第6章磁路与铁心线圈电路
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
Hdl I
设磁路的平均长度为 l,则有
NIH l B l
Sl
N匝 x
Hx S I
即有: Φ NI F
Βιβλιοθήκη Baidu
l
Rm
S
式中:F=NI 为磁通势,由其产生磁通;
Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度; S 为磁路的截面积。
2) 磁路的欧姆定律
若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
F
Rm
此即磁路的欧姆定律。
3) 磁路与电路的比较 磁路
磁通势F
磁通
磁感应强度B
磁阻 R m l
S
I
N
F NI
Rm
l
S
电路
电动势 E
电流 I 电流密度 J 电阻 R l
S
I
+
_E
R
I E R
E l
S
4) 磁路分析的特点 (1)在处理电路时不涉及电场问题,在处理磁路时离不 开磁场的概念;
(2)在处理电路时一般可以不考虑漏电流,在处理磁路 时一般都要考虑漏磁通;
x Hx
I
Hdl Hxlx Hx2x I NI
NI H x lx
F=NI即线圈匝数与电流的乘积,称磁通势 单位为安[培](A)
讨论
磁场内某一点的磁场强度H与有关吗?
Bx
Hx
NI lx
Hx
NI lx
由上两式可知,磁场内某一点的H只与电流大小、 线圈匝数及该点的几何位置有关,而与 无关
6.2.3 磁路的分析计算
B
1
2
剩磁:当线圈中电流减到零
3
O
6
(H=0),铁心在磁化时所 H 获的磁性还未完全消失,这
5 4
时铁心中所保留的磁感应强 度称为剩磁感应强度Br
磁滞回线
根据磁性能,磁性材料又可分为三种:
软磁材料(磁滞回线窄长。常用做磁头、磁心等)、
永磁材料(磁滞回线宽。常用做永久磁铁)、
矩磁材料(磁滞回线接近矩形。可用做记忆元件
2. 了解变压器的基本结构、工作原理、运行特性和 绕组的同极性端,理解变压器额定值的意义;
3. 掌握变压器电压、电流和阻抗变换作用; 4.了解三相电压的变换方法; 5. 了解电磁铁的基本工作原理及其应用知识。
6.1 磁场的基本物理量和基本性质
磁场的特性可用磁感应强度、磁通、磁场强度、磁 磁导率等几个物理量表示。
B=0H
即 B与 H 成正比,呈线性关系。
Φ
由于 B ,
H NI
O
S
l
H( I )
所以磁通 与产生此磁通的电流 I 成正比,呈
线性关系。
2) 磁性物质 磁性物质内部形成许多小区域,其分子间存在的一
种特殊的作用力使每一区域内的分子磁场排列整齐, 显示磁性,称这些小区域为磁畴。
在没有外磁场作用的普通磁性物质中,各个磁畴排 列杂乱无章,磁场互相抵消,整体对外不显磁性。
第6章 磁路与铁心线圈电路
6.1 磁场的基本物理量和基本性质 6.2 磁路概念及磁路的安培环路定律 6.3 交流励磁下的铁芯线圈电路 6.4 电磁铁 6.5 变压器
第6章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路;
B
bB
a
BJ
B, B
B0
0 磁化曲线
H
O
H
B和与H的关系
注 当有磁性物质存在时
B与H不成比例,与I也不成比例。
三、磁滞性
当铁心线圈中通有交变电流(大小和方向都变化) 时,铁心就受到交变磁化,电流变化时,B随H而变化, 当H已减到零值时,但B未回到零,这种磁感应强度滞 后于磁场强度变化的性质称磁性物质的磁滞性。
一、磁感应强度
与磁场方向相垂直的单位面积上通过的磁通(磁
力线),可表示磁场内某点的磁场强弱和方向。
B S
矢量
B的单位:特[斯拉](T) 1T=104Gs
的单位:韦伯
如 磁场内各点的磁感应强度的大小相等,方向相同,
这样的磁场则称为均匀磁场。
二、磁通
磁感应强度B与垂直于磁场方向的面积S的乘积,
称为通过该面积的磁通。
磁
外
畴
磁
场
