数据挖掘常用聚类算法比较分析
各种聚类算法的比较
各种聚类算法的比较聚类算法是一种将数据按照相似性分组的无监督学习方法。
在数据分析和机器学习中,聚类算法被广泛应用于数据挖掘、模式识别、图像处理等领域。
本文将介绍几种常见的聚类算法,并对它们进行比较。
1. K-means算法K-means算法是最常见的聚类算法之一,它将数据划分为K个集群,每个集群包含最接近其均值的数据点。
该算法迭代地更新集群的均值,直到满足收敛条件。
K-means算法简单、高效,适用于大型数据集。
然而,它对异常值和噪声敏感,并且对初始聚类中心的选择非常敏感。
2.层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似性构建一个聚类层次结构。
这种层次结构可以以树状图的形式表示,称为树状图聚类。
层次聚类算法的优点是不需要指定聚类个数,且能够处理任意形状的聚类。
然而,该算法的计算复杂度较高,并且对输入数据的规模和噪声敏感。
3.密度聚类算法密度聚类算法通过计算数据点周围的密度来确定聚类结构。
DBSCAN是最常见的密度聚类算法之一,它通过指定半径和邻域密度来定义聚类。
DBSCAN能够识别任意形状的聚类,并且对噪声和异常值具有较高的鲁棒性。
然而,密度聚类算法对参数的选择非常敏感,并且对高维数据和不同密度的聚类效果较差。
4.基于概率的聚类算法基于概率的聚类算法假设数据服从其中一种概率分布,并通过最大化似然函数来进行聚类。
GMM (Gaussian Mixture Model) 是一种常见的基于概率的聚类算法,它假设数据由多个高斯分布组成。
GMM算法能够分离具有不同协方差的聚类,适用于高维数据和非球状的聚类。
然而,该算法对初始参数的选择敏感,并且计算复杂度较高。
5.划分聚类算法划分聚类算法将数据划分为互斥的聚类,然后通过迭代地重新分配数据点来优化聚类质量。
PAM (Partitioning Around Medoids) 和CLARA (Clustering Large Applications)是常见的划分聚类算法。
数据挖掘聚类方法
数据挖掘聚类方法数据挖掘是从大量数据中发现有用的信息和模式的过程。
聚类是数据挖掘中的一种重要方法,它将数据对象划分为一组相似的子集,称为簇。
聚类方法可以为数据分析和决策提供有用的信息,有助于理解数据之间的关系,以及发现数据中隐藏的模式和结构。
在数据挖掘中,有许多聚类方法可以选择,下面将简要介绍几种常见的聚类方法。
1. K-means聚类算法:K-means是最常用的聚类算法之一、它将数据划分为K个簇,其中K是用户定义的参数。
该算法通过计算每个数据点和簇中心之间的距离来确定每个数据点属于哪个簇。
迭代地更新簇中心直到达到停止准则,例如簇中心不再改变或达到最大迭代次数。
2.层次聚类算法:层次聚类是一种自底向上或自顶向下的聚类方法。
自底向上的层次聚类从每个数据点开始,并将其合并到形成类似的数据点的簇中,最终形成一个完整的层次聚类树。
自顶向下的层次聚类从所有数据点开始,将其划分为较小的簇,并逐渐进行合并,最终形成一个完整的层次聚类树。
层次聚类可以通过不同的相似度度量方法来执行,例如单连接和完整连接。
3. 密度聚类算法:密度聚类是一种根据数据点之间的密度将数据划分为不同簇的方法。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类算法。
DBSCAN基于定义半径内存在最小数量数据点的密度来确定核心点,并通过核心点之间的连通性来形成簇。
4. 基于模型的聚类算法:基于模型的聚类方法假设数据是从特定概率分布生成的,并试图通过对数据进行建模来识别簇。
混合高斯模型(Gaussian Mixture Model,GMM)是基于模型的聚类方法的一个例子。
GMM假设数据是由多个高斯分布组成的,通过最大似然估计来确定每个数据点属于哪个高斯分布。
在选择合适的聚类方法时,需要考虑数据的特性、问题的目标以及算法的优缺点。
不同聚类方法适用于不同类型的数据和问题。
聚类算法的优缺点分析
聚类算法的优缺点分析
一、聚类算法的定义
聚类算法是一种数据挖掘技术,它可以根据数据的相似性将数据分成不同的组。
聚类算法常用于市场分析、生物信息学、搜索引擎优化等领域,研究聚类算法的优缺点有助于更好地理解和应用这一技术。
二、优点分析
1. 数据解释性强:聚类算法可以将数据按照相似性进行分组,这有助于对数据进行解释和理解。
2. 发现隐藏模式:聚类算法可以帮助用户发现数据中的隐藏模式和规律,为决策提供支持。
3. 无监督学习:聚类算法是一种无监督学习方法,不需要预先标记的训练数据,适用于大多数数据挖掘场景。
4. 数据预处理:聚类算法可以用于数据预处理,帮助用户减少数据维度,提高数据处理效率。
三、缺点分析
1. 需要选择合适的距离度量:聚类算法的效果与距离度量的选择有关,不同的距离度量会导致不同的聚类结果。
2. 对初始值敏感:聚类算法对初始值敏感,初始值的选择会影响最终的聚类结果,需要谨慎选择。
3. 处理噪声和异常值困难:聚类算法对噪声和异常值比较敏感,这会影响聚类结果的准确性。
4. 难以处理大规模数据:一些聚类算法在处理大规模数据时效率较低,需要耗费大量的计算资源和时间。
四、结论
聚类算法是一种强大的数据挖掘技术,它可以帮助用户发现数据中的隐藏规律和模式,对于无监督学习和数据预处理都有很好的应用前景。
然而,聚类算法也存在一些缺点,比如对初始值敏感、处理噪声和异常值困难等问题,需要在实际应用中充分考虑。
在未来的研究中,可以进一步探讨聚类算法的改进和优化,以提高其在实际应用中的效率和准确性。
聚类算法:K-Means和DBSCAN的比较
