 1+y 2=−2mm 2+9y 1y 2=−8m 2+9, 直线SP 与SQ 斜率分别为k SP =y 1x 1−s =y 1my 1+1−s ,k SQ =y 2x 2−s =y2my 2+1−s ,k SP k SQ =y 1y 2(my 1+1−s)(my 2+1−s)=y 1y 2m 2y 1y 2+m(1−s)(y 1+y 2)+(1−s)2=−8(s 2−9)m 2+9(1−s)2.当s =3时,k SP k SQ =−89(1−s)2=−29; 当s =−3时,k SP k SQ =−89(1−s)2=−118.所以存在定点S(±3,0),使得直线SP 与SQ 斜率之积为定值.解析:本题考查轨迹方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力,属于较难题. (Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3),利用k MA k MB =−19,求出曲线C 的方程. (Ⅱ)由已知直线l 过点T(1,0),设l 的方程为x =my +1,则联立方程组{x =my +1x 2+9y 2=9,消去x 得(m 2+9)y 2+2my −8=0,设P(x 1,y 1),Q(x 2,y 2)利用韦达定理求解直线的斜率,然后化简即可推出结果.21.答案:解:(1)当a =−1时,f(x)=ln(x −1)−x ,x >1,f′(x)=1x−1−1=2−xx−1,当1<x <2时,f′(x)>0,f(x)递增, 当x >2时,f′(x)<0,f(x)递减, 故f(x)在(1,2)递增,在(2,+∞)递减;(2)由题意得:x ≥1时,x +a >0恒成立,故a >−1,①, 不等式e f(x)+a2x 2>1恒成立, 即a2x 2+x+a e x −1>0对任意的x ≥1恒成立,设g(x)=a2x 2+x+a e x−1,x ≥1,g′(x)=ae x x−x+1−ae x,a ≤0时,g(2)=a(2+1e 2)−1+2e 2<0,不合题意, a >0时,要使x ≥1时,不等式e f(x)+a2x 2>1恒成立, 只需g(1)=a(12+1e )−1+1e >0,即a >2(e−1)e+2,a >2(e−1)e+2时,ae x x −x +1−a =a(e x x −1)+1−x >2(e−1)e+2(e x x −1)+1−x ,设ℎ(x)=2(e−1)e+2(e x x −1)+1−x ,x ≥1,ℎ′(x)=2(e−1)e+2e x x +2(e−1)e+2e x −1,x ≥1,显然ℎ′(x)在(1,+∞)递增,∴ℎ′(x)>ℎ′(1)=4e 2−5e−2e+2>0,∴ℎ(x)在(1,+∞)递增,ℎ(x)>ℎ(1)=2(e−1)2e+2>0,即ae x x −x +1−a >0,②, 由①②得:a >2(e−1)e+2时,满足题意.解析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a2x 2+x+a e x−1>0对任意的x ≥1恒成立,设g(x)=a 2x 2+x+a e x−1,x ≥1,通过求导得到g(x)的单调性,从而求出a 的范围即可.本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.22.答案:解:(1)由曲线C 1:{x =√2cosθy =sinθ(θ为参数),消去参数θ,可得普通方程为x 22+y 2=1.把直线l 的参数方程代入为x 22+y 2=1,得7t 2+4t −4=0.则t 1+t 2=−47,t 1t 2=−47.∴|AB|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=8√27; (2)设点P(x,y)是曲线C 1上的一个动点,化曲线C 2:{x =cosαy =3+sinα(α为参数)为x 2+(y −3)2=1. ∴|PC 2|=√x 2+(y −3)2=√−(y +3)2+20, ∵−1≤y ≤1, ∴|PC 2|的最大值为4, 则|PQ|的最大值为5.解析:(1)化曲线C 1的参数方程为普通方程,把直线的参数方程代入,化为关于t 的一元二次方程,利用根与系数的关系及此时t 的几何意义求解;(2)点P(x,y)是曲线C 1上的一个动点,化曲线C 2的参数方程为普通方程,由两点间的距离公式写出|PC 2|,利用二次函数求其最大值,进一步得到|PQ|的最大值.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了圆与椭圆位置关系的应用,是中档题.23.答案:解:(1)根据题意可得,当x <−1时,−x −1+2x −1≤x +2,解得−2<2,所以x <−1;…(1分) 当−1≤x ≤12时,x +1+2x −1≤x +2,解得x ≤1,所以−1≤x ≤12;…(2分) 当x >12时,x +1−2x +1≤x +2,解得x ≥0,所以x >12;…(3分) 综上,不等式f(x)≤x +2的解集为R …(5分) (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,…(6分)因为||x+1|−|2x−1||x||=||1+1x|−|2−1x||≤|1+1x+2−1x|=3,…(8分)当且仅当(1+1x )(2−1x )≤0时取等号, 因为|x+1|−|2x−1||x|≤|a −1|+|a +1|,所以|a −1|+|a +1|≥3,解得a ≤−32或a ≥32,故实数a 的取值范围为(−∞,−32]∪[32,+∞)…(10分)解析:(1)利用x 的范围去掉绝对值符号,然后求解不等式的解集即可. (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,利用绝对值不等式的几何意义求解左侧的最值,然后求解a 的范围即可.本题考查不等式恒成立,绝对值不等式的解法,考查转化思想以及分类讨论思想的应用.。

2020年广东省广州市高考(理科)数学一模试卷 (Word 含解析)

2020年广东省广州市高考(理科)数学一模试卷 (Word 含解析)