在外磁场作用下,磁畴方向发生变化,使之与外 磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
几种常见磁性物质的磁化曲线
B/T 1 2 3 4 5 6 7 8 9 10 103
H/(A/m) 1.8
1.6
1.4
1.2 c
c
b
b
1.0
0.8
0.6
0.4 a
0.2
a
H/(A/m)
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0103
a 铸铁 b 铸钢 c 硅钢片
磁性材料的磁性能
高导磁性、磁饱和性、磁滞性、非线性
一、高导磁性
指磁性材料的磁导率很高, r>>1,使其具有 被强烈磁化的特性。
二、磁饱和性
当外磁场(或励磁电流)增大到一定值时,磁性 材料的全部磁畴的磁场方向都转向与磁场的方向一致, 磁化磁场的磁感应强度BJ达到饱和值。
开关元件和逻辑元件)。
返回
6.2 磁路概念及磁路的安培环路定律
6.2.2安培环路定律(全电流定律):
磁场中任何闭合回路磁场强度的线积分,等于通过 这个闭合路径内电流的代数和.即
HdlI
I2
I3
I1
电流方向和磁场强度的方向
H
符合右手定则,电流取正;
否则取负。
在无分支的均匀磁路(磁 路的材料和截面积相同,各 处的磁场强度相等)中,如 环形线圈,安培环路定律可 写成:
1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料做 成一定形状的铁心。铁心的磁导率比周围空气或其它 物质的磁导率高的多,磁通的绝大部分经过铁心形成 闭合通路,磁通的闭合路径称为磁路。
N
If + –
S
S
N
直流电机的磁路
交流接触器的磁路
2 磁路的欧姆定律
磁路的欧姆定律是分析磁路的基本定律
1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率
=BS
的单位:伏•秒,通称为韦[伯] Wb
或麦克斯韦Mx 1Wb=108Mx
三、磁场强度
磁场强度是计算磁场所用的物理量,其大小为磁 感应强度和磁导率之比。
H B
H的单位:安/米
的单位:亨/米
矢量
四、磁导率
磁导率 是一个用来表示磁场媒质磁性和衡量物质
导磁能力的物理量。
•一般材料的磁导率 和真空磁导率 0 的比值,称为 该物质的相对磁导率 r
•真空中的磁导率为常数
041 07H/m
r
0
或
r
H B 0H B0
r 1非磁性材料
r 1磁性材料
返回
5 物质的磁性
1)非磁性物质
非磁性物质分子电流的磁场方向杂乱无章,几乎
不受外磁场的影响而互相抵消,不具有磁化特性。
非磁性材料的磁导率都是常数,有:
0 r1 当磁场媒质是非磁性材料时,有: B( )
解:根据安培环路定律,有
Hdl I
设磁路的平均长度为 l,则有
NIH l B l
Sl
N匝 x
Hx S I
即有: Φ NI F
Βιβλιοθήκη Baidu
l
Rm
S
式中:F=NI 为磁通势,由其产生磁通;
Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度; S 为磁路的截面积。
2) 磁路的欧姆定律
若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
F
Rm
此即磁路的欧姆定律。
3) 磁路与电路的比较 磁路
磁通势F
磁通
磁感应强度B
磁阻 R m l
S
I
N
F NI
Rm
l
S
电路
电动势 E
电流 I 电流密度 J 电阻 R l
S
I
+
_E
R
I E R
E l
S
4) 磁路分析的特点 (1)在处理电路时不涉及电场问题,在处理磁路时离不 开磁场的概念;
(2)在处理电路时一般可以不考虑漏电流,在处理磁路 时一般都要考虑漏磁通;
x Hx
I
Hdl Hxlx Hx2x I NI
NI H x lx
F=NI即线圈匝数与电流的乘积,称磁通势 单位为安[培](A)
讨论
磁场内某一点的磁场强度H与有关吗?