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
各种聚类算法的比较
各种聚类算法的比较聚类算法是一种无监督学习方法,用于将样本划分为具有相似特征的不同组别。
在机器学习和数据挖掘中被广泛应用。
有许多不同的聚类算法可供选择,每个算法有其独特的优点和适用范围。
在本文中,我们将比较几种常用的聚类算法,以帮助选择最适合特定问题和数据集的算法。
1.K均值聚类算法:K均值算法是一种经典的聚类算法。
它将数据点分为K个不同的簇,使得同一簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。
该算法计算复杂度较低,适用于大数据集。
然而,该算法对初始聚类中心的选择非常敏感,并且只能处理数值型数据。
2.层次聚类算法:层次聚类算法通过计算数据点之间的相似性将它们逐步聚类成树状结构。
该算法不需要事先指定聚类个数,并且可以处理各种数据类型。
然而,该算法在处理大数据集时计算复杂度较高,并且结果的质量受到相似性度量的影响。
3.密度聚类算法:密度聚类算法使用数据点密度来识别簇。
该算法可以处理不规则形状的簇,并且对初始聚类中心的选择不敏感。
DBSCAN是一种常用的密度聚类算法。
然而,该算法对密度参数的选择敏感,并且在处理高维数据时效果可能不好。
4.基于模型的聚类算法:基于模型的聚类算法将数据点建模为一些概率分布的样本。
该算法可以处理不同形状和大小的簇,并且能够进行概率推断。
高斯混合模型(GMM)是一种常用的基于模型的聚类算法。
然而,该算法对模型的选择和参数估计比较困难。
5.谱聚类算法:谱聚类算法通过矩阵分解来对数据进行聚类。
该算法可以处理非线性可分的数据,并且不需要事先指定聚类个数。
然而,该算法在处理大数据集时计算开销较大,并且对相似度矩阵的构建方法敏感。
以上只是一些常见的聚类算法,实际上还有许多其他聚类算法可供选择,如affinity propagation、BIRCH、OPTICS等。
每种算法都有其独特的特点和适用范围。
在选择聚类算法时,需要考虑数据集的规模、维度、特征类型以及问题的特殊需求等因素。
知识点归纳 数据挖掘中的聚类分析与分类算法
知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。
在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。
本文将对这两个知识点进行归纳总结。
一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。
其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。
聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。
常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。
它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。
2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。
Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。
3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。
这类算法可以有效地发现具有不同密度分布的聚类。
二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。
通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。
分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。
常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。
它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。
2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。
它假设特征之间相互独立,并通过计算条件概率来进行分类预测。
3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。
数据挖掘中的聚类算法与分类算法比较
数据挖掘中的聚类算法与分类算法比较数据挖掘是一种从大规模数据集中提取模式或关系的技术。
在数据挖掘中,聚类算法和分类算法是两种常用的技术,它们分别用于发现数据中的相似模式和对数据进行分类。
本文将比较这两种算法的特点、应用场景、优缺点等方面。
首先,聚类算法和分类算法的基本原理和目标是不同的。
聚类算法旨在将数据集中的对象分成具有相似特征的多个群组,以便从数据中发现隐藏的结构和模式。
而分类算法则是对给定的数据对象进行分类,将其分到事先定义好的类别中。
其次,聚类算法和分类算法的应用场景不同。
聚类算法通常用于数据探索和分析,例如市场细分、用户群体分析等。
而分类算法通常用于预测和决策,例如垃圾邮件过滤、信用评分等。
在算法效果方面,聚类算法和分类算法各有优缺点。
聚类算法的优点是能够自动发现数据中的潜在结构,不需要先验知识,适用于未标记数据。
但是其缺点是难以确定最佳的聚类数目和聚类质量评价。
分类算法的优点是可以进行有监督学习,需要少量标记数据就能实现高精度的分类。