2020年高考数学一模试卷(理科)一、选择題(共12小题)1.设集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R},则()A.M∩N=M B.M∩N=N C.M∪N=M D.M∪N=R2.若复数z满足方程z2+2=0,则z3=()A.±2√2B.−2√2C.−2√2i D.±2√2i3.若直线kx﹣y+1=0与圆x2+y2+2x﹣4y+1=0有公共点,则实数k的取值范围是()A.[﹣3,+∞)B.(﹣∞,﹣3]C.(0,+∞)D.(﹣∞,+∞)4.已知p:|x+1|>2,q:2<x<3,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设函数f(x)=2cos(12x−π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值为()A.π2B.πC.2πD.4π6.已知直三棱柱ABC﹣A1B1C1的体积为V,若P,Q分别在AA1,CC1上,且AP=13AA1,CQ=13CC1,则四棱锥B﹣APQC的体积是()A.16V B.29V C.13V D.79V7.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A.514B.914C.37D.478.已知直线l:y=x﹣2与x轴的交点为抛物线C:y2=2px的焦点,直线l与抛物线C交于A,B两点,则AB中点到抛物线准线的距离为()A.8B.6C.5D.49.等差数列{a n}的前n项和为S n,已知a1=13,a2+a5=4,若S n≥4a n+8(n∈N*),则n的最小值为( ) A .8B .9C .10D .1110.已知点P (x 0,y 0)是曲线C :y =x 3﹣x 2+1上的点,曲线C 在点P 处的切线与y =8x ﹣11平行,则( ) A .x 0=2B .x 0=−43C .x 0=2或x 0=−43D .x 0=﹣2或x 0=4311.已知O 为坐标原点,设双曲线C :x 2a −y 2b =1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 是双曲线C 上位于第一象限内的点.过点F 2作∠F 1PF 2的平分线的垂线,垂足为A ,若b =|F 1F 2|﹣2|OA |,则双曲线C 的离心率为( ) A .54B .43C .53D .212.已知函数f (x)={−x 2−x +1,x <0x 2−x +1,x ≥0,若F (x )=f (x )﹣sin (2020πx )﹣1在区间[﹣1,1]上有m 个零点x 1,x 2,x 3,…,x m ,则f (x 1)+f (x 2)+f (x 3)+…+f (x m )=( ) A .4042B .4041C .4040D .4039二、填空题:本题共4小题,每小题5分,共20分13.如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,则这个几何体的体积为 ,表面积为 .14.在(ax +1x)(x 2﹣1)5的展开式中,x 3的系数为15,则实数a = . 15.已知单位向量e 1→与e 2→的夹角为π3,若向量e 1→+2e 2→与2e 1→+k e 2→的夹角为5π6,则实数k 的值为 .16.记数列{a n }的前n 项和为S n ,已知a n +a n+1n=cosnπ2−sinnπ2(n ∈N*),且m +S 2019=﹣1009,a1m>0,则1a1+9m的最小值为.三、解答题:共70分,解答题应写出文字说明、证明过程与演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.17.△ABC的内角A,B,C的对边分别为a,b,c,已知c=√3,且满足absinCasinA+bsinB−csinC=√3(1)求角C的大小;(2)求b+2a的最大值.18.随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调査,其中一项是调査人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的夭数进行统计,得到以下统计表;平均每月进行训练的天数x x≤55<x<20x≥20人数156025(1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松训练的人平均每月进行训练的天数位于该区间的概率.从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y 的分布列及数学期望E(Y).19.如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点,将△AED沿ED折起,使得AB⊥AD,AC⊥AE,得到如图2的四棱锥A﹣BCDE,连结BD,CE,且BD与CE交于点H.(1)求证:AH⊥平面BCDE;(2)求二面角B﹣AE﹣D的余弦值.20.已知⊙M 过点A (√3,0),且与⊙N :(x +√3)2+y 2=16内切,设⊙M 的圆心M 的估轨迹为C ,(1)求轨迹C 的方程;(2)设直线l 不经过点B (2,0)且与曲线C 交于点P ,Q 两点,若直线PB 与直线QB 的斜率之积为−12,判断直线l 是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由.21.已知函数f (x )=(x ﹣4)e x ﹣3+x 2﹣6x ,g (x )=(a −13)x ﹣1﹣lnx . (1)求函数f (x )在(0,+∞)上的单调区间;(2)用max {m ,n }表示m ,n 中的最大值,f ′(x )为f (x )的导函数,设函数h (x )=max {f ′(x ),g (x )},若h (x )≥0在(0,+∞)上恒成立,求实数a 的取值范围; (3)证明:1n +1n+1+1n+2+⋯+13n−1+13n>ln 3(n ∈N*).[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+ty =1+2t(t 为参数),曲线C 2的参数方程为{x =√3cosθy =√3tanθ(θ为参数,且θ∈(π2,3π2)).(1)求C 1与C 2的普通方程,(2)若A ,B 分别为C 1与C 2上的动点,求|AB |的最小值. [选修4-5:不等式选讲]23.已知函数f (x )=|3x ﹣6|+|x +a |. (1)当a =1时,解不等式f (x )<3;(2)若不等式f (x )<11﹣4x 对任意x ∈[﹣4,−32]成立,求实数a 的取值范围.参考答案一、选择題:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合題目要求的.1.设集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R},则()A.M∩N=M B.M∩N=N C.M∪N=M D.M∪N=R【分析】求出集合M,N,进而求出M∩N,M∪N,由此能求出结果.解:∵集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R}={x|﹣2<x<2,x∈R},∴M∩N={x|0<x<1,x∈R}=M,M∪N={x|﹣2<x<2,x∈R}=N.故选:A.2.若复数z满足方程z2+2=0,则z3=()A.±2√2B.−2√2C.−2√2i D.±2√2i【分析】先求复数z,再求z3即可解:由z2+2=0⇒z=±√2i⇒z3=±2√2i,故选:D.3.若直线kx﹣y+1=0与圆x2+y2+2x﹣4y+1=0有公共点,则实数k的取值范围是()A.[﹣3,+∞)B.(﹣∞,﹣3]C.(0,+∞)D.(﹣∞,+∞)【分析】整理圆的方程得到其圆心与半径,直线与圆有交点等价于圆心到直线的距离d=≤2,解不等式即可√1+k解:圆方程可整理为(x+1)2+(y﹣2)2=4,则圆心(﹣1,2),半径r=2,≤2,整理得3k2﹣2k+3≥0,则圆心到直线的距离d=√1+k因为△=4﹣36<0,故不等式恒成立,所以k∈(﹣∞,+∞),故选:D.4.已知p:|x+1|>2,q:2<x<3,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解出不等式p ,即可判断出关系. 解:p :|x +1|>2,解得:x >1,或x <﹣3. q :2<x <3,则q ⇒p ,但是p 无法推出q . ∴p 是q 的必要不充分条件. 故选:B .5.设函数f (x )=2cos (12x −π3),若对于任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值为( ) A .π2B .πC .2πD .4π【分析】由题意可知f (x 1)≤f (x )≤f (x 2),f (x 1)是函数的最小值,f (x 2)是函数的最大值,|x 1﹣x 2|的最小值就是半个周期.解:函数f (x )=2cos (12x −π3),若对于任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),∴f (x 1)是函数的最小值,f (x 2)是函数的最大值,|x 1﹣x 2|的最小值就是函数的半周期, T 2=12×2π12=2π;故选:C .6.已知直三棱柱ABC ﹣A 1B 1C 1的体积为V ,若P ,Q 分别在AA 1,CC 1上,且AP =13AA 1,CQ =13CC 1,则四棱锥B ﹣APQC 的体积是( ) A .16VB .29VC .13VD .79V【分析】由题意画出图形,过P 作PG ∥AB 交BB 1于G ,连接GQ ,由等体积法可得V B﹣APQC=23V ABC−PQG ,再由已知得到V ABC−PQG =13V ABC−A 1B 1C 1,即可得出.解:如图,过P 作PG ∥AB 交BB 1于G ,连接GQ ,在三棱柱ABC ﹣PQG 中,由等积法可得V B ﹣APQC =23V ABC−PQG ,∵AP =13AA 1,CQ =13CC 1, ∴V ABC−PQG =13V ABC−A 1B 1C 1,∴V B−APQG =23V ABC−PQG =23×13V ABC−A 1B 1C 1=29V .故选:B.7.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A.514B.914C.37D.47【分析】基本事件总数n=C105=252,每个宣传小组至少选派1人包含的基本事件个数m=C22C21C31C31+C21C22C31C31+C21C21C32C31+C21C21C31C32,由此能求出每个宣传小组至少选派1人的概率.解:某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,基本事件总数n=C105=252,每个宣传小组至少选派1人包含的基本事件个数:m=C22C21C31C31+C21C22C31C31+C21C21C32C31+C21C21C31C32=108,则每个宣传小组至少选派1人的概率为P=mn=108252=37.故选:C.8.已知直线l:y=x﹣2与x轴的交点为抛物线C:y2=2px的焦点,直线l与抛物线C交于A,B两点,则AB中点到抛物线准线的距离为()A .8B .6C .5D .4【分析】求出抛物线的准线方程,然后求解准线方程,求出线段AB 的中点的横坐标,然后求解即可.解:抛物线C :y 2=2px ,可得准线方程为:x =−p2,直线l :y =x ﹣2,经过抛物线的焦点坐标,可得P =4,抛物线方程为:y 2=8x 由题意可得:{y 2=8xy =x −2,可得x 2﹣12x +4=0,直线l 与抛物线C 相交于A 、B 两点,则线段AB 的中点的横坐标为:6, 则线段AB 的中点到抛物线C 的准线的距离为:6+2=8. 故选:A .9.等差数列{a n }的前n 项和为S n ,已知a 1=13,a 2+a 5=4,若S n ≥4a n +8(n ∈N *),则n 的最小值为( ) A .8B .9C .10D .11【分析】利用等差数列通项公式求出数列的首项与公差,然后求解通项公式以及数列的和,结合不等式求解即可.解:等差数列{a n }的前n 项和为S n ,已知a 1=13,a 2+a 5=4, 可得:13+d +13+4d =4,解得d =23,所以S n =n 3+n(n −1)×13=n23,a n =13+(n −1)×23=2n−13, S n ≥4a n +8(n ∈N *),可得:n 23≥8n−43+8,可得:n 2﹣8n ﹣20≥0,解得n ≥10或n ≤﹣2(舍去), 所以n 的最小值为10. 故选:C .10.已知点P (x 0,y 0)是曲线C :y =x 3﹣x 2+1上的点,曲线C 在点P 处的切线与y =8x ﹣11平行,则( ) A .x 0=2B .x 0=−43C .x 0=2或x 0=−43D .x 0=﹣2或x 0=43【分析】先求出y =x 3﹣x 2+1的导数,得到曲线C 在点P (x 0,y 0)处的切线斜率k ,然后根据曲线C 在点P 处的切线与y =8x ﹣11平行得到关于x 0的方程,解方程得到x 0的值,再检验得到符合条件的x 0. 解:由y =x 3﹣x 2+1,得y '=3x 2﹣2x ,则曲线C 在点P (x 0,y 0)处的切线的斜率为k =y′|x=x 0=3x 02−2x 0, ∵曲线C 在点P 处的切线与y =8x ﹣11平行, ∴3x 02−2x 0=8,∴x 0=2或x =−43, ∵当x 0=2时,切线和y =8x ﹣11重合, ∴x =−43. 故选:B .11.已知O 为坐标原点,设双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 是双曲线C 上位于第一象限内的点.过点F 2作∠F 1PF 2的平分线的垂线,垂足为A ,若b =|F 1F 2|﹣2|OA |,则双曲线C 的离心率为( ) A .54B .43C .53D .2【分析】由角平分线的性质可得延长F 2A 交PF 1与B ,由PA 为∠F 1PF 2的角平分线,F 2A ⊥PA ,所以A 为F 2B 的中点,|PF 2|=|PB |,可得OA 为△BF 1F 2的中位线,b =|F 1F 2|﹣2|OA |=2c ﹣2a 再由a ,b ,c 的关系求出离心率.解:延长F 2A 交PF 1与B ,由PA 为∠F 1PF 2的角平分线,F 2A ⊥PA ,所以A 为F 2B 的中点,|PF 2|=|PB |,连接OA ,则OA 为△BF 1F 2的中位线,所以|BF 1|=2|OA |,而|BF 1|=|PF 1|﹣|PB |=|PF 1|﹣|PF 2|=2a因为b =|F 1F 2|﹣2|OA |=2c ﹣2a ,而b 2=c 2﹣a 2所以c 2﹣a 2=4(c ﹣a )2整理可得3c 2﹣8ac +5c 2=0,即3e 2﹣8e +5=0,解得e =53或1, 再由双曲线的离心率大于1,可得e =53, 故选:C .12.已知函数f (x)={−x 2−x +1,x <0x 2−x +1,x ≥0,若F (x )=f (x )﹣sin (2020πx )﹣1在区间[﹣1,1]上有m 个零点x 1,x 2,x 3,…,x m ,则f (x 1)+f (x 2)+f (x 3)+…+f (x m )=( ) A .4042B .4041C .4040D .4039【分析】本题利用正弦函数的性质求出周期,再利用图象中心对称的性质求出函数值的和.解:∵F (x )=f (x )﹣sin (2020πx )﹣1在区间[﹣1,1]上有m 个零点, ∴f (x )﹣1=sin (2020πx )在区间[﹣1,1]上有m 个零点,即g (x )=f (x )﹣1={−x 2−x ,x <0x 2−x ,x ≥0与h (x )=sin (2020πx )在区间[﹣1,1]上有m 个交点, ∵T =2πω=2π2020π=11010且h (x )关于原点对称, 在区间[﹣1,1]上h (x )max =1,h (x )min =﹣1 又∵g (x )=f (x )﹣1={−x 2−x ,x <0x 2−x ,x ≥0∴在区间[﹣1,1]上g (x )max =g (12)=12,g (x )min =g (−12)=−12且g (x )关于原点对称.∵根据g (x )和h (x )函数图象特点易知在h (x )一个周期内, g (x )和h (x )图象有两个交点. ∵T =11010∴在(0,1]内共有1010个周期, ∴g (x )和h (x )图象共有2020个交点, ∵g (x )和h (x )图象都关于原点对称,∴g (x )和h (x )图象在[﹣1,0)U (0,1]共有4040个交点, 再加上(0,0)这个交点.∵g (x )关于原点对称,设x 1,x 2为关于原点对称的两个交点横坐标, ∴g (x 1)+g (x 2)=0,即f (x 1)﹣1+f (x 2)﹣1=0, 即f (x 1)+f (x 2)=2,∴f (x 1)+f (x 2)+f (x 3)+…+f (x m )=40402×2+f (0)=4040+1=4041. 