Bx
Hx
NI lx
Hx
NI lx
由上两式可知,磁场内某一点的H只与电流大小、 线圈匝数及该点的几何位置有关,而与 无关
6.2.3 磁路的分析计算
B
1
2
剩磁:当线圈中电流减到零
3
O
6
(H=0),铁心在磁化时所 H 获的磁性还未完全消失,这
5 4
时铁心中所保留的磁感应强 度称为剩磁感应强度Br
磁滞回线
根据磁性能,磁性材料又可分为三种:
软磁材料(磁滞回线窄长。常用做磁头、磁心等)、
永磁材料(磁滞回线宽。常用做永久磁铁)、
矩磁材料(磁滞回线接近矩形。可用做记忆元件
2. 了解变压器的基本结构、工作原理、运行特性和 绕组的同极性端,理解变压器额定值的意义;
3. 掌握变压器电压、电流和阻抗变换作用; 4.了解三相电压的变换方法; 5. 了解电磁铁的基本工作原理及其应用知识。
6.1 磁场的基本物理量和基本性质
磁场的特性可用磁感应强度、磁通、磁场强度、磁 磁导率等几个物理量表示。
B=0H
即 B与 H 成正比,呈线性关系。
Φ
由于 B ,
H NI
O
S
l
H( I )
所以磁通 与产生此磁通的电流 I 成正比,呈
线性关系。
2) 磁性物质 磁性物质内部形成许多小区域,其分子间存在的一
种特殊的作用力使每一区域内的分子磁场排列整齐, 显示磁性,称这些小区域为磁畴。
在没有外磁场作用的普通磁性物质中,各个磁畴排 列杂乱无章,磁场互相抵消,整体对外不显磁性。
第6章 磁路与铁心线圈电路
6.1 磁场的基本物理量和基本性质 6.2 磁路概念及磁路的安培环路定律 6.3 交流励磁下的铁芯线圈电路 6.4 电磁铁 6.5 变压器
第6章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路;
B
bB
a
BJ
B, B
B0
0 磁化曲线
H
O
H
B和与H的关系
注 当有磁性物质存在时
B与H不成比例,与I也不成比例。
三、磁滞性
当铁心线圈中通有交变电流(大小和方向都变化) 时,铁心就受到交变磁化,电流变化时,B随H而变化, 当H已减到零值时,但B未回到零,这种磁感应强度滞 后于磁场强度变化的性质称磁性物质的磁滞性。
一、磁感应强度
与磁场方向相垂直的单位面积上通过的磁通(磁
力线),可表示磁场内某点的磁场强弱和方向。
B S
矢量
B的单位:特[斯拉](T) 1T=104Gs
的单位:韦伯
如 磁场内各点的磁感应强度的大小相等,方向相同,
这样的磁场则称为均匀磁场。
二、磁通
磁感应强度B与垂直于磁场方向的面积S的乘积,
称为通过该面积的磁通。
磁
外
畴
磁
场
在外磁场作用下,磁畴方向发生变化,使之与外 磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
几种常见磁性物质的磁化曲线
B/T 1 2 3 4 5 6 7 8 9 10 103
H/(A/m) 1.8
1.6
1.4
1.2 c
c
b
b
1.0
0.8
0.6
0.4 a
0.2
a
H/(A/m)
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0103
a 铸铁 b 铸钢 c 硅钢片
磁性材料的磁性能
高导磁性、磁饱和性、磁滞性、非线性
一、高导磁性
指磁性材料的磁导率很高, r>>1,使其具有 被强烈磁化的特性。
二、磁饱和性
当外磁场(或励磁电流)增大到一定值时,磁性 材料的全部磁畴的磁场方向都转向与磁场的方向一致, 磁化磁场的磁感应强度BJ达到饱和值。
开关元件和逻辑元件)。
返回
6.2 磁路概念及磁路的安培环路定律
6.2.2安培环路定律(全电流定律):
磁场中任何闭合回路磁场强度的线积分,等于通过 这个闭合路径内电流的代数和.即
HdlI
I2
I3
I1
电流方向和磁场强度的方向
H
符合右手定则,电流取正;
否则取负。
在无分支的均匀磁路(磁 路的材料和截面积相同,各 处的磁场强度相等)中,如 环形线圈,安培环路定律可 写成:
1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料做 成一定形状的铁心。铁心的磁导率比周围空气或其它 物质的磁导率高的多,磁通的绝大部分经过铁心形成 闭合通路,磁通的闭合路径称为磁路。
N
If + –
S
S
N
直流电机的磁路
交流接触器的磁路
2 磁路的欧姆定律
磁路的欧姆定律是分析磁路的基本定律
1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率
=BS
的单位:伏•秒,通称为韦[伯] Wb
或麦克斯韦Mx 1Wb=108Mx
三、磁场强度
磁场强度是计算磁场所用的物理量,其大小为磁 感应强度和磁导率之比。
H B
H的单位:安/米
的单位:亨/米
矢量
四、磁导率
磁导率 是一个用来表示磁场媒质磁性和衡量物质
导磁能力的物理量。
•一般材料的磁导率 和真空磁导率 0 的比值,称为 该物质的相对磁导率 r
•真空中的磁导率为常数
041 07H/m
r
0
或
r
H B 0H B0
r 1非磁性材料
r 1磁性材料
返回
5 物质的磁性
1)非磁性物质
非磁性物质分子电流的磁场方向杂乱无章,几乎
不受外磁场的影响而互相抵消,不具有磁化特性。
非磁性材料的磁导率都是常数,有:
0 r1 当磁场媒质是非磁性材料时,有: B( )