但是其缺点是需要预先定义类别,且对噪声和特征空间较大的数据不够稳定。
此外,聚类算法和分类算法在不同的数据特征下也会有不同的表现。
聚类算法对于具有明显分布结构的数据效果较好,而分类算法对于具有清晰类别的数据效果较好。
因此,在实际应用中,我们需要根据数据的特点选择适合的算法来处理。
在选择算法时,我们需要综合考虑数据的特点、应用场景、算法的优缺点等因素。
有时候,我们也可以将聚类算法和分类算法结合起来使用,例如可以先用聚类算法将数据集进行分组,然后再在每个小组中应用分类算法进行预测。
总的来说,聚类算法和分类算法各有其适用的场景和优缺点,我们需要根据具体情况选择合适的算法。
在实际应用中,我们也可以结合不同的算法来发挥它们的优势,以更好地解决问题。
希望本文的比较能够帮助读者更好地理解聚类算法和分类算法的特点和应用。
数据挖掘中的聚类算法与分类算法比较
数据挖掘中的聚类算法与分类算法比较数据挖掘是一种从大量的数据中发现规律和模式的技术。
在数据挖掘中,聚类算法和分类算法是两种常用的方法。
本文将对聚类算法和分类算法进行比较,并介绍它们的不同特点。
首先,聚类算法是一种将数据分成不同组的方法。
聚类算法通过计算数据点之间的相似性来将数据划分为不同的簇。
常用的聚类算法有K-means、层次聚类和密度聚类等。
聚类算法可以帮助我们发现数据中隐藏的模式和结构,以及探索数据之间的关系。
聚类算法的主要优点是无监督学习,可以在没有标签的情况下对数据进行分组。
然而,聚类算法对于大规模数据集和高维数据的处理效果较差,且对初始参数的敏感性较高。
与之相反,分类算法是将数据分成预定义类别的方法。
分类算法通过学习先验知识和特征来确定数据所属的类别。
常用的分类算法有决策树、朴素贝叶斯和支持向量机等。
分类算法可以帮助我们对未知数据进行预测和分类。
分类算法的主要优点是可以利用标记数据进行有监督学习,因此对于小规模数据和有标签数据的处理效果较好。
然而,分类算法在遇到类别不平衡、特征选择不当等问题时性能可能下降。
总结起来,聚类算法和分类算法在数据挖掘中各有优势和限制。
聚类算法适用于无标签数据的探索和分组,可以揭示数据中的潜在模式和结构。
而分类算法适用于有标签数据的分类和预测,可以根据已有知识和特征对未知数据进行分类。
在实际应用中,我们可以根据具体问题和数据的特点选择合适的算法。
然而,聚类算法与分类算法之间也存在一些相似之处。
首先,它们都属于无监督学习算法,都可以对数据进行自动学习和模式发现。
其次,它们都需要对数据进行预处理和特征选择,以确保算法的有效性和准确性。
最后,无论是聚类算法还是分类算法,在应用过程中都需要根据实际需求进行参数调整和模型评估。
综上所述,聚类算法和分类算法在数据挖掘中有着重要的作用,并且各自有着不同的特点和应用场景。
在实际应用中,我们需要根据具体问题的需求和数据的特点选择合适的算法,以达到最好的挖掘结果。
常用聚类算法
常用聚类算法在数据挖掘、机器学习以及计算机视觉中,聚类分析是一种非常重要的机器学习技术,又被称作簇分析、集群分析或族群分析。
它的基本思想是将数据按其相似性分成若干个子集,以便我们更好的理解、探索数据。
目前主流的聚类算法有K-means、DBSCAN、层次聚类算法、谱聚类算法等等。
1、K-means聚类算法K-means聚类算法是最常用的无监督学习算法,它的基本思想是首先随机选择K个中心点,然后将每一个数据点都分到最接近它的中心点;接着重新计算每个簇的中心;最后重复这个过程直到所有数据点都收敛到设定的中心点,从而实现聚类。
K-means聚类算法的缺点是无法解决成簇的点的不同密度的情况,并且容易受到初始值的影响。
2、DBSCAN聚类算法DBSCAN(密度聚类域算法)是一种无监督学习算法,它通过构建指定半径E和指定最小点数MinPts之间的邻域来构建密度聚类,它能够发现任意形状的聚类,因而比K-means聚类算法更具有普适性。
它最大的优点是可以发现任意形状的聚类;最大的缺点是需要较大的计算量,运算时间可能比较长。
3、层次聚类算法层次聚类(Hierarchical Clustering)是一种以树状图的形式来表示聚类的算法。
它以数据点的距离(欧氏距离或余弦距离)为基础,将距离最近的点合并成一个簇,依次迭代,直到聚类完成。
层次聚类算法不需要设置K值,具有简单易懂的解释性,并且可以产生不同类型的层次聚类树,可以很好地反应数据的结构,但是它的时间复杂度比较高,有一定的性能问题。
4、谱聚类算法谱聚类算法(Spectral Clustering)是一种基于图的聚类算法,它将样本数据表示为图的节点,并用图的特征矩阵的特征向量来提取聚类的簇。
谱聚类算法可以处理任意形状的簇,并且可以有效地避免局部最小值问题,但它受到输入数据大小的约束,并且如果聚类数据存在噪声和重叠簇的情况下,它的表现不佳。
总结而言,K-means、DBSCAN、层次聚类算法、谱聚类算法等算法是聚类分析的常见算法,它们在数据挖掘、机器学习和计算机视觉等多领域有着重要的应用价值。
列举常用聚类算法
列举常用聚类算法聚类算法是一种将数据集中的相似数据分组的方法。
它是无监督学习的一种应用,可以在没有标签或类别信息的情况下对数据进行分类。
在机器学习和数据挖掘中,聚类算法被广泛应用于数据分析、图像处理、模式识别等领域。
本文将列举常用的聚类算法。
一、K均值聚类算法(K-means Clustering)K均值聚类算法是一种基于距离度量的聚类方法,它将数据集划分为K 个簇,每个簇包含距离其它簇最近的点。
该算法首先随机选择K个点作为初始质心,然后将每个点分配到与其距离最近的质心所在的簇中,并计算每个簇内所有点的平均值作为新的质心。
重复以上过程直到质心不再改变或达到预定迭代次数。