故选:B .二、填空题:本题共4小题,每小题5分,共20分13.如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,则这个几何体的体积为 √3π3,表面积为 3π .【分析】由三视图还原原几何体,可知该几何体为圆锥,圆锥的底面半径为1,高为√3.再由圆锥的体积公式及表面积公式求解.解:由三视图还原原几何体,可知该几何体为圆锥,该几何体的体积V =13×π×12×√3=√3π3;表面积S =π×12+12×2π×1×2=3π. 故答案为:√3π3;3π.14.在(ax +1x )(x 2﹣1)5的展开式中,x 3的系数为15,则实数a = 5 .【分析】先求得(x 2﹣1)5的展开式的通项公式,再列出含x 3的系数的关于a 的方程,最后求出a .解:∵(x 2﹣1)5的展开式的通项公式为T r +1=C5r (x 2)5﹣r •(﹣1)r =(﹣1)r•C5r x10﹣2r,r =0,1, (5)∴(ax +1x)(x 2﹣1)5的展开式中含x 3的系数为a ×(﹣1)4×C 54+C53•(﹣1)3=5a ﹣10.又∵5a ﹣10=15,∴a =5. 故答案为:5.15.已知单位向量e 1→与e 2→的夹角为π3,若向量e 1→+2e 2→与2e 1→+k e 2→的夹角为5π6,则实数k 的值为 ﹣10 .【分析】根据单位向量的定义与平面向量数量积的运算法则,求解即可. 解:单位向量e 1→与e 2→的夹角为π3,即|e 1→|=|e 2→|=1,e 1→•e 2→=1×1×cos π3=12;又向量e 1→+2e 2→与2e 1→+k e 2→的夹角为5π6,所以(e 1→+2e 2→)•(2e 1→+k e 2→)=|e 1→+2e 2→|×|2e 1→+k e 2→|cos5π6,即2×12+(4+k )×12+2k ×12=√12+4×12+4×12×√4×12+4k ×12+k 2×12×(−√32);8+5k =−√21•√k 2+2k +4; {8+5k ≤0(8+5k)2=21(k 2+2k +4), 解得k =﹣10,所以实数k 的值为﹣10.16.记数列{a n }的前n 项和为S n ,已知a n +a n+1n=cosnπ2−sinnπ2(n ∈N*),且m +S 2019=﹣1009,a 1m >0,则1a 1+9m的最小值为 16 .【分析】通过递推式,可求得S 2019与a 1的关系,结合已知等式m +S 2019=﹣1009,即可求出结论.解:由已知,a 2+a 3=﹣2; a 4+a 5=4;a6+a7=﹣6;⋮a2018+a2019=﹣2018;将上述等式左右分别相加,得S2019﹣a1=﹣2018+1008=﹣1010;将S2019=a1﹣1010代入等式m+S2019=﹣1009,得m+a1=1;∵a1m>0,故都为正数;∴1a1+9m=(1a1+9m)(m+a1)=10+ma1+9a1m≥10+2√ma1⋅9a1m=16;当且仅当m=3a1即m=34,a1=14时等号成立;故答案为:16.三、解答题:共70分,解答题应写出文字说明、证明过程与演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.17.△ABC的内角A,B,C的对边分别为a,b,c,已知c=√3,且满足absinCasinA+bsinB−csinC=√3.(1)求角C的大小;(2)求b+2a的最大值.【分析】(1)根据已知条件,结合正余弦定理可得cosC=12,由此即可求得C;(2)易知b=2sinB=2sin(A+π3),再由三角恒等变换可得b+2a=2√7sin(A+Φ),结合A∈(0,2π3),可知sin(A+ϕ)max=1,由此求得b+2a的最大值.解:(1)由题意及正弦定理可得:abca2+b2−c2=√3,由余弦定理得:a2+b2﹣c2=2ab•cos C,所以cosC=a2+b 2−c22ab=12,又C为△ABC内角,∴C=π3;(2)由正弦定理可得:asinA =bsinB=csinC=2,所以a=2sin A,b=2sin B,又因为A+B+C=π,所以b=2sinB=2sin(A+π3 ),所以b+2a=2sin(A+π3)+4sinA=sinA+√3cosA+4sinA=5sinA+√3cosA=2√7sin(A+ϕ),且tanϕ=√35,又因为A∈(0,2π3 ),所以sin(A+ϕ)max=1,所以b+2a≤2√7,即b+2a的最大值为2√7.18.随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调査,其中一项是调査人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的夭数进行统计,得到以下统计表;平均每月进行训练的天数x x≤55<x<20x≥20人数156025(1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松训练的人平均每月进行训练的天数位于该区间的概率.从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y 的分布列及数学期望E(Y).【分析】(1)记“平均每月进行训练的天数不少于20天”为事件A.求出P(x≥20)= 25100=14,利用独立重复实验的概率求解即可.(2)由题意得:x<20的人:12×34=9;x≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y的可能取值为0,1,2,3,且Y~H(3,3,12),求出概率,得到分布列,然后求解期望即可.解:记“平均每月进行训练的天数不少于20天”为事件A.由表可知P(x≥20)=25 100,所以P(A)=C 42(14)2(1−14)2=27128.(2)由题意得:x <20的人:12×34=9;x ≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y 表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y 的可能取值为0,1,2,3,且Y ~H (3,3,12)P(Y =0)=C 93C 123=84220,P(Y =1)=C 92C 31C 123=108220,P(Y =2)=C 91C 32C 123=27220,P(Y =3)=C 33C123=1220,所以Y 的分布列为: Y 0123P84220108220272201220Y 的分布列及数学期望E(Y)=0×84220+1×108220+2×27220+3×1220=34. 19.如图1,在边长为2的等边△ABC 中,D ,E 分别为边AC ,AB 的中点,将△AED 沿ED 折起,使得AB ⊥AD ,AC ⊥AE ,得到如图2的四棱锥A ﹣BCDE ,连结BD ,CE ,且BD 与CE 交于点H . (1)求证:AH ⊥平面BCDE ; (2)求二面角B ﹣AE ﹣D 的余弦值.【分析】(1)证明AD ⊥CD ,CD ⊥BD ,即可证明CD ⊥平面ABD .推出CD ⊥AH ,同理AH ⊥BE ,即可证明AH ⊥平面BCDE .(2)过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系,求出平面AED 的法向量,平面AEB 的法向量,利用空间向量的数量积求解二面角B ﹣AE ﹣D 的余弦值即可.【解答】(1)证明:由题意,AD =CD =1,BD =CE =√3, 又因为AB ⊥AD ,所以AB =√BD 2−AD 2=√3−1=√2=AC , 所以AC 2=AD 2+CD 2,即AD ⊥CD 又因为CD ⊥BD ,且BD ∩AD =D , 所以CD ⊥平面ABD .所以CD ⊥AH ,同理AH ⊥BE ,CD 与BE 是相交直线,所以AH ⊥平面BCDE . (2)解:如图,过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系所以D (0,0,0),B(√3,0,0),E(√32,−12,0),设点A (a ,0,b )由AD =1,AB =√2得{a 2+b 2=1(a −√3)2+b 2=2,解得:a =√33,b =√63, 所以A(√33,0,√63),所以AE →=(√36,−12,−√63),AB →=(2√33,0,−√63),DA →=(√33,0,√63),设平面AED 的法向量为n 1→=(x 1,y 1,z 1), 所以{AE →⋅n 1→=0DA →⋅n 1→=0⟹{x 1=√3y 1+2√2z 1x 1+√2z 1=0,取z 1=﹣1,得n 1→=(√2,√6,−1),同理可得平面AEB 的法向量n 2→=(1,−√3,√2),所以cos <n 1→,n 2→≥n 1→⋅n 2→|n 1→||n 2→|=−√33,由图可知,所求二面角为钝角,所以二面角B ﹣AE ﹣D 的余弦值为−√33.20.已知⊙M 过点A (√3,0),且与⊙N :(x +√3)2+y 2=16内切,设⊙M 的圆心M 的估轨迹为C ,(1)求轨迹C 的方程;(2)设直线l 不经过点B (2,0)且与曲线C 交于点P ,Q 两点,若直线PB 与直线QB 的斜率之积为−12,判断直线l 是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由.【分析】(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,推出M 的轨迹为椭圆,结合椭圆定义求轨迹C 的方程.(2)当l 的斜率不存在的时,设P (x 0,y 0),所以Q (x 0,﹣y 0),利用斜率乘积以及点在椭圆上,转化求解l 与x 轴的交点为(23,0),当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1,通过判别式推出4k 2>b 2﹣1,结合韦达定理,利用斜率的乘积推出b =−23k ,然后得到直线系方程说明结果距离. 解:(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,设两圆切点为D 所以|MD |+|MN |=|ND |=4,在⊙M 中,|MD |=|MA |所以|MA |+|MN |=4, 所以M 的轨迹为椭圆,由定义可知{2a =4c =√3,所以求轨迹C 的方程为x 24+y 2=1.(2)当l 的斜率不存在的时,设P (x 0,y 0),所以Q (x 0,﹣y 0), 所以{k PB ⋅k QB =y 0x 0−2⋅−yx 0−2=−12x 024+y 02=1,解得{x 0=23y 0=2√33或{x 0=2y 0=0(舍), 所以l 与x 轴的交点为(23,0),当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1消元可得(1+4k 2)x 2+8kbx +4b 2﹣4=0, △=(8kb )2﹣4(1+4k 2)(4b 2﹣4)=64k 2﹣16b 2+16>0, 所以4k 2>b 2﹣1, 由韦达定理x 1+x 2=−8kb1+4k 2;x 1x 2=4b 2−41+4k2,k PB ⋅k QB=y 1x 1−2⋅y 2x 2−2=(kx 1+b)(x 1−2)(kx 2+b)(x 2−2)=k 2x 1x 2+kb(x 1+x 2)+b 2x 1x 2−2(x 1+x 2)+4=k 24b 2−41+4k 2−8k 2b21+4k2+b24b 2−41+4k2−2−8kb1+4k2+4=b 2−4k2(4k+2b)2=(b−2k)(b+2k)4(2k+b)2,又因为2k+b≠0,所以b−2k4(b+2k)=−12,即b=−23k,所以b2−1=(−23k)2−1<4k2,所以b=−23k成立,所以y=kx−23k=k(x−23),当x=23时,y=0,所以l过(23,0)综上所述l过定点,且点坐标为(23,0)21.已知函数f(x)=(x﹣4)e x﹣3+x2﹣6x,g(x)=(a−13)x﹣1﹣lnx.(1)求函数f(x)在(0,+∞)上的单调区间;(2)用max{m,n}表示m,n中的最大值,f′(x)为f(x)的导函数,设函数h(x)=max{f′(x),g(x)},若h(x)≥0在(0,+∞)上恒成立,求实数a的取值范围;(3)证明:1n +1n+1+1n+2+⋯+13n−1+13n>ln3(n∈一、选择题*).【分析】(1)求出导函数,通过f′(x)=0得x=3然后判断函数的单调性求解函数的单调区间即可.(2)通过h(x)=max{f’(x),g(x)}≥0恒成立,令F(x)=1+lnxx,推出a−13≥F(x)max,结合函数的导数求解函数的最大值,求解即可.(3)设m(x)=e x﹣x﹣1(x>0),利用函数的导数推出e x>x+1,然后结合不等式转化求解证明即可.解:(1)因为f(x)=(x﹣4)e x﹣3+x2﹣6x,所以f′(x)=(x﹣3)e x﹣3+2x﹣6=(x﹣3)(e x﹣3+2),令f′(x)=0得x=3当x>3时,f′(x)>0,f(x)单调递增当0<x<3时,f′(x)<0,f(x)单调递减所以f(x)单调递增区间为(3,+∞);f(x)单调递减区间为(0,3).(2)由(1)知f′(x)=(x﹣3)(e x﹣3+2),当x≥3时f’(x)≥0恒成立,故h (x)≥0恒成立当x<3时,f’(x)<0,又因为h(x)=max{f’(x),g(x)}≥0恒成立,所以g(x)≥0在(0,3)上恒成立所以(a−13)x−1−lnx≥0,即a−13≥1+lnxx在(0,3)上恒成立令F(x)=1+lnxx,则a −13≥F(x)max ,F’(x)=1−(lnx+1)x 2=−lnx x2,令F ’(x )=0得x =1,易得F (x )在(0,1)上单增,在[1,3)上单减,所以F (x )max =F (1)=1,所以a −13≥1,即a ≥43综上可得a ≥43, (3)设m (x )=e x ﹣x ﹣1(x >0),则m ′(x )=e x ﹣1>0,所以m (x )在(0,+∞)上单增,所以m (x )>m (0)=0,即e x >x +1 所以e 1n +1n+1+1n+1+⋯+13n =e 1n⋅e1n+1⋅e 1n+2⋯e 13n>n+1n ⋅n+2n+1⋅n+3n+2⋯3n3n−1⋅3n+13n >n+1n ⋅n+2n+1⋅n+3n+2⋯3n3n−1=3,所以1n +1n+1+1n+2+⋯+13n−1+13n>ln3.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+ty =1+2t(t 为参数),曲线C 2的参数方程为{x =√3cosθy =√3tanθ(θ为参数,且θ∈(π2,3π2)).(1)求C 1与C 2的普通方程,(2)若A ,B 分别为C 1与C 2上的动点,求|AB |的最小值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用直线和曲线的位置关系式的应用求出结果.解:(1)由题可得:C 1的普通方程为2x ﹣y ﹣5=0又因为C 2的参数方程为{x =√3cosθy =√3tanθ,两边平方可得{x 2=3cos 2θy 2=3sin 2θcos 2θ,所以C 2的普通方程为x 23−y 23=1,且x ≤−√3.(2)由题意,设C 1的平行直线2x ﹣y +c =0联立{2x −y +c =0x 23−y 23=1消元可得:3x 2+4cx +c 2+3=0所以△=4c 2﹣36=0, 解得c =±3又因为x ≤−√3, 经检验可知c =3时与C 2相切, 所以|AB|min =|3−(−5)|√2+(−1)=8√55.[选修4-5:不等式选讲]23.已知函数f (x )=|3x ﹣6|+|x +a |. (1)当a =1时,解不等式f (x )<3;(2)若不等式f (x )<11﹣4x 对任意x ∈[﹣4,−32]成立,求实数a 的取值范围. 【分析】(1)a =1时,f (x )=|3x ﹣6|+|x +1|,讨论x 的取值范围,去掉绝对值求不等式f (x )<3的解集即可;(2)f (x )=|3x ﹣6|+|x +a |<11﹣4x 对任意x ∈[−4,−32]成立,等价于|x +a |<5﹣x 恒成立,去绝对值,从而求出a 的取值范围.解:(1)a =1时,f (x )=|3x ﹣6|+|x +1|={−4x +5,x <−1−2x +7,−1≤x ≤24x −5,x >2;当x <﹣1时,由f (x )<3得﹣4x +5<3,解得x >12(不合题意,舍去); 当﹣1≤x ≤2时,由f (x )<3得﹣2x +7<3,解得x >2(不合题意,舍去); 当x >2时,由f (x )<3得4x ﹣5<3,解得x <2(不合题意,舍去); 所以不等式f (x )<3的解集∅;(2)由f (x )=|3x ﹣6|+|x +a |<11﹣4x 对任意x ∈[−4,−32]成立, 得﹣(3x ﹣6)+|x +a |<11﹣4x ,即|x +a |<5﹣x , 所以{|x +a|<5−x5−x >0,所以{x −5<x +a x +a <5−x,得a >﹣5且a <5﹣2x 对任意x ∈[−4,−32]成立;即﹣5<a <8,所以a的取值范围是(﹣5,8).。

广州市2020届高中毕业班第一次模拟考试试题及答案(理科数学)

广州市2020届高中毕业班第一次模拟考试试题及答案(理科数学)

2021年广州市普通高中毕业班综合测试〔一〕数学〔理科〕|本试卷共6页,23小题,总分值150分'测试用时120分钟.考前须知:L答卷前,考生务必将自己的姓名和考生号、试空号、座位号填写在做题卡上, 用2B 铅笔在做题管的相应位置填涂考生号,并将试卷类型〔A>填涂在做题卡相应位置上.2 .作答选择题时,选出每题答案后,用2B铅笔在做题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上,3 .非选择西必须用黑色字迹的钢笔或签字第作答,答案必须写在做题卡各膻目指定区域内的相应位置上;如需改动,先划掉原来的答案.然后再写上新答案:不准使用铅笔和涂改液.不按以上要求作答无效.4 .假设生必须保证做题卡的整洁.测试结束后,将试卷和做题卡一并交回.一、选择思:此题共12小题,每题5分,共碉分.在每题给出的四个选项中,只有一项是符合JR目要求的.1 .设集合A/二卜[0<工〔1,工w R} , N = {Xk|<2,jcwR|,那么A. MCN二M氏MCN = N C. MUN 三财D. MUN 三R2 .假设复数k满足方程- + 2=0,那么/=A. ±2>/2B. S C, -2V2 i D. ±242i3 .假设直线区-y + l = 〔〕与网V + y+ 2工一4丁 + 1=0有公共点,那么实数k的取值电图是A. [-3,4-;®〕氏〔一^,7] C. 〔0,9〕 D. 〔f4 .「:卜 + 1]>2I q;2<x<3t那么P 是.的A,充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件5 .设函数/〔" = 2c唔工司,假设对任意XE R都有/〔6/〔小/〔马〕成立,那么£一引的最小值为A. yB.nC. 2nD. 47r6 .直三棱柱的体积为*,假设?,.分别在力4, CG上.且月产二[/4,c〔?=|ccp那么四棱椎日-/尸0c的体积为A. |r B> C. \V D.6 9 3 97.为了让居民『解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由】0位同学组成了四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有出垃圾与其他坨圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,那么每个宣传小蛆至少选派I人的概率为A. / B,卷 C. | D.J14 14 7 7&己知直线/:y = x-2与x轴的交点为抛物线c:/ = 2px的焦点,直线/与物物线C交于力,B两点,那么AB的中点到抛物线C的准线的距离为A. 8 B1 6 C. 5 D. 49,等差数列{口力的前差项和为S“ .q=g, %+%=4,假设£ 3 4q+8〔曾G N"〕, 那么力的最小值为A. 8B. 9C. 10D. 1110.已如点严〔玉,瑞〕是曲线C:y = .d-F + l上的点,曲线.在点P处的切线方程与直线『=8/-11平行,那么A. % = 2B./三一4■BT_ 4 dC,仆=2或仆=一9 D.%二-2或/二年IL .为坐标原点,设双曲线C :m-?=1(口>0,6>0)的左,右焦点分别为可,用,点尸是双曲线C 上位于第一象限上的点,过点与作/月P 6的平分线的垂线,垂 足为/,假设:二|6周一2|.小 那么双曲线c 的离心率为5 4 5 A. = B.三C. D, 2433:‘''假设尸") = /(x)-sin(2021u)-l 在区间[-L1]x -x + 1, x>0,上有M 个零点不,X 2,修,…,X …那么/(*]) + /氏)+ /(/) +…+ /区)=A. 4042 8 4041 C 4040 D. 4039二,填空题:本建共4小题,每题5分,共20分.13 .如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个 几何体的体枳为 14 .在 | 的展开式中,/的系数是15,那么实数15.聃位向量/与电的夹角为I ,假设向量勺+26与2弓+版,的夹角为坐,那么 * 3 6实数k 的值为.16 .记数列血}的项〃项和为叼%J_ = cos 等-si 口詈,wN),且1 9^ + 52021 =-1009,a,m>0t 那么丁 +标的最小值为.以+上x三,解做题:共70分.解容许写出文字说明、证实过程和演算步事.第17〜21题为必考IH, 每个试就考生都必须做答.第22% 23题为选考建,考生根据要求做答,(一)必考鹿工共60分.17.(12分)△1BC的内谢儿B,C的对边分别为*b.匚,e = JL 且满足______ 1云in C_______ _ 百tisinJ + Asin5-c sin C(n求的大小।(2>求5 + 2"的最大值.】8,?12分)随着马拉松运动在全国各地逐渐兴起.参与马拉松练习与比赛的人数逐年增加.为此, 某市对参加马拉松运动的情况进行了统计调查,其中项是网查人员从善与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动练习的大数进行统计,得到以F统计表二(D以这100人平均每月进行练习的天数位F各区间的频率代替该市寥与马拉松练习的人平均每月进行练习的天数位于该区间的概率.从该市所有参4马拉松练习的人中随机抽取4个人,求恰好有2个人是“平均每月进行练习的天数不少于20天〞的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个.丫表示抽取的是“平均每月进行练习的天数不少于20天〞的人数,求卜的分布列及数学期望E(y).19. 〔12 分〕如图1,在边长为2的等边△ABC中,D,E分别为边力C, 48的中点.将△ 沿0E折起,使得/8J./1.,4C14E ,得到如图2的四棱锥力-BCQE,连结BD, CE,且BD与CE交于点H.(1)求证:/f4_L 平面8CQE;(2)求二面角8-/lE-Q的余弦值.A图1 图220. (12 分)0M过点彳(石,0),且与ON:卜+6丫+产=16内切,设OM的圆心M 的轨迹为曲线C.(1)求曲线.的方程:(2)设真线/不经过点8(2,0)且与曲线C相交于尸,.两点.假设直线P8与直线.8 的斜率之积为-;,判断直线/是否过定点,假设过定点,求出此定点坐标;假设不过定点♦请说明理由.21. 〔12 分〕函数/(x) = (x_4)e ,3+£_6X , g(x)= a--jx-1-lnx.(1)求函数/(X )在(O,+8)上的单调区间;(2)用max {九〃}表.示m , 〃中的最大值,f'(x)为/(x)的导数.设函数A(x) = max(//(x),g(x)},假设人(力?0在区间(0,*o)上恒成立,求实数.的取值范围:(3) 证实: —+ —-—+--—+ ••• + ----- +—> ln3(w G N ).n 〃 + 1 〃 + 2 3〃-1 3n '(-)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,那么按所做 的第一题计分.22.[选修4 - 4:坐标系与参数方程](10分)(x = 3 + /,八在平面直角坐标系9中,曲线G 的参数方程为二]蚀('为参数),曲线G 的(1)求曲线G 和G 的普通方程:(2)假设力,8分别为曲线c ,G 上的动点,求|力同的最小值.23.[选修4 - 5:不等式选讲](10分)函数/卜)=|3X 一6| +卜一4|, aeR. (1)当Q = 1时,解不等式/(切〈3:一 — 3(2)假设不等式/(x)<U-4x 对任意xw -4,--成立,求实数.的取值范围.参数方程为嬴万'(6为参数,且 y = tan 62021年广州市普通高中毕业班综合测试〔一〕理科数学试题答案及评分参考评分说明:1 .本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主 要考查内容比照评分参考制订相应的评分细那么.2 .对计算题,当考生的解答在某一步出现错误时,如果后继局部的解答未改变该题的内容 和难度,可视影响的程度决定后继局部的给分,但不得超过该局部正确解容许得分数的一半;如 果后继局部的解答有较严重的错误,就不再给分.3 .解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题二、填空题3_ _ “ 13 .3 14. 515. 1016. 16说明:第13题中第1个空2分,第二个空3分.三、解做题由于0 c ,所以C — .3⑵由与〔1〕知c 5C -. 3由正弦定理 一a--b — —2,sin A sin B sin C -sin绝密★启用前17.解:〔1〕根据正弦定理a sin Ab sin Bc sin C得,技由于c 、. 3 ,所以ab由余弦定理, 得 cosC2 2 a b2,2a b2ab2c 2c【或ab a 2 b 2 3】.1.一【或cosC2a 2b 2 3 2ab分布,Y 的所有可能的取值为0, 1, 3.C 0C 3 C 3221一,P Y 55c 3c 2 C 3227 55 ' P Y 2幽 I I UQC1227 -、/ ---- ,P Y 220C 3c 9C 21 220得 a 2sinA, b 2sin B 2sin22a 2sin ——A 4sin A3由于018.解:(1)设从该市参与马拉松运动练习的人中随机抽取一个人,抽到的人刚好是“平均每 月进行练习的天数不少于 20天〞记为事件为 A,25 1那么P A 旦1100 4设抽到的人是“平均每月进行练习的天数不少于20天〞的人数为所以恰好抽到2个人是“平均每月进行练习的天数不少于20天〞的概率为100个马拉松练习者中抽取12个,那么其中“平均每月进行练习的 天数不少于20天〞有3个.现从这12人中抽取3个,那么“平均每月进行练习的天数不少于 20天〞的数量Y 服从超几何所以Y 的分布列如下:所以b 5sin A3 cos A2.7sin A+ 〔其中tan所以A=—时,b22a 2.7 sin A+取得最大值2币.所以b 2a 的最大值为 2".22P 2c2 〞27 128(2)用分层抽样的方法从所以BD AC .在△ BCD 中,BD CD, BC 2, CD 1 ,所以 BD 邪.由于D,E 分别为边AC, AB 的中点,所以ED//BC .DH ED 11 3 在图2中,有—————,所以DH -BD —.HB BC 233由于AB AD ,所以△ ABD 为直角三角形• 由于AD 1, BD 石,所以cos ADB 处 —. BD 3在^ ADH 中,由余弦定理得AH 2 AD 2 DH 2 2AD DH cos ADB 1 1 2 1 -3 -3 -3 3 3 3所以AH 二6. 3. .一 . 〃 o 2 1 o在4ADH 中,由于 AH 2 DH 2 - - 1 AD 2, 3 3 所以AH BD - 同理可证AH CE.由于 CEI BD H , CE 平面 BCDE, BD 平面 BCDE , 所以AH 平面BCDE.证实2:在图1中,由于△ ABC 为等边三角形,且 D 为边AC 的中点, 所以BD AC .在△ BCD 中,BD CD , BC 2, CD 1 ,所以 BD B 由于D,E 分别为边AC, AB 的中点,所以ED//BC .在图2中,有也里二,所以DH 1 BD —. HB BC 23 3在 Rt BAD 中,BD 向,AD 1 , 在4 8庆口和4 AHD 中,由于DB 卫A J3, BDA ADH 所以△ BAD : △ AHD .c 21 / 27- 27 c 1 165 3 E Y0 1—— 23 -55 55 220 220 220 4所以19. (1)证实1:在图1中由于△ ABC 为等边三角形,且 D 为边AC 的中点, DA DH所以 AHD BAD 900 . 所以AH BD - 同理可证AH CE .由于 CEI BD H , CE 平面 BCDE, BD 平面 BCDE , 所以AH 平面BCDE .(2)解法1:以E 为原点,EB 所在直线为x 轴,EC 所在直线为y 轴,平行于AH 的直线为由图可知,二面角B AE D 的平面角是钝角, 故二面角B AE D 的余弦值为 —.3解法2:在四棱锥A BCDE 中,分别取AE , 的中点M , N ,连接DM ,MN , ND .由于△ ADE 为等边三角形,所以 DM AE, 由于 BEEC , BE AH , CE I AH H且CE, AH 平面AEC ,所以BE 平面AEC .轴,建立如下图的空间直角坐标系 E xyz,那么 B 1,0,0 , C 0, , 3,0 ur n EA uuuEB 1,0,0unr i uuur ED — BC2设平面ABE 的法向量为m (x 1,y 1,z 1),uur 、3 、6 皿 mgEA — y 1 -64 0,仃 那么 3 3取uuumgEB X 1 0,m 0,拒,1 . 设平面ADE 的法向量为n (x 2, y 2, z 2), unr n EA 那么 uuur n ED 、3Ty 2 Z21 2x 20, 取n 0,.6, .2, 1所以cos m, nm n 3、3m||n| 3 733AB由于AE 平面AEC ,所以BE AE .由于点M , N 分别为边AE, AB 的中点, 所以 NM //BE . 所以NM AE .所以 DMN 为所求二面角的平面角11在△ ABE 中,MN -EB -.2 2在 Rt^ABD 中,AD 1, BD J3 ,所以 AB所以 DN . AN 2 AD 2 , ; 1在△ DMN 中,由余弦定理得近2 1222 2 2cos DMN --------------------- -- ------------3 12 ------ -2 220. (1)解:设e M 的半径为R,由于eM 过点A J3,0R MA , 所以 即MN MA 4 . MN 4 R,由于NA 4,所以点M 的轨迹是以N , A 为焦点的椭圆.22设椭圆的方程为今1a b那么 2a 4,且 c Ja 2 b 2 依,所以 a 2 , b 1 .2所以曲线C 的方程为—y 2 1.4(2)解法1:依题意,直线BP,BQ 的斜率均存在且不为0, 设直线BP 的斜率为k k 0 ,那么直线BP 的方程为y k x 2y k x 2 , 由 Y 2得 1 4k 2 x 2 16k 2x 16k 2 4 0,x 27 y 1,…/日8 8k 2 2斛之得x 1 2 , x 22 .1 4k 2在等边三角形 ADE 中,由于AD 1,所以DM,3、.3所以二面角B AE D 的余弦值为-- 3 3且与e N 相切,因此点P 的坐标为 8k 2 2 4k 4k 2’1 4k 2由于直线BQ 的斜率为 工--------------- )2k 所以可得点Q 的坐标为2 2k 2 1 k 2 2k ,1 k 2当k Y2时,直线l 的斜率为 2 3k -2?所以直线 l 的方程为 2k"73k22 1 2k 22 2k 2 k 2,整理得y 3k 此时直线------- ^x2 1 2k 2-2 , 1 2k 3k__ 22 1 2k 2l 过定点2,o . 3 当k ,2时,直线l 的方程为x 2显然过定点3,0综上所述,直线l 过定点 2,0 .3解法2:当直线l 的斜率不存在时,设直线 l 的方程为:设点 P X i ,必 Q X i , y i,依题意X i由于 k BP k BQ y 1 K 2y 1 x 1 22 y1x ; 4x 1 4所以 2 x 1 4x 1由于x 2 4 此时直线 l 的方程为x 当直线l 的斜率存在时, 设直线 l 的方程为: kxy 由x 2 kx m, 得1 4k2 8kmx 0.需要满足 28km 164k 210,即 2 2m 4k设点P x 1,y,Q x21 y 2那么有x x 2,x〔x 24k 2 1由于 y 1 kx 1 m, y 2 kx 2 m ,. ......... 2 ...显然直线X -也过点321. (1)解:由于 f x x 4 e x3 x 2 6x,所以 f x x 3 e x 3 2x 6 x 3 e x 3 2 . 当 0 x 3时,f x 0 ,当 x 3 时,f x 0 ,所以函数f x 在0,3上单调递减,在 3, 上单调递增, 所以函数f x 的单调递减区间为 0,3 ,单调递增区间为 3,.(2)解:由(1)可知,当x 3, 时,f x 0 .所以要使h x0在区间0, 上恒成立,只需g x 0在区间0,3上恒成立即可.1由于 g x 0 a x 1 ln x 0.3以下给出四种求解思路:1 思路1:由于x 0,所以a 1x 1 lnx 0在区间0,3上怛成立,3所以 y i y 2kx 1 m kx 2 m m 2 4k 2 4k 2 1由于 k BPkBQy 1 X 2 y 2 X 2y i y 2x 1x 2 2 x 1 x 2 4所以 X 1X 2X 1 X 22y 1y 2 -16km 4k 2 14k 22 m 2 4k 24k 2 1即3m 2 8km 4k 2 0.所以m,或m 32. 一—k 时,满足 3 4k 21 ,直线l 的方程为2 2 x -,怛过定点 -,0 .3 32k 时,满足4k 2 1 ,直线l 的方程为yk x 2 ,恒过定点2,0 ,不合题综上所述,直线l 过定点I ,0所以函数g x 在0,」一 上单调递减,在 二一,3上单调递增. 3a 1 3a 1一一 3 3 . 3.4所以g x g 」一 1n 」一,由1n 一一0 ,解得a -. 3a 1 3a 13a 1 3. ........................... 4 此时实数a 满足a -.3综上所述,实数a 的取值范围为 4,.3转化为a 1Jnl 1在区间0,3上恒成立. x 3 人 1 ln x 1ln x令 m x ................ —,那么 m x—2- . x 3x由于当x 0,1时,m x 0 ,当x 1,3时,m x 0 . 所以m x 在0,1上单调递增,在1,3上单调递减.4 一 4所以m x m 1—.所以a 一 . 3 3所以实数a 的取值范围为 4, .31 ..思路2:由于g x a - x 1 lnx, 3贝1J g x113a 1 x 3a —— ------------------- 0x33 x 3x- 1 _ ①右a 一,那么g x3 y0在0,3上恒成立,所以g x 在0,3上单调递减, 1所以 g x g 3 a - 311n 3,由 g33此时实数a 不合题意.2 1n330在0,3上恒成立,所以g x 在0,3上单调递减, 所以g x g 31 2 In 3a 13 11n 3 ,由g 30 ,解得a 幺』2 333此时实数a 不合题意.23一,③假设a —,那么当0 x ——时,g x3 3a 1 3 一,0,当 ------- x 3 时,g x 0 .3a 1那么 g 1 a 11 0 即 a 4.33… 11, 、,…由于g x a -—在0,3上单调递增,3 x1 1.所以存在x 0 0,3 ,使行g x °a —— 0.3x 0当 x 0,x 0 时,g x 0 0,当 x x 0,3 是,g x 0 0.所以函数g x 在0,x 0上单调递减,在 x 0,3上单调递增. 1 In a 3一― 1 -r 4 只要ln a -0 ,解得a -.33所以实数a 的取值范围为 4, 3.......1转化为a - x 1 lnx 在区间0,3上怛成立. 31 ― 一令 s x 1 ln x ,那么 s x — 0, x 0,3 x所以s x 在0,3上单调递增.一 1 .................... 而y a - x 是经过原点的直线, 3设过原点的直线与s x 1 lnx 相切于点 %,y 0 ,- .............................. 1 那么切线方程为y y 0 x x 0 ,x …1由于y y 0 — x x 0过原点,所以y 0 1. x .由于1 ln x0在0,3上恒成立,【或x 0时,g所以 要使In x 0 在 0,3 上恒成立,思路4: 由于x 0,所以1 In x 0在区间 0,3上恒成立,所以经过原点且与s x 1 lnx相切的直线方程为y x.所以满足 1 lnx的条件是a所以实数a的取值范围为4 3,(3)证实1: 由〔2〕可知,当ln x 1 .即In x In同理所以所以证实2:1 即证e nInIn3n3n 1ln —3n,, 1要证1n_L L n23n 113n3n13n3nIn3n 1In ln3.In 3.3n1 即证e n ge11 n 2ge g- ge3n1ge3n先证实e x 事实上,设所以所以所以所以时,在0, 上单调递增.0,所以e xe n ge n1ge ng-1 13n 1 3nge ge1+1n3n 1 3n22.解:〔1〕由于曲线C1的参数方程为1+-n1+13n 13n 3n 1 3n In 3.t,2t3n 1 3n〔t为参数〕,所以曲线C1的方程为2x y 5 0.x .由于曲线C2的参数方程为X cos ,(为参数),y \ 3 tan那么由x ,得cos --,代入y J3tan 得sin —, cos xx消去参数,得x2 y2 3 .由于—,——,所以x 0 .2 2所以曲线C2的方程为x2 y2 3 x 0(2)由于点A, B分别为曲线C1, C2上的动点,设直线2x y b 0与曲线C2相切,,2x y b 0,..…2 2由 2 2消去y得3x 4bx b 3 0.x y 3,2所以4b 4 3 b23 0 ,解得b 3.由于x 0 ,所以b 3 .3 0间的距离为:由于直线2x y 5 0与2x,3 5 875d 1= ---------- ..,2212 5所以AB的最小值随.523. (1)解:由于a 1 ,所以f(x) 3x 2 x 1 .当x 1时,由f(x) 7 4x 3,解得x 1,此时x .当1 x 2时,f (x) 5 2x 3,解得x 1 ,此时1 x 2.5 5当x 2 时,f (x) 4x 7 3,解得x 5 ,此时2 x 5 . 2 25综上可知,1x5.25 所以不等式的解集为1,£ .(2)解法1:由f(x) 11 4x,得3 x 2 x a 11 4x,一. 3 —.由于x 4, 一,所以x a 5 x .2 2所以x5xa5x【或xa 5x1.3 .由于当 x 4,-时,2x 5 max 8 . 2 max所以实数a 的取值范围为8,5 .解法2:由 f(x) 11 4x,得 3|x 2 x 由于x 4, 3 ,所以|x a | 5 x . 2 问题转化为x a 5 x 对任意的x 4, 分别作出函数y x 5与函数y x a 像,如下图,____ 3要使x a 5 x 对任息的x 4 — ,2 立,一 3 一,一一 一那么当x 4, 3时,函数y x 5的2在函数y x a|的图像的上方.“一 3所以当x 4, 3时,需要满足2 a x 5 x 且 x a 5 x.3.由于当 x 4,-时,2x 5 max 8 . 2 max所以实数a 的取值范围为8,51 .. 一思路3:由于gx a - x 1 1nx,那么g x33 问题转化为x a 5 x 对任意的x 4, 3 *怛成立,2a 11 4x ,3卜一怛成立, 2。

2020年广东一模理科数学(试题和答案)

2020年广东一模理科数学(试题和答案)

C.13 ,4, 5 罗 6f
D. 11 ,2 ,3f
2. 复数 z = 43一-+一43~ii (i为虚数单位)的虚部为
A. -1

B. 2
C. 5
D. 1
3. 若元 , y 满足约束条件!rlx-yl~1 丁u z = 2元 +y 的最大值为 l I 川~ 2 ,
A. 一 7
B.3
C.5
D. 7
点个数是
A. 0 个
B. 1 个
C. 2 个
D. 3 个或以上
6.
… 某广场设置了一些石凳子供大家休息?这些石凳子是由
中点截去八
个一样的正三棱锥后得到的.如果被截正方体的棱长为 40 cm ,则石凳子的体积为
A 7 cm
B 160000 .一王一 cm
C. -16000
3
D. 但旦旦 3
7. 在某市 2020 年 1 月份的高三质量检测考试中 9 理科学生的数学成绩服从正态分布
一、选择题:本题共 12
5 分冒共 60
有一项是符合题自要求的。
1.已知集合 A , B 均为全集 u = 11 , 2 , 3 , 4 , 5 , 6 , 7f 的子集?集合 A = 11 ,2 ,3
满足 A n CuB = 11 , 21 的集合 B 可以是
A.l1 ,220 = 0 平行?则 m =
14. 已知数列问J 的前 n 项和为 Sn , 且 αl=1 , αn+l = 2叭,若数列 i bn f 满足 bn • Sn = 1,
贝。占 1 止+一1一ι++ 二一 1 一+…+ b' r1~+→1=