二、层次聚类算法(Hierarchical Clustering)层次聚类算法是一种自下而上或自上而下逐步合并或拆分簇来建立层次结构的方法。
该算法有两种实现方式:凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从每个数据点开始,将它们逐步合并成越来越大的簇,直到所有点都被合并为一个簇。
分裂层次聚类从整个数据集开始,将其逐步拆分成越来越小的簇,直到每个簇只包含一个点。
三、DBSCAN聚类算法(Density-Based Spatial Clustering of Applications with Noise)DBSCAN聚类算法是一种基于密度的聚类方法,它可以识别任意形状的簇,并能够自动排除离群值。
该算法首先选择一个未访问的核心点作为起始点,并找到其可达范围内的所有点,并将它们加入同一簇中。
然后继续寻找未访问的核心点,并重复以上过程直到所有核心点都被访问完毕。
四、谱聚类算法(Spectral Clustering)谱聚类算法是一种基于图论和线性代数的聚类方法,它将数据集看作是一个图,在图上进行划分。
该算法首先构建一个相似度矩阵或邻接矩阵,并通过特征值分解或奇异值分解来获取特征向量和特征值。
然后将特征向量作为新的数据集,使用K均值或层次聚类等方法对其进行聚类。
基因表达数据分析中的聚类方法比较
基因表达数据分析中的聚类方法比较基因表达数据分析是生物信息学领域的重要研究方向之一,通过分析基因在不同条件下的表达水平,可以揭示基因调控和细胞功能等方面的信息。
而聚类分析是一种常用的数据挖掘技术,可用于将基因表达数据分为不同的群组,进而探索基因之间的关联性和功能差异。
在基因表达数据分析中,有多种聚类方法可供选择,本文将对几种常见的聚类方法进行比较与评估。
1. K-均值聚类算法K-均值聚类是最常用的聚类方法之一,其基本思想是将n个数据点划分为k个簇,使得簇内的数据点之间的差异最小。
算法步骤包括随机选择k个初始质心,将数据点分配给质心所属的簇,更新质心位置,重复以上两个步骤直至收敛。
这种算法简单、易于理解和实现,但对初始质心选择敏感,结果可能会受到局部最优解的影响。
2. 层次聚类算法层次聚类是一种将数据点逐步分割或合并为层次化结构的聚类方法。
主要分为聚合聚类和分裂聚类两种类型。
聚合聚类从单个数据点开始逐步合并,直到所有数据点形成一个大的簇。
分裂聚类从一个大的簇开始逐步分割,直到每个簇只包含一个数据点。
这种方法不需要预先确定聚类数目,但结果可能受到数据点之间的距离度量方法的影响。
3. 密度聚类算法密度聚类算法通过考察数据点周围的密度来识别簇区域。
其中最著名的算法是DBSCAN(Density-Based Spatial Clustering of Applications with Noise)。
DBSCAN根据两个参数(邻域半径和最小邻域点数)识别核心点、边界点和噪声点,并以核心点为中心构建簇。
相比于K-均值聚类,密度聚类对数据分布的假设更弱,能够捕获任意形状的簇,但结果可能受到参数选择的影响。
4. 模型聚类算法模型聚类算法通过假设数据点符合特定的概率模型来识别簇结构。
其中最常用的算法是高斯混合模型(GaussianMixture Model,GMM)。
GMM假设数据点由多个高斯分布组合而成,通过最大似然估计方法估计模型参数,并使用期望最大化(Expectation-Maximization,EM)算法进行求解。
数据分析知识:数据挖掘中的聚类和分类算法
数据分析知识:数据挖掘中的聚类和分类算法数据挖掘中的聚类和分类算法随着大数据时代的到来,数据挖掘成为了一项重要的技术,它可以从海量的数据中发掘出有价值的信息,为决策提供依据。
聚类和分类是数据挖掘中两个重要的算法,本文将分别介绍它们的原理、应用和优缺点。
一、聚类算法聚类算法是将数据对象分成若干个互不相交的簇,使得同一簇内部的数据对象相似度尽可能大,不同簇之间的相似度尽可能小。
聚类算法可以用于市场细分、图像分类、文本挖掘等领域。
1.原理聚类算法的基本思想是将数据对象划分为多个簇,在簇内部的数据相似度较高,在簇之间的数据相似度较低。
聚类算法的思路大致可以分为以下几步:(1)确定簇的个数。
一般来说,簇的个数是需要依据不同的业务需求来确定的,可以通过专家经验和数据分析等方式确定。
(2)选择距离或相似度度量方法。
距离或相似度度量方法是选择簇内与簇间的距离计算量,包括欧氏距离、曼哈顿距离、余弦相似度等。
(3)选择聚类算法。
常用的聚类算法包括K-means、层次聚类等。
2.应用聚类算法被广泛应用于各个领域。
在市场细分中,聚类算法可以根据消费者的购买行为将消费者分成若干组,并提取每组消费者的特征,以便制定针对性的推广策略。
在图像分类中,聚类算法可以将图片分类至不同的文件夹中,方便用户查找使用。
在文本挖掘中,聚类算法可以将相似的文章聚类至同一类中,提高信息检索的效率。
3.优缺点(1)优点:简单易实现,聚类结果可解释性强,对处理大样本数据积极。
(2)缺点:对初始簇心的选择比较敏感,只有全局最优解没有局部最优解,需要复杂度高的算法。
二、分类算法分类算法是通过学习得到一个分类函数,将未知样本分类到合适的类别中。
分类算法可以应用于手写字符识别、信用评估、疾病诊断等领域。
1.原理分类算法主要包含三个主要步骤:训练、分类和评估。
(1)训练训练是分类算法中最主要的环节之一,它是通过已知的样本数据集来训练分类函数。
训练的目的是得到一个合适的分类模型,使其能够对未知样本进行准确分类。
数据挖掘聚类算法总结
聚类算法总结划分方法每个数据被归入相互不同重叠的k个cluster之一目标:cluster内距离最小一、K-Means 算法:(1)算法思想:指定cluster数目为k;随机划分数据到k个子集;计算每个子集的“中心”数据;*计算所有数据到k个“中心”距离;*将每个数据所属类别调整到里数据最近“中心”所代表的cluster/子集;重复上述两个步骤,直至收敛。
(2)算法优点:简单,实现简单;运行时间复杂度较低:0(元组数n * cluster数k *迭代次数t)。
目标明确:最小化类内距离。
(3)算法不足:易陷入局部最优解(和初始值密切相关);“中心”计算时,如何处理标称数据?;需要预置k值;对噪声数据/孤立点敏感;非凸cluster的识别能力弱。
(4)算法改进:K-Means算法的“中心”点是虚拟数据,不一定在数据集合中存在,改成某实际靠近中心点且存在的数据,得到“k-中心点”算法;降低了噪声、离群点的影响,增加了时间代价;标称属性的“中心”用众数代替均值,及改进的距离计算方法;改进初始时刻数据划分方法或中心点选择方法,如PAM算法。
二、PAM算法(围绕中心点划分方法)(1)算法思想:随机选择k个种子为中心点,即cluster的代表,将数据点划归到最近中心点/种子代表的cluster;对所有(种子,非种子)对,尝试交换它们,检查是否能提高聚类质量:所有元组到各自中心”的距离和。
选择最好的能提升结果质量所对应的交换,实施交换,直至算法收敛。
(2)算法评述:K-medoids算法的改进;可以用一些启发式方法选择交换的种子和非种子;易陷入局部最优。
三、针对大规模数据集改进算法(1)主要解决问题:数据集无法一次载入内存;重复多次计算一个点/数据到其它数据的距离;(2)CLARA 算法:对数据集中的数据进行采样,在采样得到的子集上寻找中心点,执行PAM算法;(3)CLARANS 算法:执行PAM算法,其中没有搜索所有可能的实施交换的对,仅仅执行L次(种子,非种子)对的交换;层次方法层次聚类:在不同概念层次上各自形成clusters,构成一•棵树状图①endrogram)重点考虑优化目标:cluster之间的距离最大化核心问题:两个cluster之间的距离如何计算的问题(最小、最大、平均距离、虚拟中心、Medoid距离)一、主要层次算法:(1)AGNES算法(凝聚思想):自底向上,找两个簇,它们中最相似两个数据的距离最小,则合并这两个簇;迭代该过程,直至所有对象最终合并形成一个簇。
聚类分析方法比较
聚类分析方法比较聚类分析是一种数据挖掘技术,用于将一组样本分为具有相似特征的组或簇。
聚类分析方法有很多种,包括层次聚类、K-means、DBSCAN、SOM等。
这些方法在不同的领域和应用中可能有不同的优势和适用性。
下面将对几种常见的聚类分析方法进行比较。
1. 层次聚类(Hierarchical Clustering)层次聚类是一种自下而上的聚类方法,将样本逐步合并形成层次聚类树。
层次聚类的优点是可视化效果好,可以根据聚类树划分不同的组别。
然而,层次聚类的计算复杂度高,适用于小样本量的情况。
2. K-meansK-means是一种常用的聚类算法,通过计算样本间的欧式距离将样本划分为K 个簇。
K-means的优点是计算速度快,对大规模数据集效果好。
然而,K-means 对初始质心的选择敏感,并且需要预先设定簇的个数。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise) DBSCAN是一种基于密度的聚类方法,通过设定样本周围邻域的密度阈值,将稠密区域划分为簇,将稀疏区域划分为噪声。
DBSCAN的优点是对初始参数不敏感,可以发现任意形状的簇。
然而,DBSCAN对数据分布的要求较高,对密度差异较大的数据集不适用。
4. SOM(Self-Organizing Maps)SOM是一种无监督学习方法,通过将多维样本映射到低维的神经网络空间中,实现样本的聚类。
SOM的优点是可以保留样本的拓扑结构,并且对噪声具有较好的鲁棒性。
然而,SOM的计算复杂度较高,需要预先设定神经网络的参数。
除了以上几种聚类分析方法,还有许多其他的方法,如谱聚类、模糊聚类等。
这些方法的选择应根据具体应用的需求和数据特征来确定。
在选择聚类方法时,需要考虑以下几个因素:1. 数据类型:不同的聚类方法适用于不同类型的数据,如数值型数据、类别型数据、文本数据等。
lloyd算法和k-mean算法
Lloyd算法和K-means算法是在数据挖掘和机器学习领域中常用的聚类算法。
它们都是基于迭代优化方法,通过将数据点分配到不同的聚类中心来实现聚类。
在本文中,我们将对这两种算法进行详细的介绍和比较。
1. Lloyd算法Lloyd算法,也称为K-means算法,是一种迭代优化算法,用于将数据点分配到K个聚类中心中。
该算法的基本思想是不断迭代地更新聚类中心,直到达到收敛条件为止。
具体步骤如下:1) 随机初始化K个聚类中心;2) 将每个数据点分配到距离最近的聚类中心所在的类别中;3) 更新每个聚类中心为其所包含数据点的平均值;4) 重复步骤2和步骤3,直到满足收敛条件。
Lloyd算法的优点在于简单、直观,并且易于实现。
然而,该算法也有一些缺点,例如对初始聚类中心的选择敏感,容易陷入局部最优解等。
2. K-means算法与Lloyd算法相似,K-means算法也是一种聚类算法,用于将数据点分配到K个聚类中心中。
与Lloyd算法不同的是,K-means算法在每次迭代中优化的是目标函数,而不是直接更新聚类中心。
具体步骤如下:1) 随机初始化K个聚类中心;2) 将每个数据点分配到距离最近的聚类中心所在的类别中;3) 更新目标函数,如聚类距离的总平方和;4) 重复步骤2和步骤3,直到满足收敛条件。