【免费下载】广州一模理科数学试题以及解答Word精美版

【免费下载】广州一模理科数学试题以及解答Word精美版
试卷类型:A
2012 年广州市普通高中毕业班综合测试(一)
数学(理科)
2012.3
本试卷共 4 页,21 小题, 满分 150 分.考试用时 120 分钟.
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写 在答题卡上。用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
18.(本小题满分14分)
如图 5 所示,在三棱锥 P ABC 中, AB BC 6 ,平面 PAC 平面 ABC , PD AC 于点
D , AD 1 , CD 3 , PD 3 .
(1)证明△ PBC 为直角三角形; (2)求直线 AP 与平面 PBC 所成角的正弦值.
已知甲、乙两个小组的数学成绩的平均分相同.
(1)求 a 的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学
成绩之差的绝对值为 X ,求随机变量 X 的分布列和均值(数学期望).
(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.)
,求

cos
A.充分非必要条件 C.充要条件
6.已知两个非零向量 a 与 b ,定义 a b a b sin ,其中 为 a 与 b 的夹角.若 a = 3, 4,
b = 0, 2,则 a b 的值为
A. 8
B. 6
7.在△ ABC 中, ABC 60 , AB 2 , BC 6 ,在 BC 上任取一点 D ,使△ ABD 为钝角三角形
则实数 a 的取值范围为 .
13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用

2020年广东省高考数学一模试卷(理科) (解析版)

2020年广东省高考数学一模试卷(理科) (解析版)