K-means算法相对于Lloyd算法的优点在于可以更灵活地定义目标函数,从而更好地适应不同的数据分布。
然而,K-means算法也有一些缺点,如对初始聚类中心的选择敏感,容易陷入局部最优解等。
3. 对比分析在实际应用中,Lloyd算法和K-means算法都有各自的优劣势。
Lloyd算法相对简单直观,易于理解和实现,适用于大规模数据集。
但是,Lloyd算法容易受到初始聚类中心的选择影响,从而得到不理想的聚类结果。
相比之下,K-means算法可以更灵活地定义目标函数,适应不同的数据分布,提高聚类效果。
但是,K-means算法要求目标函数的连续性和可微性,适用范围相对较窄。
7种常用的聚类方法
7种常用的聚类方法聚类是一种常用的数据挖掘算法,它的目的是将大量数据中的对象以类的形式进行分类。
在机器学习领域,聚类有着广泛的应用,本文将介绍7种常用的聚类方法,并针对其优势与劣势进行介绍。
第一种聚类方法是K均值(K-means)聚类。
K均值聚类是最常用的聚类算法之一,它利用数据对象之间的距离来划分聚类,通过不断重新计算距离,最终形成最佳聚类。
K均值聚类具有算法简单,分类速度快等优点,但同时具有聚类结果较为粗糙等劣势。
第二种聚类方法是层次聚类。
层次聚类是一种根据样本间的相似性对对象进行划分的方法,它首先把每个样本看做一个类,然后不断地把相似的类合并,直到满足某一条件为止。
层次聚类的优点是可以有效地进行大规模的数据分析,分析结果比较准确,在给定的聚类数目里能够得到最优结果,但是层次聚类的运行时间较长,且无法处理数据缺失等问题。
第三种聚类方法是模糊c均值聚类(FCM)。
模糊c均值聚类是基于K均值聚类的一种改进算法,它允许每一个数据对象同时属于多个不同的类。
FCM可以解决K均值聚类的不确定性和模糊性问题,具有可以提高分类准确性,可以处理非球形类等优势,但同时具有复杂度高,难以精确参数等劣势。
第四种聚类方法是基于密度的聚类(DBSCAN)。
DBSCAN可以有效地将数据点按照其密度划分为不同的类,它将空间距离和密度作为划分数据点的方式,把低密度区域划分为噪声点,把具有较高密度的区域划分为聚类,DBSCAN具有算法简单,可以识别异常点的优点,但同时需要用户设置一个密度阈值,而且难以处理数据缺失等问题。
第五种聚类方法是基于分布的聚类(GMM)。
GMM是一种概率模型,它利用一个混合参数模型来表达数据的分布,其中每一个组分表示一个聚类类别。
GMM有着较高的准确度,处理多分量分布,不需要自行调整参数等优点,但同时具有计算量大,对运行环境要求较高等劣势。
第六种聚类方法是平衡迭代聚类(BIRCH)。
BIRCH是一种基于树结构的聚类算法,其目的是通过构建CF树来细分由大量数据点组成的类,BIRCH的优势在于其运行速度较快,能够处理大规模的数据,但同时具有聚类结果与K均值聚类结果相比较模糊,计算空间要求较高等劣势。
数据分析中的聚类和分类算法
数据分析中的聚类和分类算法数据分析在当今社会中扮演着越来越重要的角色,它能帮助我们发现数据中隐藏的模式、规律和趋势。
在数据分析的过程中,聚类和分类算法是两种常用的技术,它们可以帮助我们对数据进行归类和组织,为后续的数据挖掘和决策提供有价值的信息。
1. 聚类算法聚类算法是一种将数据对象划分为不同组别的技术。
它通过测量数据对象之间的相似性来实现聚类。
常见的聚类算法包括K均值聚类、DBSCAN和层次聚类等。
1.1 K均值聚类K均值聚类是一种基于距离度量的聚类算法。
它将数据对象划分为K个不同的组别,并且最小化组内对象的平均距离。
算法的核心思想是通过不断迭代更新每个数据对象所属的组别,直到达到收敛条件。
K均值聚类算法简单有效,广泛应用于数据分析领域。
1.2 DBSCANDBSCAN是一种基于密度的聚类算法。
它将数据对象划分为核心对象、边界对象和噪声对象三类,并且根据对象之间的密度关系进行聚类。
DBSCAN算法通过设置距离阈值和密度阈值,可以灵活地识别不同形状和大小的簇。
1.3 层次聚类层次聚类是一种自底向上的聚类算法。
它首先将每个数据对象视为一个单独的簇,然后逐步合并相邻的簇,直到所有数据对象组成一个大的簇。
层次聚类算法可以通过不同的合并策略和距离度量来得到不同的聚类结果。
2. 分类算法分类算法是一种将数据对象分配到预定义类别或标签的技术。
它通过学习已知类别的样本数据来建立分类模型,并用该模型对新的未知数据进行预测。
常见的分类算法包括决策树、朴素贝叶斯和支持向量机等。
2.1 决策树决策树是一种基于树形结构的分类算法。
它通过判断数据对象在特征空间上的取值来进行分类。
决策树的每个内部节点表示对一个特征的判断,每个叶子节点表示一个类别的预测。
决策树算法具有解释性强、易于理解和应用的特点。
2.2 朴素贝叶斯朴素贝叶斯是一种基于概率统计的分类算法。
它假设特征之间相互独立,并通过计算每个类别的后验概率来进行分类。
朴素贝叶斯算法简单高效,适用于处理大规模的数据集。
数据挖掘中的聚类分析算法
数据挖掘中的聚类分析算法在数据挖掘领域,聚类分析算法是一种常用的技术,可用于将数据集中的对象分成相似的组或簇。
通过聚类分析,可以揭示数据中的内在结构和模式,为进一步的数据分析、模式识别和决策支持提供基础。
一、介绍聚类分析是一种无监督学习算法,它不需要人为提供标签或类别信息,而是通过对数据集中的对象进行相似性度量和自动分类来实现聚类。
它通过计算数据对象之间的距离或相似度,将相似的对象归于同一簇,不相似的对象则归于不同簇。
二、K均值算法K均值算法是聚类分析中最常用的算法之一。
它通过将数据集划分为K个簇,其中K是用户提供的参数,然后迭代地调整簇的中心位置,使得簇内的对象尽可能接近其聚类中心,簇间的距离尽可能远。
K均值算法的步骤如下:1. 选择初始的K个聚类中心,可以是随机选择或通过一定的启发式算法来确定;2. 将每个数据对象分配给距离其最近的聚类中心,形成初始的簇;3. 重新计算每个簇的聚类中心,即将每个簇中的对象的特征取平均值;4. 重复步骤2和步骤3,直到达到停止条件(如达到最大迭代次数或簇中心不再发生变化)。
K均值算法的优点是简单易实现,计算效率较高。
但是,它对初始聚类中心的选择非常敏感,且无法处理各簇大小不均衡、数据形状不规则或包含噪声的情况。
三、层次聚类算法层次聚类算法是一种将数据集从层次结构的角度进行划分的聚类方法。
它迭代地合并或分割簇,直到满足某个停止条件为止。
层次聚类算法有两种主要类型:1. 凝聚型层次聚类:凝聚型层次聚类从单个对象为簇开始,然后将最相似或最近的簇合并为一个新的簇,直到所有对象都合并为一个簇或达到停止条件。
它通过计算簇与簇之间的相似度来确定最近的簇。
2. 分裂型层次聚类:分裂型层次聚类从一个包含所有对象的簇开始,然后将簇逐渐分裂为子簇,直到每个簇只包含一个对象或达到停止条件。
它通过计算簇内对象之间的相似度来确定分裂的位置。
层次聚类算法的优点是不需要预先指定聚类的个数,且可以直观地展示数据的层次结构。
数据挖掘中的聚类算法与分类算法比较
数据挖掘中的聚类算法与分类算法比较在数据挖掘中,聚类算法和分类算法是两种常用的无监督学习方法。
它们在数据分析和模式识别中发挥着重要的作用。
虽然它们都可以用于对数据进行分类和分组,但它们的原理和应用场景有一定的差异。
接下来,我将详细比较聚类算法和分类算法。
首先,聚类算法是一种将数据对象划分为不同组的方法,每个组内的对象具有相似的特征。
它通过计算数据点之间的相似性或距离来确定数据点之间的关系,并根据这些关系将数据点分为不同的簇。
常用的聚类算法包括K均值聚类、层次聚类和密度聚类等。
聚类算法通常被用于数据探索、分析和可视化。
与聚类算法相比,分类算法是一种将数据分为已知类别的方法,它通过学习从已标记的训练样本中提取的知识来分类新的未标记数据。
分类算法通过构建分类模型来预测数据点的类别。
常见的分类算法包括决策树、朴素贝叶斯、支持向量机和神经网络等。
分类算法广泛应用于预测、识别和模式分类等领域。
聚类算法和分类算法之间的主要区别在于其目标和使用方法:1.目标:聚类算法旨在发现数据点之间的相似性和结构,将数据点划分为不同的簇;分类算法旨在将数据点分为已知的类别。
2.监督与无监督:聚类算法是一种无监督学习方法,因为它不需要事先标记的训练数据。
而分类算法是一种监督学习方法,它需要已标记的训练数据来构建分类模型。
3.输入数据:聚类算法通常接受未标记的数据集作为输入,它利用数据点之间的相似性将它们分组。
而分类算法通常接受由特征向量和已标记类别组成的训练数据集作为输入,它基于已知类别的特征来建立分类模型。
4.输出结果:聚类算法的输出是将数据点划分为不同的簇,每个簇内的数据点具有相似的特征。
而分类算法的输出是预测数据点的类别标签,即将数据点分为已知的类别。
5.应用场景:聚类算法常用于数据探索、分析和可视化等任务,帮助研究人员发现数据集中的隐藏模式和关系。
分类算法常用于预测、识别和模式分类等任务,帮助研究人员将新数据点分为已知类别。
常见的聚类算法
常见的聚类算法聚类算法是数据挖掘中常用的一种算法,它可以将原始数据根据其内在特性划分为多个组别。
常见的聚类算法有:(一)K-means聚类K-means聚类是最常用的聚类算法,具有易于实现的特点。
它的基本思想是:将相似的数据分组,使每个组的数据尽可能的相似。
它的核心就是把数据划分到K个不同的簇中,K一般通过轮廓系数来设置,轮廓系数越大,簇内数据差异性越低。
K-means聚类算法的缺点是容易受到噪声和异常值影响,并且计算非常耗时、无法选择最优K值。
(二)层次聚类层次聚类是基于层次分层的聚类方法,它可以根据数据间的相似度自动划分出簇,不需要设置K值,具有很好的可解释性。
它一般分为两种:综合层次聚类法和分裂层次聚类法。
综合层次聚类法是将所有的元素链接起来,然后再从上到下进行分割,最终得到若干个簇。
分割层次聚类法,则是将每个元素单独作为一个簇,然后再从下到上进行合并、分割,最终得到簇的结果。
层次聚类的缺点是受到噪声和异常值的影响比较严重,计算量比较大,不适用于数据量较大的情况。
(三)DBSCAN聚类DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,是最为灵活的聚类算法。
它的基本思想是:如果一个点的邻域(epsilon 距离内的点)足够的密集,那么这个点就是核心对象,属于某一类;而其他点如果与任何一个核心对象的距离都小于给定的值,也就是说他们都和核心对象关联在一起,这就是噪声点。
DBSCAN聚类算法的优点是具有良好的可解释性,而且不需要预先估计K值;它的缺点是受到数据结构和分布影响较大,且计算量较大,效率不够高。
(四)密度聚类密度聚类要求数据点有一定的密度,只有一定的密度的数据才能够被归为一类。
其核心思想是:把距离较近的数据归为一类,距离较远的数据归为不同的类。
它最大的优点在于可以有效的发现异常数据,并且改善数据分布密度不均的情况;它的缺点是受到噪音的影响比较严重,易带偏,聚类效果不尽如人意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 BIRCH算法
BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的表示可用对应的聚类特征,而不必用具体的一组点来表示。
它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。