2020年高考数学一模试卷(理科)一、选择题(共12小题)1.已知集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4},则满足A ∩∁U B ={1,2}的集合B 可以是( ) A .{1,2,3,4} B .{1,2,7}C .{3,4,5,6}D .{1,2,3}2.复数z =4+3i3−4i(i 为虚数单位)的虚部为( ) A .﹣1B .2C .5D .13.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为( )A .﹣7B .3C .5D .74.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (0<t ≤2)左侧的图形的面积为f (t ),则y =f (t )的大致图象为( )A .B .C .D .5.将函数f (x )=cos (2x ﹣1)的图象向左平移1个单位长度,所得函数在[0,12]的零点个数是( ) A .0个B .1个C .2个D .3个或以上6.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( )A.1920003cm3B.1600003cm3C.160003cm3D.640003cm37.在某市2020年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N(98,100),已知参加本次考试的全市理科学生约有9450人,如果某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第()附:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544A.1500名B.1700名C.4500名D.8000名8.已知(1+xm)n=a0+a1x+a2x2+⋯+a n x n,若a1=3,a2=4,则m=()A.1B.3C.2D.49.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,且∠PAQ=5π6,则该双曲线的离心率为()A.√2B.√3C.√213D.√1310.设正项数列{a n}的前n项和为S n,且满足2√S n=a n+1,则数列{a n﹣7}的前n项和T n的最小值为()A.−494B.−72C.72D.﹣1211.已知三棱锥P﹣ABC满足PA=PB=PC=AB=2,AC⊥BC,则该三棱锥外接球的体积为()A.3227√3πB.323πC.329√3πD.163π12.已知f(x)是定义在(−π2,π2)上的奇函数,f(1)=0,且当x∈(0,π2)时,f(x)+f′(x)tan x>0,则不等式f(x)<0的解集为()A.(﹣1,0)∪(1,π2)B.(﹣1,0)∪(0,1)C.(−π2,﹣1)∪(1,π2)D.(−π2,﹣1)∪(0,1)二、填空题(共4小题,每小题5分,满分20分)13.设函数f(x)=mx2lnx,若曲线y=f(x)在点(e,f(e))处的切线与直线ex+y+2020=0平行,则m = .14.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2a n ,若数列{b n }满足b n •S n =1,则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10= .15.已知A (3,0),B (0,1),C (﹣1,2),若点P 满足|AP →|=1,则|OB →+OC →+OP →|最大值为 .16.已知抛物线C :x 2=4y 的焦点为F ,直线l 过点F 且倾斜角为5π6.若直线l 与抛物线C在第二象限的交点为A ,过点A 作AM 垂直于抛物线C 的准线,垂足为M ,则△AMF 外接圆上的点到直线2√2x ﹣y ﹣3=0的距离的最小值为 . 三、解答题(共5小题,满分60分)17.在△ABC 中,内角A ,B ,C 满足√3sin(B +C)=2sin 2A2. (1)求内角A 的大小;(2)若AB =5,BC =7,求BC 边上的高.18.如图,已知正三棱柱ABC ﹣A 1B 1C 1,D 是AB 的中点,E 是C 1C 的中点,且AB =1,AA 1=2.(1)证明:CD ∥平面A 1EB ; (2)求二面角B ﹣A 1E ﹣D 的余弦值.19.已知椭圆C :x 24+y 22=1,A ,B 分别为椭圆长轴的左右端点,M 为直线x =2上异于点B 的任意一点,连接AM 交椭圆于P 点. (1)求证:OP →⋅OM →为定值;(2)是否存在x 轴上的定点Q 使得以MP 为直径的圆恒通过MQ 与BP 的交点. 20.已知函数f (x )=e x +(m ﹣e )x ﹣mx 2.(1)当m=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数m的取值范围.21.一支担负勘探任务的队伍有若干个勘探小组和两类勘探人员,甲类人员应用某种新型勘探技术的精准率为0.6,乙类人员应用这种勘探技术的精准率为a(0<a<0.4).每个勘探小组配备1名甲类人员与2名乙类人员,假设在执行任务中每位人员均有一次应用这种技术的机会且互不影响,记在执行任务中每个勘探小组能精准应用这种新型技术的人员数量为ξ.(1)证明:在ξ各个取值对应的概率中,概率P(ξ=1)的值最大.(2)在特殊的勘探任务中,每次只能派一个勘探小组出发,工作时间不超过半小时,如果半小时内无法完成任务,则重新派另一组出发.现在有三个勘探小组A i(i=1,2,3)可派出,若小组A i能完成特殊任务的概率t;t i=P(ξ=i)(i=1,2,3),且各个小组能否完成任务相互独立.试分析以怎样的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.已知集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4},则满足A ∩∁U B ={1,2}的集合B 可以是( ) A .{1,2,3,4}B .{1,2,7}C .{3,4,5,6}D .{1,2,3}【分析】根据题意得出1,2∉B ,即可判断结论.解:∵集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4}, 要满足A ∩∁U B ={1,2}; 则1,2∉B ,故符合条件的选项为C . 故选:C . 2.复数z =4+3i3−4i(i 为虚数单位)的虚部为( ) A .﹣1B .2C .5D .1【分析】利用复数的运算法则即可得出. 解:∵z =4+3i3−4i =(4+3i)(3+4i)(3−4i)(3+4i)=25i25=i , ∴复数z =4+3i3−4i 的虚部是1, 故选:D .3.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为( )A .﹣7B .3C .5D .7【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解:画出x ,y 满足约束条件{|x −y|≤1|x|≤2,可行域如图阴影部分:由{x =2x −y =−1,得A (2,3), 目标函数z =2x +y 可看做斜率为﹣2的动直线,其纵截距越大,z 越大, 由图数形结合可得当动直线过点A 时,z 最大=2×2+3=7. 故选:D .4.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t≤2)左侧的图形的面积为f(t),则y=f(t)的大致图象为()A.B.C.D.【分析】根据面积的变换趋势与t的关系进行判断即可.解:当0<x<1时,函数的面积递增,且递增速度越来越快,此时,CD,不合适,当1≤x≤2时,函数的面积任然递增,且递增速度逐渐变慢,排除A,故选:B.5.将函数f(x)=cos(2x﹣1)的图象向左平移1个单位长度,所得函数在[0,12]的零点个数是()A.0个B.1个C.2个D.3个或以上【分析】先根据平移法则求出平移后的图象解析式,再根据零点定义即可求出.【解答】解;设函数f(x)=cos(2x﹣1)的图象向左平移1个单位长度,所得函数为g (x ),∴g (x )=f (x +1)=cos (2x +1) 令t =2x +1,x ∈[0,12],∴t ∈[1,2]由g (x )=0,所以2x +1=π2,方程只有一个解. 故选:B .6.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( ) A .1920003cm 3B .1600003cm 3C .160003cm 3D .640003cm 3【分析】由正方体的体积减去八个正三棱锥的体积求解. 解:如图,正方体AC 1 的棱长为40cm ,则截去的一个正三棱锥的体积为13×12×20×20×20=40003cm 3.又正方体的体积为V =40×40×40=64000cm 3, ∴石凳子的体积为64000−8×40003=1600003cm 3, 故选:B .7.在某市2020年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100),已知参加本次考试的全市理科学生约有9450人,如果某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第( )附:若X ~N (μ,σ2),则P (μ﹣σ<X <μ+σ)=0.6826,P (μ﹣2σ<X <μ+2σ)=0.9544 A .1500名B .1700名C .4500名D .8000名【分析】将正态总体向标准正态总体的转化,求出概率,即可得到结论. 解:∵考试的成绩ξ服从正态分布N (98,100).∵μ=98,σ=10, ∴P (ξ≥108)=1﹣P (ξ<108)=1﹣Φ(108−9810)=1﹣Φ(1)≈0.158 7,即数学成绩优秀高于108分的学生占总人数的15.87%. ∴9450×15.87%≈1500 故选:A .8.已知(1+xm )n =a 0+a 1x +a 2x 2+⋯+a n x n ,若a 1=3,a 2=4,则m =( ) A .1B .3C .2D .4【分析】根据通项求出第二、三项的系数,列方程组求出m 的值. 解:二项式展开式的通项为:T k+1=1m k C nk x k . 当k =1,2时,可得{a 1=1m C n 1=3a 2=1m2C n 2=4,解得n =9,m =3. 故选:B .9.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,且∠PAQ =5π6,则该双曲线的离心率为( ) A .√2B .√3C .√213D .√13【分析】由题意画出图形,联立双曲线渐近线方程与圆的方程,可得P ,Q 的坐标,得到∠F 2AQ =π3,则tan π3=b 2a=√3,结合隐含条件即可求得双曲线的离心率.解:如图,设双曲线的一条渐近线方程为y =bax ,联立{y =ba xx 2+y 2=c2,解得x P =﹣a ,x Q =a ,∴Q (a ,b ),且AP ⊥x 轴,∵∠PAQ =5π6,∴∠F 2AQ =π3,则tanπ3=b 2a=√3,则b 2=c 2﹣a 2=12a 2,得e 2=13,即e =√13. 故选:D .10.设正项数列{a n }的前n 项和为S n ,且满足2√S n =a n +1,则数列{a n ﹣7}的前n 项和T n 的最小值为( ) A .−494B .−72C .72D .﹣12【分析】根据a n =S n ﹣S n ﹣1求得数列{a n }的通项公式,则可以推出a n ﹣7=2n ﹣8,通过分组求和法求得数列{a n ﹣7}的前n 项和T n ,通过二次函数的最值求得T n 的最小值. 解:2√S n =a n +1, ∴S n =(a n +12)2,S n−1=(a n−1+12)2, a n =S n ﹣S n ﹣1=a n 2+2a n −a n−12−2a n−14,化简得:2(a n +a n ﹣1)=a n 2−a n−12,正项数列{a n }中,a n ﹣a n ﹣1=2. n =1时,2√S 1=a 1+1, ∴a 1=1.∴数列{a n }是以1为首项,2为公差的等差数列. a n =1+2×(n ﹣1)=2n ﹣1. a n ﹣7=2n ﹣8,T n =2×1﹣8+2×2﹣8+2×3﹣8+…+2n ﹣8 =2×n(n+1)2−8n =n 2﹣7n =(n −72)2−494, ∵n ∈N *,n =3或n =4时,T n 的最小值为﹣12. 故选:D .11.已知三棱锥P ﹣ABC 满足PA =PB =PC =AB =2,AC ⊥BC ,则该三棱锥外接球的体积为()A.3227√3πB.323πC.329√3πD.163π【分析】因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,再由PA=PB =PC可得球心O在直线PD所在的直线上,设为O,然后在直角三角形中有勾股定理可得外接球的半径,进而求出外接球的体积.解:因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,可得外接圆的半径为r=12AB=1,再由PA=PB=PC=AB=2可得PD⊥面ABC,可得PD=√PA2−AD2=√4−1=√3,可得球心O在直线PD所在的直线上,设外接球的半径为R,取OP=OA=R,在△OAD中,R2=r2+(PD﹣R)2,即R2=1+(√3−R)2,解得:R=√3=2√33,所以外接球的体积V=4π3R3=32√327π,故选:A.12.已知f(x)是定义在(−π2,π2)上的奇函数,f(1)=0,且当x∈(0,π2)时,f(x)+f′(x)tan x>0,则不等式f(x)<0的解集为()A.(﹣1,0)∪(1,π2)B.(﹣1,0)∪(0,1)C.(−π2,﹣1)∪(1,π2)D.(−π2,﹣1)∪(0,1)【分析】令g(x)=f(x)sin x,g′(x)=[f(x)+f′(x)tan x]•cos x,当x∈(0,π2)时,根据f(x)+f′(x)tan x>0,可得函数g(x)单调递增.又g(1)=0,可得x∈(0,1)时,g(x)=f(x)sin x<0,sin x<0,解得f(x)<0.x=0时,f(0)=0,舍去.根据f(x)是定义在(−π2,π2)上的奇函数,可得g(x)是定义在(−π2,π2)上的偶函数.进而得出不等式f (x )<0的解集.解:令g (x )=f (x )sin x ,g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]•cos x ,当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (1)=0,∴x ∈(0,1)时,g (x )=f (x )sin x <0,sin x <0,解得f (x )<0. x =0时,f (0)=0,舍去.∵f (x )是定义在(−π2,π2)上的奇函数,∴g (x )是定义在(−π2,π2)上的偶函数.∴不等式f (x )<0的解集为(﹣1,0)∪(0,1). 故选:B .二、填空题(共4小题,每小题5分,满分20分)13.设函数f (x )=mx 2lnx ,若曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,则m = −13.【分析】求出f (x )的导数,然后根据切线与直线ex +y +2020=0平行,得f ′(e )=﹣e ,列出关于m 的方程,解出m 的值. 解:f ′(x )=m (2xlnx +x ),又曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行, ∴f ′(e )=3em =﹣e ,解得m =−13. 故答案为:−13.14.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=2a n ,若数列{b n }满足b n •S n =1,则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10= 2046 .【分析】数列{a n }的前n 项和为S n ,a 1=1,a n +1=2a n ,利用求和公式:S n .由数列{b n }满足b n •S n =1,可得b n =1S n.进而得出b n +1b n,再利用等比数列的求和公式即可得出.解:数列{a n }的前n 项和为S n ,a 1=1,a n +1=2a n ,∴S n =2n−12−1=2n ﹣1.若数列{b n }满足b n •S n =1,∴b n =1S n=12n−1. ∴b n +1b n=2n .则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10=2+22+……+210=2(210−1)2−1=211﹣2=2046.故答案为:2046.15.已知A (3,0),B (0,1),C (﹣1,2),若点P 满足|AP →|=1,则|OB →+OC →+OP →|最大值为 √13+1 .【分析】根据|AP →|=1,易知P 点在以A (3,0)为圆心,1为半径的圆上,设P (3+cos θ,sin θ),通过坐标表示出OB →+OC →+OP →,再根据模长公式求解.解:由题,点P 满足|AP →|=1,说明P 点在以A (3,0)为圆心,1为半径的圆上, 设P (3+cos θ,sin θ),则OB →+OC →+OP →=(2+cos θ,3+sin θ),∴||=√(2+cosθ)2+(3+sinθ)2=√14+2√13sin(θ+φ)(tan φ=23),根据三角函数的值域,可知|OB →+OC →+OP →|最大值为√13+1. 故答案为:√13+1.16.已知抛物线C :x 2=4y 的焦点为F ,直线l 过点F 且倾斜角为5π6.若直线l 与抛物线C在第二象限的交点为A ,过点A 作AM 垂直于抛物线C 的准线,垂足为M ,则△AMF 外接圆上的点到直线2√2x ﹣y ﹣3=0的距离的最小值为√23.【分析】由抛物线的方程可得焦点F 的坐标,由题意求出直线l 的方程,代入抛物线的方程求出A ,B 的坐标,由题意求出M 的坐标,求出线段AF 的中垂线,及AM 的中垂线,两条直线的交点为三角形AMF 的外接圆的圆心,及半径,求出圆心到直线√2x −y ﹣3=0的距离d ,则可得圆上到直线的最小距离为d ﹣r . 解:由抛物线的方程可得焦点F (0,1),准线方程y =﹣1, 因为直线l 过点F 且倾斜角为5π6,则直线l 的方程为:y =−√33x +1,直线与抛物线联立{y =−√33x +1x 2=4y,整理可得x 2+4√33x ﹣4=0,解得x 1=2√3,x 2=6√3,可得y 1=13,y 2=3, 即A (√3,3),由题意可得M (√3,﹣1),可得△ABF 的外接圆的圆心N 直线线段AM 的中垂线上,y =1上,又在线段AF 的中垂线上,而AF 的中点(−√3,2),y ﹣2=√3(x +√3)即y =√3x +5, 联立{y =1y =√3x +5解得:N (√3,1),所以圆心坐标为(√3,1),半径r =4√33,圆心到直线的距离d =|−4√2√3−1−3|√3=4√23+4√33,所以外接圆上的点到直线的距离√2x ﹣y ﹣3=0的最小距离为d ﹣r =4√23,故答案为:4√23.三、解答题(共5小题,满分60分)17.在△ABC 中,内角A ,B ,C 满足√3sin(B +C)=2sin 2A 2. (1)求内角A 的大小;(2)若AB =5,BC =7,求BC 边上的高.【分析】(1)直接利用三角函数关系式的恒等变换和三角函数的值的应用求出结果. (2)利用余弦定理和三角形的面积公式的应用求出结果.解:(1)在△ABC 中,sin (B +C )=sin A ,内角A ,B ,C 满足√3sin(B +C)=2sin 2A 2. 所以√3sinA =1−cosA ,则:sin(A +π6)=12,由于A ∈(0,π),所以A +π6∈(π6,7π6), 则:A =2π3.(2)由于A =2π3,AB =5,BC =7, 由余弦定理得:72=AC 2+52﹣10AC ,解得AC =3(﹣8舍去). 则:S △ABC =12×AB ×AC ×sin 2π3=15√34.设BC 边上的高为h ,所以12×BC ×h =15√34,解得h =15√314.18.如图,已知正三棱柱ABC ﹣A 1B 1C 1,D 是AB 的中点,E 是C 1C 的中点,且AB =1,AA 1=2.(1)证明:CD ∥平面A 1EB ; (2)求二面角B ﹣A 1E ﹣D 的余弦值.【分析】(1)取A 1B 的中点F ,连结EF 、DF ,推导出四边形CDEF 是平行四边形,从而CD ∥=EF ,由此能证明CD ∥平面A 1EB . (2)推导出CD 、BD 、DF 两两垂直,以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角B ﹣A 1E ﹣D 的余弦值. 解:(1)证明:取A 1B 的中点F ,连结EF 、DF , ∵D 、F 分别是AB ,A 1B 的中点,∴DF ∥=12A 1A ,∵A 1A ∥=C 1C ,E 是C 1C 的中点,∴DF ∥=EC , ∴四边形CDEF 是平行四边形,∴CD ∥=EF , ∵CD ⊄平面A 1EB ,EF ⊂平面A 1EB , ∴CD ∥平面A 1EB .(2)解:∵△ABC 是正三角形,D 是AB 的中点,∴CD ⊥AB , ∵在正三棱柱ABC ﹣A 1B 1C 1中,A 1A ⊥平面ABC , ∴A 1A ⊥CD ,由(1)知DF ∥A 1A ,∴CD 、BD 、DF 两两垂直,∴以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系, 则D (0,0,0),B (12,0,0),E (0,√32,1),A 1(−12,0,2),∴BE →=(−12,√32,1),DE →=(0,√32,1),A 1E →=(12,√32,﹣1),设平面A 1DE 的法向量n →=(x ,y ,z ),则{n →⋅A 1E →=12x +√32y −z =0n →⋅DE →=√32y +z =0,取z =√3,得n →=(4√3,﹣2,√3), 设平面A 1BE 的法向量m →=(a ,b ,c ),则{m →⋅A 1E →=12a +√32b −c =0m →⋅BE →=−12a +√32b +c =0,取c =1,得m →=(2,0,1), 设二面角B ﹣A 1E ﹣D 的平面角为θ,则cos θ=|m →⋅n →||m →|⋅|n →|=9√3355.∴二面角B ﹣A 1E ﹣D 的余弦值为9√3355.19.已知椭圆C :x 24+y 22=1,A ,B 分别为椭圆长轴的左右端点,M 为直线x =2上异于点B 的任意一点,连接AM 交椭圆于P 点.(1)求证:OP →⋅OM →为定值;(2)是否存在x 轴上的定点Q 使得以MP 为直径的圆恒通过MQ 与BP 的交点. 【分析】(1)由椭圆的方程可得A ,B 的坐标,设M ,P 的坐标,可得AP ,AM 的斜率相等,求出数量积OP →⋅OM →,由k AP •k BP =y 02x 02−4=−12,可得M ,P 的坐标的关系,进而可得OP →⋅OM →为定值.(2)假设存在Q 满足条件,因为以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ →⋅BP →=0,由(1)可得整理得n (x 0﹣2)=0,再由x 0≠2可得n =0,解:(1)证明:由椭圆的方程可得:A (﹣2,0),B (2,0),设M (2,m ),P (x 0,y 0),(m ≠0,x 0≠±2), 则x 024+y 022=1,得y 02=−x 02−42,又k AP =y 0x 0+2=k AM =m−02−(−2)=m4,k BP =y 0x 0−2,所以k AP •k BP =y 02x 02−4=−12, 又m 4⋅y 0x 0−2=−12,整理可得2x 0+my 0=4,所以OP →⋅OM →=2x 0+my 0=4为定值.(2)假设存在定点Q (n ,0)满足要求,设M (2,m ),P (x 0,y 0),(m ≠0,x 0≠±2),则以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ →⋅BP →=0, 所以(n ﹣2,﹣m )•(x 0﹣2,y 0)=nx 0﹣2n ﹣2x 0+4﹣my 0=0,① 由(1)得2x 0+my 0=4,②,由①②可得n (x 0﹣2)=0,因为x 0≠2,解得n =0,所以存在x 轴上的定点Q (0,0),使得以MP 为直径的圆恒通过MQ 与BP 的交点.20.已知函数f(x)=e x+(m﹣e)x﹣mx2.(1)当m=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数m的取值范围.【分析】(1)将m=0带入,求导得f′(x)=e x﹣e,再求出函数f(x)的单调性,进而求得极值;(2)求导得f′(x)=e x﹣2mx+m﹣e,令g(x)=f′(x),对函数g(x)求导后,分m=0,m<0及m>0讨论,m=0时容易得出结论,m<0时运用零点存在性定理可得出结论,m>0时运用放缩思想,先证明e x>ex,进而可得f(x)>0在(0,1)上恒成立,由此得出结论,以上情况综合,即可求得实数m的取值范围.解:(1)当m=0时,f(x)=e x﹣ex,f′(x)=e x﹣e,又f′(x)是增函数,且f′(1)=0,∴当x>1时,f′(x)>0,当x<1时,f′(x)<0,∴f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,∴当x=1时,f(x)取得极小值f(1)=0,无极大值;(2)f′(x)=e x﹣2mx+m﹣e,令g(x)=f′(x)=e x﹣2mx+m﹣e,则g′(x)=e x﹣2m,①当m=0时,f(1)=0,由(1)知f(x)在区间(0,1)上没有零点;②当m<0时,则g′(x)>0,故g(x)=f′(x)在(0,1)上单调递增,又g(0)=f′(0)=1+m﹣e<0,g(1)=f′(1)=﹣m>0,∴存在x0∈(0,1),使得g(x0)=f′(x0)=0,且当x∈(0,x0)时,f′(x)<0,f(x)是减函数,当x∈(x0,1)时,f′(x)>0,f(x)是增函数,又∵f(0)=1,f(1)=0,∴f(x)在(0,1)上存在零点;③当m>0,x∈(0,1)时,令h(x)=e x﹣ex,则h′(x)=e x﹣e,∵在x∈(0,1)上,h′(x)<0,h(x)是减函数,∴h(x)>h(1)=0,即e x>ex,∴f(x)=e x+(m﹣e)x﹣mx2>ex+(m﹣e)x﹣mx2=m(x﹣x2)>0,∴f(x)在(0,1)上没有零点;综上,要使f(x)在(0,1)上内存在零点,则m的取值范围为(﹣∞,0).21.一支担负勘探任务的队伍有若干个勘探小组和两类勘探人员,甲类人员应用某种新型勘探技术的精准率为0.6,乙类人员应用这种勘探技术的精准率为a(0<a<0.4).每个勘探小组配备1名甲类人员与2名乙类人员,假设在执行任务中每位人员均有一次应用这种技术的机会且互不影响,记在执行任务中每个勘探小组能精准应用这种新型技术的人员数量为ξ.(1)证明:在ξ各个取值对应的概率中,概率P(ξ=1)的值最大.(2)在特殊的勘探任务中,每次只能派一个勘探小组出发,工作时间不超过半小时,如果半小时内无法完成任务,则重新派另一组出发.现在有三个勘探小组A i(i=1,2,3)可派出,若小组A i能完成特殊任务的概率t;t i=P(ξ=i)(i=1,2,3),且各个小组能否完成任务相互独立.试分析以怎样的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.【分析】(1)每个勘探小组共有3名人员,故ξ的所有可能取值为0,1,2,3,再依据相互独立事件的概率求出每个ξ的取值所对应的概率,并用作差法逐一比较P(ξ=1)与P(ξ=0)、P(ξ=2)、P(ξ=3)的大小关系即可得证;(2)先根据(1)中的结论比较P(ξ=2)和P(ξ=3)的大小,可得到t1>t2>t3,故而可猜想出结论,再进行证明.证明时,设三个小组A i(i=1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p1,p2,p3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,然后求出η的分布列和数学期望,只需证明数学期望E(η)=3﹣2p1﹣p2+p1p2≥3﹣2t1﹣t2+t1t2成立即可,这一过程采用的是作差法,其中用到了因式分解的相关技巧.解:(1)由已知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=(1﹣0.6)•(1﹣a)2=0.4(1﹣a)2,P(ξ=1)=0.6(1−a)2+(1−0.6)⋅C21a(1−a)=0.2(1−a)(3+a),P(ξ=2)=0.6⋅C21a(1−a)+(1−0.6)a2=0.4a(3−2a),P(ξ=3)=0.6a2.∵0<a<0.4,∴P(ξ=1)﹣P(ξ=0)=0.2(1﹣a)(1+3a)>0,P(ξ=1)﹣P(ξ=2)=0.2(3a2﹣8a+3)>0,P(ξ=1)﹣P(ξ=3)=﹣0.2(4a2+2a﹣3)>0,∴概率P(ξ=1)的值最大.(2)由(1)可知,当0<a<0.4时,有t1=P(ξ=1)的值最大,且t2﹣t3=P(ξ=2)﹣P(ξ=3)=0.2a(6﹣7a)>0,∴t1>t2>t3,∴应当以A1,A2,A3的顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小,即优先派出完成任务概率大的小组可减少所需派出的小组个数的均值.证明如下:假定p1,p2,p3为t1,t2,t3(t1>t2>t3)的任意一个排列,即若三个小组A i(i=1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p1,p2,p3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,且η的分布列为η123P p1(1﹣p1)p2(1﹣p1)(1﹣p2)∴数学期望E(η)=p1+2(1﹣p1)p2+3(1﹣p1)(1﹣p2)=3﹣2p1﹣p2+p1p2下面证明E(η)=3﹣2p1﹣p2+p1p2≥3﹣2t1﹣t2+t1t2成立,∵(3﹣2p1﹣p2+p1p2)﹣(3﹣2t1﹣t2+t1t2)=2(t1﹣p1)+(t2﹣p2)+p1p2﹣p1t2+p1t2﹣t1t2=2(t1﹣p1)+(t2﹣p2)+p1(p2﹣t2)+t2(p1﹣t1)=(2﹣t2)(t1﹣p1)+(1﹣p1)(t2﹣p2)≥(1﹣p1)(t1﹣p1)+(1﹣p1)(t2﹣p2)=(1﹣p1)[(t1+t2)﹣(p1+p2)]≥0,∴按照完成任务概率从大到小的A1,A2,A3的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.一、选择题22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q 的轨迹为C2.设P(ρ1,θ),Q(ρ,θ),则:ρ1cosθ﹣2ρ1sinθ=1,即ρ1=1cosθ−2sinθ,由于|OP|•|OQ|=2,所以ρ=2cosθ﹣4sinθ,整理得ρ2=2ρcosθ﹣4ρsinθ,转换为直角坐标方程为:(x﹣1)2+(y+2)2=5(原点除外).(2)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1转换为直角坐标方程为:x﹣2y﹣1=0.曲线C2的圆心为(1,﹣2),半径为√5,所以圆心到直线C1的距离d=|1−2×(−2)−1|√1+(−2)2=4√5.所以|MN|=2√(√5)2−(4√5)2=√5.由于点O到C1的距离d2=√12+(−2)2=√5所以S△OMN=12×|MN|×d2=12×√5√5=35.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.【分析】(1)由题意可得|x﹣1|+12|x+3|≤3,由零点分区间法和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得|x﹣k|+12|x+3|≥x+2恒成立.讨论x≤﹣2恒成立,x>﹣2时,可得|x﹣k|≥x+12恒成立,讨论﹣2<x≤﹣1,x>﹣1时,结合绝对值不等式的解法和恒成立思想,可得所求范围.解:(1)当k=1时,不等式f(x)≤1即为|x﹣1|+12|x+3|≤3,等价为{x≥1x−1+12x+32≤3或{−3<x<11−x+12x+32≤3或{x≤−31−x−12x−32≤3,解得1≤x≤53或﹣1≤x<1或x∈∅,则原不等式的解集为[﹣1,53 ];(2)f(x)≥x对于任意的实数x恒成立,即为|x﹣k|+12|x+3|≥x+2恒成立.当x≤﹣2时,|x﹣k|+12|x+3|≥0≥x+2恒成立;当x>﹣2时,|x﹣k|+12|x+3|≥x+2恒成立等价为|x﹣k|+x+32≥x+2,即|x﹣k|≥x+12恒成立,当﹣2<x≤﹣1时,|x﹣k|≥x+12恒成立;当x>﹣1时,|x﹣k|≥x+12恒成立等价为x﹣k≥x+12或x﹣k≤−x+12恒成立.即x≥2k+1或x≤23(k−12)恒成立,则2k+1≤﹣1解得k≤﹣1,所以k的取值范围是(﹣∞,﹣1].。