BIRCH算法通过聚类特征可以方便地进行中心、半径、直径及类内、类间距离的运算。
算法的聚类特征树是一个具有两个参数分枝因子B和类直径T的高度平衡树。
分枝因子规定了树的每个节点子女的最多个数,而类直径体现了对一类点的直径大小的限制即这些点在多大范围内可以聚为一类,非叶子结点为它的子女的最大关键字,可以根据这些关键字进
行插人索引,它总结了其子女的信息。
聚类特征树可以动态构造,因此不要求所有数据读人内存,而可以在外存上逐个读人。
新的数据项总是插人到树中与该数据距离最近的叶子中。
如果插人后使得该叶子的直径大于类直径T,则把该叶子节点分裂。
其它叶子结点也需要检查是否超过分枝因子来判断其分裂与否,直至该数据插入到叶子中,并且满足不超过类直径,而每个非叶子节点的子女个数不大于分枝因子。
算法还可以通过改变类直径修改特征树大小,控制其占内存容量。
BIRCH算法通过一次扫描就可以进行较好的聚类,由此可见,该算法适合于大数据量。
对于给定的M兆内存空间,其空间复杂度为O(M),时间间复杂度为O(dNBlnB(M/P)).其中d为维数,N为节点数,P为内存页的大小,B为由P决定的分枝因子。
I/O花费与数据量成线性关系。
BIRCH算法只适用于类的分布呈凸形及球形的情况,并且由于BIRCH算法需提供正确的聚类个数和簇直径限制,对不可视的高维数据不可行。
2 CURE算法
CURE算法即使用代表点的聚类方法。
该算法先把每个数据点看成一类,然后合并距离最近的类直至类个数为所要求的个数为止。
CURE算法将传统对类的表示方法进行了改进,回避了用所有点或用中心和半径来表示一个类,而是从每一个类中抽取固定数量、分布较好的点作为描述此类的代表点,并将这些点乘以一个适当的收缩因子,使它们更靠近类的中心点。
将一个类用代表点表示,使得类的外延可以向非球形的形状扩展,从而可调整类的形状以表达那些非球形的类。
另外,收缩因子的使用减小了嗓音对聚类的影响。
CURE算法采用随机抽样与分割相结合的办法来提高算法的空间和时间效率,并且在算法中用了堆和K-d树结构来提高算法效率。
3 DBSCAN算法
DBSCAN算法即基于密度的聚类算法。
该算法利用类的密度连通性可以快速发现任意形状的类。
其基本思想是:对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目。
在DBSCAN算法中,发现一个类的过程是基于这样的事实:一个类能够被其中的任意一个核心对象所确定。
为了发现一个类,DBSCAN先从对象集D中找到任意一对象P,并查找D中关于关径Eps和最小对象数Minpts的从P密度可达的所有对象。
如果P是核心对象,即半径为Eps的P的邻域中包含的对象不少于Minpts,则根据算法,可以找到一个关于参数Eps和Minpts的类。
如果P是一个边界点,则半径为Eps的P邻域包含的对象少于Minpts,P被暂时标注为噪声点。
然后,DBSCAN处理D中
的下一个对象。
密度可达对象的获取是通过不断执行区域查询来实现的。
一个区域查询返回指定区域中的所有对象。
为了有效地执行区域查询,DBSCAN算法使用了空间查询R-树结构。
在进行聚类前,必须建立针对所有数据的R*-树。
另外,DBSCAN 要求用户指定一个全局参数Eps(为了减少计算量,预先确定参数Minpts)。
为了确定取值,DBSCAN计算任意对象与它的第k个最临近的对象之间的距离。
然后,根据求得的距离由小到大排序,并绘出排序后的图,称做k-dist图。
k-dist 图中的横坐标表示数据对象与它的第k个最近的对象间的距离;纵坐标为对应于某一k-dist距离值的数据对象的个数。
R*-树的建立和k-dist图的绘制非常消耗时间。
此外,为了得到较好的聚类结果,用户必须根据k-dist图,通过试探选定一个比较合适的Eps值。
DBSCAN算法不进行任何的预处理而直接对整个数据集进行聚类操作。
当数据量非常大时,就必须有大内存量支持,I/O消耗也非常大。
其时间复杂度为O(nlogn)(n为数据量),聚类过程的大部分时间用在区域查询操作上。
DBSCAN算法对参数Eps及Minpts非常敏感,且这两个参数很难确定。
4 K-pototypes算法
K-pototypes算法结合了K-means方法和根据K-means方法改进的能够处理符号属性的K-modes方法,同K-means
方法相比,K-pototypes 算法能够处理符号属性。
5 CLARANS算法
CLARANS算法即随机搜索聚类算法,是一种分割聚类方法。
它首先随机选择一个点作为当前点,然后随机检查它周
围不超过参数Maxneighbor个的一些邻接点,假如找到一个比它更好的邻接点,则把它移人该邻接点,否则把该点作为局部最小量。
然后再随机选择一个点来寻找另一个局部最小量,直至所找到的局部最小量数目达到用户要求为止。
该算法要求聚类的对象必须都预先调人内存,并且需多次扫描数据集,这对大数据量而言,无论时间复杂度还是空间复杂度都相当大。
虽通过引人R-树结构对其性能进行改善,使之能够处理基于磁盘的大型数据库,但R*-树的构造和维护代价太大。
该算法对脏数据和异常数据不敏感,但对数据物人顺序异常敏感,且只能处理凸形或球形边界聚类。
6 CLIQUE算法
CLIQUE 9法即自动子空间聚类算法。
该算法利用自顶向上方法求出各个子空间的聚类单元。
CUQUE算法主要用于找出在高维数据空间中存在的低维聚类。
为了求出d维空间聚类,必须组合给出所有d-1维子空间的聚类,导致其算法的空间和时间效率都较低,而且要求用户输入两个参数:数据取值空间等间隔距离和密度阔值。
这2个参数与样木数据紧密相关,用户一般难以确定。
CLIQUE算法对数据输人顺序不敏感。