最新最新题库广州市普通高中毕业班综合测试(一)理科数学及答案〔含参考答案〕

最新最新题库广州市普通高中毕业班综合测试(一)理科数学及答案〔含参考答案〕

S2m 1 = 11,则 m=(

A .11
B .10
C. 6
D.5
7.如图,一高为 H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀
速流出,水流完所用时间为 T,若鱼缸水深为 h 时,水流出所用时间为 t,则函数 h=f(t) 的图
象大致是(

8. 2
x3
x
5
a 的展开式的各项系数和为
(1) 求 sinC 的值; (2)若 c=2 6 b-a=2, 求△ ABC 的面积
第 3 页(共 13 页)
18.(12 分)如图,在三棱锥 A-BCD 中,△ ABC 是等边三角形,∠ BAD= ∠ BCD=90 ° ,点 P 是 AC 的中点,连接 BP、DP (1)证明:平面 ACD ⊥平面 BDP
VA BCD VA BPD VC BPD
1
1
1
AO 2
AC S BPD
2 S BPD
3
3
3
∴AO=1, 设 AD 与平面 BCD 的夹角为θ
23 AH=HC= 3
AO 2 sin
AD 2
19.( 12 分) 解: (1) 由分布列可知:分 2 期付款的概率为 0.4,设恰有 2 位选择分 2 期付款为事件 A ∴P(A)=C 23× 0.42 ×(1-0.4) 1=0.288
A .2
1
B.
2
1
C.﹣
2
D.﹣ 2
3.已知双曲线 C: x2
y2 b2
1 的一条渐近线过圆
2
P: x 2
2
y 4 1的圆心,则 C 的
离心率是(

5
A.

2024年广东省广州市部分学校中考数学一模试卷及答案解析

2024年广东省广州市部分学校中考数学一模试卷及答案解析

2024年广东省广州市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)=()A.﹣2024B.2024C.D.2.(3分)如图所示的几何体由6个小正方体组合而成,其三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.均不是3.(3分)学校举行投篮比赛,某班有7名同学参加了比赛,比赛结束后,老师统计了他们各自的投篮数,分别为3,5,5,6,6,4,6.下列关于这组数据描述不正确的是()A.众数为6B.平均数为5C.中位数为5D.方差为1 4.(3分)下列运算不正确的是()A.B.C.(a2b)3=a6b3D.5.(3分)等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.6.(3分)关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,若a,b,c是△ABC的三边长,则这个三角形一定是()A.等边三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.(3分)如图,为了测量河两岸A,B两点间的距离,在河的一岸与AB垂直的方向上取一点C,测得AC=200米,∠ACB=α,则AB=()A.200•tanα米B.200•sinα米C.200•cosα米D.米8.(3分)九年级同学去距离学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,剩余同学坐汽车出发,结果他们同时到达.已知汽车的速度是自行车的2倍,设骑车的同学速度为x千米/小时,则下列方程正确的是()A.B.C.D.9.(3分)如图,在△ABC中,AC=BC,∠ACB=100°,⊙O与AB,BC分别切于点D,C,连接CD.则∠ACD的度数为()A.50B.40C.30D.2010.(3分)在平面直角坐标系中,P是双曲线上的一点,点P绕着原点O顺时针旋转90°的对应点P1(m,n)落在直线y=﹣2x+1上,则代数式的值是()A.B.C.﹣8D.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)龙行龘龘,前程朤朤,生活䲜䲜,截止至2024年2月10日晚上8时,中央广播电视总台2024年春节联欢晚会“竖屏看春晚”直播播放量达到4.23亿次,将4.23亿用科学记数法表示为.12.(3分)已知A(﹣2,y1),B(3,y2)在抛物线y=x2+x+m上,则y1y2.(填“<”或“>”或“=”)13.(3分)某中学对九年级共450名学生进行“综合素质”评价,评价的结果分A,B,C,D共4个等级.现随机抽取30名学生的评价结果作为样本进行分析,绘制了如图所示的条形图,据此估算全级学生中“综合素质”评价等级为“B”学生约有人.若将评价等级按所占比例绘制成扇形统计图,则评价等级为“D”对应扇形的圆心角度数为__________°.14.(3分)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=,则GH的最小值为.15.(3分)如图,正方形ABCD的边AB=2,点E、F为正方形边的中点,以EF为半径的扇形交正方形的边于点G、H,则长为.16.(3分)如图,在△AOB中,,点O到线段AB的距离为.以点O为圆心,以2为半径作优弧DE,交AO于点D,交BO于点E,点M在优弧DE上从点D开始移动,到达点E时停止,连接AM,BM,则△ABM面积S 的取值范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解不等式:3(2x+7)>23.18.(4分)如图,AB⊥CF,DF⊥CF,AC∥DF,AB=DE,求证:BF=CE.19.(6分)如图所示,在平面直角坐标系中xOy中,点A(﹣4,1),△ABC的三个顶点都在格点上.将△ABC在坐标系中平移,使得点A平移至图中点D(1,﹣1)的位置,点B对应点E,点C对应点F.(1)点B的坐标为,点F的坐标为;(2)在图中作出△DEF,并连接AD;(3)求在线段AB平移到线段DE的过程中扫过的面积.20.(6分)已知:.(1)化简A;(2)从条件①、条件②这两个条件中选择一个作为已知,求A的值.条件①:若点P(a,a+2)是反比例函数图象上的点;条件②:若a是方程x2+x=8﹣x的一个根.21.(8分)甲、乙两位同学相约玩纸牌游戏.(1)有4张背面相同的纸牌A,B,C,D,其正面分别有四个不同的数字,将这四张纸牌洗匀后,背面朝上放在桌面上.若甲从中随机选择一张牌翻开,求他选中的牌面数字是整数的概率;(2)双方约定:两人各摸出一张牌,放回洗匀后再摸一张,若摸出的两张牌面数字之积为正数,那么甲赢,否则乙赢.这个规定是否公平?为什么?22.(10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(h)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象求出血液中药物浓度下降阶段y关于x的函数表达式;(2)问:血液中药物浓度不低于5微克/毫升的持续时间为多少小时?23.(10分)如图,AB为⊙O的直径,C是圆上一点,D是BC的中点.(1)尺规作图:过点D作AB的垂线,交半圆AB于点E,交线段直径AB于点F(保留作图痕迹,不写作法);(2)点P是弧AE上一点,连接BP,CP,AC=6,BF=2.①求tan∠BPC的值;②若CP为∠ACB的角平分线,求CP的长.24.(12分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l 平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?25.(12分)如图,等边三角形ABC边长为2,点D是直线BC上一点,连接AD,将AD 绕点A逆时针旋转120°后得到AE.连接DE,AC与DE交于点F.(1)若AD⊥BC,求线段EF的长;(2)连接CE.①记点E的运动路径为l.试判断l与AC的位置关系;②在点D在运动的过程中,CE是否有最小值?如果有,请求出,并求此时的值;如果没有,请说明理由.2024年广东省广州市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据二次根式的性质:化简即可.【解答】解:,故选:A.【点评】本题考查了二次根式的性质,熟练掌握二次根式的性质是关键.2.【分析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】解:如图所示:是轴对称图形的是左视图.故选:B.【点评】本题考查了简单组合体的三视图,轴对称图形,关键是得到该几何体的三视图.3.【分析】根据相关定义求出对应数值分别判断,即可得到答案.【解答】解:A、6出现3次,出现次数最多,故众数是6,该项描述正确,不符合题意;B、,故该项描述正确,不符合题意;C、这组数据按由小到大排列是:3,4,5,5,6,6,6.最中间的是第四个数5,中位数为5,故该项描述正确,不符合题意;D、方差为,故该项描述错误;符合题意,故选:D.【点评】此题考查了求众数,中位数,方差及平均数,熟练掌握众数,中位数,方差及平均数的求法是关键.4.【分析】根据立方根、二次根式的加减、积的乘方、分式的加减运算法则计算判断即可.【解答】解:A、,故此选项符合题意;B、,故此选项不符合题意;C、(a2b)3=a6b3,故此选项不符合题意;D、,故此选项不符合题意;故选:A.【点评】本题考查了分式的加减,整式的运算,立方根,熟练掌握它们的运算法则是解题的关键.5.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.【点评】本题考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.6.【分析】由关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,可得Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,根据勾股定理逆定理判断△ABC的形状即可.【解答】解:∵关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,∴Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,∴△ABC是直角三角形,故选:B.【点评】本题考查了一元二次方程根的判别式,勾股定理逆定理.解题的关键在于对知识的熟练掌握与灵活运用.7.【分析】已知AC=200米,∠ACB=α,根据正切定义可得AB.【解答】解:tan∠ACB=tanα=,AB=200•tanα(米),故选:A.【点评】本题考查了解直角三角形的应用,关键是掌握正切定义.8.【分析】设骑车学生的速度为x千米/小时,则汽车的速度为2x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程.【解答】解:设骑车学生的速度为x千米/小时,则汽车的速度为2x,∵20分钟=小时,∴,故选:C.【点评】本题考查了分式方程,理解题意建立等量关系是解答本题的关键.9.【分析】由AC=BC,∠ACB=100°,求得∠B=∠A=40°,由⊙O与AB,BC分别切于点D,C,根据切线长定理得BD=BC,则∠BCD=∠BDC,所以2∠BCD+40°=180°,求得∠BCD=70°,则∠ACD=∠ACB﹣∠BCD=30°,于是得到问题的答案.【解答】解:∵AC=BC,∠ACB=100°,∴∠B=∠A=×(180°﹣100°)=40°,∵⊙O与AB,BC分别切于点D,C,∴BD=BC,∴∠BCD=∠BDC,∵∠BCD+∠BDC+∠B=180°,∴2∠BCD+40°=180°,∴∠BCD=70°,∴∠ACD=∠ACB﹣∠BCD=100°﹣70°=30°,故选:C.【点评】此题重点考查等腰三角形的性质、三角形内角和定理、切线长定理等知识,求得∠B=40°并且证明BD=BC是解题的关键.10.【分析】过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,由题意可得出OQ1=n,P1Q1=﹣m,2m+n=1.易证△PQO≌△P1Q1O(AAS),即得出PQ=OQ1=n,PQ =P1Q1=﹣m,即可求出P(﹣n,m),进而得出,最后将所求式子通分变形为,再整体代入求值即可.【解答】解:如图,过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,∵P1(m,n),且在直线y=﹣2x+1上,∴OQ1=n,P1Q1=﹣m,n=﹣2m+1,∴2m+n=1.由旋转的性质可知∠POP1=90°,PO=P1O,∴∠POQ+∠P1OQ1=90°.又∵∠POQ+∠OPQ=90°,∴∠OPQ=∠P1OQ1.∵∠PQO=∠P1Q1O=90°,∴△PQO≌△P1Q1O(AAS),∴PQ=OQ1=n,PQ=P1Q1=﹣m,∴P(﹣n,m).∵P是双曲线上的一点,∴,即.∴.故选:A.【点评】本题为一次函数与反比例函数的综合题,考查函数图象上的点的坐标特征,三角形全等的判定和性质,旋转的性质,坐标与图形,代数式求值.画出大致图象并正确作出辅助线构造全等三角形是解题关键.二、填空题(本大题共6小题,每小题3分,共18分.)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,据此解答即可.【解答】解:4.23亿=423000000=4.23×108,故答案为:4.23×108.【点评】本题考查科学记数法的表示方法.熟练掌握科学记数法书写格式是关键.12.【分析】根据a=1>0,且,进而可求解.【解答】解:∵a=1>0,对称轴为,∴当x=﹣2与x=1时,函数值都都等于y2,∴当时函数值随自变量的增大而增大;∵,∴y1<y2,故答案为:<.【点评】本题考查了二次函数的性质,熟练掌握其性质是解题的关键.13.【分析】先根据抽取学生30名列方程求出a,再根据360°乘以等级为“D”占比求出对应的圆心角度数.【解答】解:由图得:13+3a+5+a=30,解得a=4,所以等级为“B”学生约有3a=12人,等级为“D”对应扇形的圆心角度数为,故答案为:30,36.【点评】本题考查了条形统计图和扇形统计图,解题的关键是掌握相关知识的灵活运用.14.【分析】连接AF,利用三角形中位线定理,可知GH=AF,求出AF的最小值即可解决问题.【解答】解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.【点评】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.【分析】根据EG=EF=EH=2,BE=CE=1,可求出∠BEG=∠CEH=60°,所以∠GEH=60°,再根据弧长公式计算即可.【解答】解:∵正方形ABCD的边AB=2,点E、F为正方形边的中点,∴EG=EF=EH=2,BE=CE=1,∴cos∠BEG=cos∠CEH==,∴∠BEG=∠CEH=60°,∴∠GEH=60°,∴长为=π.故答案为:π.【点评】此题考查了弧长公式、正方形的性质、解直角三角形,正确求出∠GEH=60°是解题的关键.16.【分析】由勾股定理可求出AB=12,再根据面积法可求出点O到线段AB的距离;由图易知△ABM的AB边最小高为M在D时,最大高为M在过O垂直于AB的直线上,求出最小高和最大高,进而求出△ABM的面积为S的取值范围.【解答】解:在△AOB中,,∴,,∴∠OAB=60°,∠ABO=30°,设点O到线段AB的距离为h,又,∴,∴点O到线段AB的距离为;如图:Ⅰ.由图可知,△ABM的AB边最小高为M在D时,∵OD=2,AO=6,∴AD=4,∴,∴△ABM的面积为S的最小值=.Ⅱ.在过点O且垂直于AB的直线上时,△ABM的AB边的高最大,∴△ABM的AB边的高最大值为,∴△ABM的面积为S的最大值为=.∴△ABM的面积为S取值范围为:.故答案为:;.【点评】本题考查了勾股定理以及直线与圆的位置关系,正确作出图形是解决此题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】不等式的两边同时除以一个负数,要改变不等号的方向.先去括号、再移项,然后合并同类项,最后系数化1求得不等式的解集.【解答】解:3(2x+7)>23,6x+21>23,6x>2,.【点评】本题考查解一元一次不等式,熟练掌握不等式的性质是关键.18.【分析】运用AAS证明△ABC≌△DEF,得到EF=BC,再根据等式的性质即可得出结论.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴EF=BC.∴EF﹣BE=BC﹣BE.即:BF=CE.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定方法.19.【分析】(1)根据点D的位置,结合平移的性质可得出答案.(2)运用平移的性质作出图形即可;(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,求出面积【解答】解:(1)点B的坐标为(﹣2,4);∵A(﹣4,1),D(1,﹣1),C(0,3)∴由平移得点F的坐标为:(5,1),故答案为:(﹣2,4);(5,1);(2)如图,△DEF和AD即为所作:(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,.【点评】本题考查作图—平移变换,解题的关键是掌握平移的性质及平行四边形面积求法.20.【分析】(1)利用分式的减法法则化简即可;(2)①由点P在反比例函数图象上,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论;②a是方程x2+x=8﹣x的一个根,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论.【解答】解:(1)=﹣=;(2)①点P(a,a+2)是反比例函数图象上的点,∴a(a+2)=8,∴A==;②∵a是方程x2+x=8﹣x的一个根,∴a2+a=8﹣a,∴a(a+2)=8,∴A==;【点评】本题考查了反比例函数图象上点的坐标特征,一元一次方程的解,分式的运算,把分式化简是解题的关键.21.【分析】(1)直接根据概率公式计算即可.(2)首先画出树状图或列表列出可能的情况,再计算出甲赢和乙赢的概率,最后进行比较即可.【解答】解:(1)共有4张牌,正面是整数的情况有2种,所以摸到正面是整数的纸牌的概率是;(2)这个规定否公平,理由如下:画树状图如下:共产生16种结果,每种结果出现的可能性相同,其中两张牌面数字之积为正数的有8种,∴甲赢的概率为,乙赢的概率为,∴甲赢的概率=乙赢的概率,故这个规定否公平.【点评】本题考查的是用列表法或树状图法求概率以及概率公式,掌握概率公式使解题的关键.22.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=2分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,10)代入得:6=4k,解得:k=,故直线解析式为:y=x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,10)代入得:10=,解得:a=40,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=5,则5=x,解得:x=2,当y=5,则5=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于2微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.23.【分析】(1)在半圆AB上取点E,使,根据垂径定理的推论可知AB⊥DE,由此即可完成作图;(2)①连接OD,证明△ACB∽△OFD,设的半径为r,利用相似三角形的性质得r=5,AB=2r=10,由勾股定理求得BC,得到,即可得到;②过点B作BG⊥CP交CP于点G,证明△CBG是等腰直角三角形,解直角三角形得到,由得到,解得,由CP=CG+GP即可求解.【解答】解:(1)如图,在半圆AB上取点E,使,连接DE交AB于F,∴DE⊥AB,(2)解:①连接OD,∵D是BC的中点∴CD=BD,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的解,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;②如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴,∴.【点评】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.24.【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,连接CN,CM,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.25.【分析】(1)根据等边三角形的性质得到点D是BC的中点,,求得,得到,根据旋转的性质得到,∠DAE=120°,得到∠FAE=90°,由勾股定理求得EF=2;(2)①将AB绕点A逆时针旋转120°后得到AM.将AD绕点A逆时针旋转120°后得到AE.证明△ABD≌AME(SAS),证明∠MEA=∠CAE,得l∥AC;②点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,根据全等三角形的性质得到AH=CE,DH=AC=2,根据等边三角形的性质得到,根据勾股定理即可得到结论.【解答】解:(1)∵△ABC是等边三角形,AD⊥BC,∴点D是BC的中点,,∵AB=2,∴,∴∵将AD绕点A逆时针旋转120°后得到AE,∴,∴∠ADE=∠E=30°,∴∠FAE=90°,∵由勾股定理得,AE2+AF2=EF2,∴解得,EF=2;(2)①l∥AC,理由如下:如图,将AB绕点A逆时针旋转120°得到AM,连接ME,∴AB=AM,∠BAM=120°,∵将AD绕点A逆时针旋转120°后得到AE,∴AD=AE,∠DAE=120°,∴∠DAB=∠EAM,∴△ABD≌AME(SAS)∴∠AME=∠ABD=120°,∴∠MEA+∠MAE=60°,∵∠DAE=120°,∠BAC=60°,∴∠DAB+∠CAE=60°,∴∠MAE+∠CAE=60°,∴∠MEA=∠CAE,∴ME∥AC,即l∥AC;②∵点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,∴∠AHD=∠ACE=90°,∵∠CAM=120°﹣∠BAC=60°,∴∠CAD=60°﹣∠EAM,∵,∴∠ADH=180°﹣∠AHD﹣∠BAH﹣∠DAB=60°﹣∠DAB,∴∠ADH=∠CAE,∵AD=AE,∴△ADH≌△EAC(AAS),∴AH=CE,DH=AC=2,∵,∴BD=1,∵,∴,∴.所以,CE的最小值为,.【点评】本题考查了三角形综合,等边三角形的性质,全等三角形的判定和性质勾股定理以及30°角所对直角边等于斜边的一半等知识.正确作出辅助线是解题的关键。

(完整word版)2017年广州市一模理科数学试题及答案,推荐文档

(完整word版)2017年广州市一模理科数学试题及答案,推荐文档

绝密★启用前2017年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。

答卷前,考生务必将自 己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应 位置填涂考生号。

2•回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第n 卷时,将答案写在答题卡上。

写在本试卷上无效。

4•考试结束后,将本试卷和答题卡一并交回。

、选择题:5分,在每小题给出的四个选项中,只有一项是符合(1)复数1的共轭复数是(A )1 i (B)(C )(D)1 i(2)若集合M(A) M N (B)(3)已知等比数列a n 的各项都为正数x 2(C ),则 (D ) M I Na 3,-a s ,a 4成等差数列2则a3—?!的值是a 4 ?6(B )(D)(4)阅读如图的程序框图.若输入n 5,则输出k 的值为(A) 2(B )(C ) 42X(5)已知双曲线C : -ya1的一条渐近线方程为 2x 3y 0 ,F 1, F 2 分别是双曲线C的左,右焦点,点P在双曲线C上,且PF17,则PF?等于(A) 1(C) 4或10 (D) 1(B) 1313(7) 五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马 ;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC 为鳖臑,PA 丄平面ABC ,PA AB 2, AC 4,三棱锥P ABC 的四个顶点都在球O 的球面上,则球O 的表 面积为(A ) 8(B ) 12( C ) 20(D ) 24(11)若直线y 1与函数f x 2sin 2x 的图象相交于点 P x j , y 1 , Q x 2, y 2 ,且X1X 22 则线段PQ 与函数fx 的图象所围成的图形面积是3(A ) 2(B ) 一 翻(C )2 43 2 (D)-A /33333(6)如图,网格纸上小正方形的边长为 1,粗线画出的是 某几何体的正视图(等腰直角三角形)和侧视图,8且该几何体的体积为,则该几何体的俯视图可以是(A) (B) (C) (D)硬币•若硬币正面朝上,则这个人站起来 没有相邻的两个人站起来的概率为若硬币正面朝下,则这个人继续坐着•那么,(A )15(B )—3232(D ) _5 162 2(8) 已知F 「F 2分别是椭圆C :务与a b 1 a b 0的左,右焦点,椭圆C 上存在点P使 F 1PF 2为钝角,则椭圆C 的离心率的取值范围是(A )1(B )2,1(C )、2°,2(D )(9)已知 p: x 0,e xax1成立,q:函数xx a 1是减函数,则p 是q 的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(12)已知函数 f x3 3 2 31x -x _x -2016则fk的值为2 48,k 12017(A)0(B) 504(C)1008(D)2016本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 16试卷类型:A2018年广州市普通高中毕业班综合测试(一)数学(理科)2018.3本试卷共4页,21小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为 A .2-B .2±C .D .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则c b为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为 A .()()22211x y -+-=B .()()22121x y ++-= C .()()22211x y ++-=D .()()22121x y -++= 4.若函数()f x =R ,则实数a 的取值范围为A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞D .[]2,2-2 / 165.某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图1的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有 A .5个B .6个C .8个D .10个 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2B .3C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b ()0λ>D .ab8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2018B .2018C .2018D .2018二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为. 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为. 11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是.侧(左)视图图3俯视图图1分数3 / 1612.设α为锐角,若3cos 65απ⎛⎫+= ⎪⎝⎭,则sin 12απ⎛⎫-= ⎪⎝⎭. 13.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S =.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB=a 的值为.15.(几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,. (1)求实数a 的值;(2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间.17.(本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立. (1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).P图44 / 1618.(本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的 中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF A C ⊥;(2)在棱1C C 上确定一点G ,使A ,E ,G ,F 四点共面,并求此时1C G 的长;(3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N . (1)求数列{}n a 与{}n b 的通项公式;(2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S . (注:{}min ,a b 表示a 与b 的最小值.) 20.(本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,离心率为355,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =. (1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MH PN HN=,证明点H 恒在一条定直线上. 21.(本小题满分14分)已知函数()()221e xf x x x =-+(其中e 为自然对数的底数).(1)求函数()f x 的单调区间;(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.C1C1D ABD E F 1A1B图52018年广州市普通高中毕业班综合测试(一)数学(理科)试卷参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试卷主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分. 16.(本小题满分1)(本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即022a-+=.解得a =(2)方法1:由(1)得()sin f x x x =.所以2()[()]2g x f x =-()2sin 2x x =+-22sin cos 3cos 2x x x x =++-2cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z , 所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .方法2:由(1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z ,所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增. 即ππππ36k x k -≤≤+(k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.(本小题满分1)(本小题主要考查相互独立事件、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) 解:(1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =. 所以乙,丙各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=. 所以ξ的分布列为所以1963713252525E ξ=⨯+⨯=.18.(本小题满分1)(本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)推理论证法:(1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D ,所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. (2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FGBH ,则FGAE .连结EG ,则A ,E ,G ,F 四点共面.因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面.(3)延长EF ,DB ,设EFDB M =,连结AM ,则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成二面角的平面角.因为123132aMB BF MD DE a ===,1D ABCDE F1A1B1CMN1D ABCDE F 1A1B1C1DABCD EF1A1B 1C GH23=,所以MB=.在△ABM中,AB a=,135ABM∠=,所以2222cos135AM AB MB AB MB=+-⨯⨯⨯()2222a a⎛=+-⨯⨯⨯-⎝⎭213a=.即AM=.因为11sin13522AM BN AB MB⨯=⨯⨯,所以sin135aAB MBBNAM⨯⨯⨯⨯===.所以39FN a===.所以6cos7BNFNBFN∠==.故平面AEF与平面ABCD所成二面角的余弦值为67.空间向量法:(1)证明:以点D为坐标原点,DA,DC,1DD所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则(),0,0A a,()1,0,A a a,()10,,C a a,10,0,2E a⎛⎫⎪⎝⎭,1,,3F a a a⎛⎫⎪⎝⎭,所以()11,,0AC a a=-,1,,6EF a a a⎛⎫=-⎪⎝⎭.因为221100AC EF a a=-++=,所以11AC EF⊥.所以11EF A C⊥.(2)解:设()0,,G a h,因为平面11ADD A平面11BCC B,平面11ADD A平面AEGF AE=,平面11BCC B平面AEGF FG=,所以FG AE.所以存在实数λ,使得FG AE λ=. 因为1,0,2AE a a ⎛⎫=- ⎪⎝⎭,1,0,3FG a h a ⎛⎫=-- ⎪⎝⎭, 所以11,0,,0,32a h a a a λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 所以1λ=,56h a =. 所以1C G 15166CC CG a a a =-=-=. 故当1C G 16a =时,A ,E ,G ,F 四点共面. (3)解:由(1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67.第(1)、(2)问用推理论证法,第(3)问用空间向量法: (1)、(2)给分同推理论证法.(3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭, 则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭.设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67.19.(本小题满分1)(本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2,所以112n n b -=⨯, 即12n n b -=.(2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立.②假设当n k =()6k ≥时,不等式成立,即1228k k ->+.则有()()()()122222821826218kk k k k k -=⨯>+=++++>++.这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩ 则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n =-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦ ()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.(本小题满分1)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设双曲线E 的半焦距为c ,由题意可得2235,54.c a c a ⎧=⎪⎨⎪=+⎩解得5a =.(2)证明:由(1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y , 因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-. 因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-.所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.(3)证法1:设点(),H x y ,且过点5,13P ⎛⎫⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-.设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥, 得2221224451x x y λλ-=⨯--. ⑦ 将⑤代入⑦,得443y x =-. 所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在. 设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩消去y 得()()()22229453053255690k x k k x k k -+---+=. 因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤ 联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)21.(本小题满分1)(本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)解:(1)因为()()221e xf x x x =-+,所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e xx x =+-.当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞.①② ③当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. (2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由(1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩ 也就是方程2(1)e xx x -=有两个大于1的相异实根. 设2()(1)e (1)xg x x x x =-->,则2()(1)e 1xg x x '=--. 设()h x =2()(1)e 1xg x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增. 因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->,所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e xx x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”.。

相关文档
最新文档