数字巴特沃斯滤波器的设计
直接法设计巴特沃斯滤波器

直接法设计巴特沃斯滤波器
巴特沃斯滤波器是一种常用的数字滤波器,其特点是具有平坦的频率响应和较陡的截止陡度。
直接法设计巴特沃斯滤波器的步骤如下:
1. 确定滤波器的类型和截止频率。
根据要求选择巴特沃斯低通、高通、带通或带阻滤波器,同时确定截止频率。
2. 根据截止频率计算模拟滤波器参数。
使用巴特沃斯滤波器的公式计算模拟滤波器的参数,包括截止频率、通带增益、极点和零点的位置等。
3. 将模拟滤波器转换为数字滤波器。
利用双线性变换或者抽样定理等方法将模拟滤波器转换为数字滤波器,得到数字滤波器的巴特沃斯系数。
4. 实现数字滤波器。
使用巴特沃斯系数和数字滤波器的递推公式实现数字滤波器,可以使用C语言、Matlab等编程工具实现。
需要注意的是,直接法设计的巴特沃斯滤波器虽然具有平坦的频率响应和较陡的截止陡度,但会产生时域波形失真和相位偏移。
如果需要更好的时域响应和相位特性,可以考虑其它设计方法,如零相位滤波器、IIR滤波器等。
数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。
数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。
一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。
数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。
因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。
数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。
1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。
2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。
对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。
滤波器的阶数一般是与滤波器的性能相关的。
阶数越高,性能越好,但同时计算量也会更大。
在实际应用中,一般取4~8的阶数即可。
4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。
脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。
双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。
四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。
利用MATLAB设计巴特沃斯低通数字滤波器

利用MATLAB设计巴特沃斯低通数字滤波器引言数字滤波器是数字信号处理中的重要组成部分,可以用于去除信号中的噪音和不需要的频率成分。
巴特沃斯滤波器是一种常见的数字滤波器,被广泛应用于信号处理领域。
本文将介绍如何利用MATLAB设计巴特沃斯低通数字滤波器,并给出详细的步骤和示例代码。
设计步骤利用MATLAB设计巴特沃斯低通数字滤波器主要包括以下步骤:1.设计滤波器的参数2.计算滤波器的传递函数3.绘制滤波器的幅频响应曲线4.通过频域图像观察滤波器的性能下面将分别介绍每个步骤的详细操作。
设计滤波器的参数巴特沃斯低通数字滤波器的参数包括截止频率和阶数。
截止频率决定了滤波器的通频带,阶数决定了滤波器的陡峭程度。
通过MATLAB的butter()函数可以方便地设计巴特沃斯低通数字滤波器。
该函数的参数为滤波器的阶数和截止频率。
示例代码如下:order = 4; % 阶数cutoff_freq = 0.4; % 截止频率[b, a] = butter(order, cutoff_freq);计算滤波器的传递函数通过设计参数计算得到滤波器的传递函数。
传递函数是一个复数,包括了滤波器的频率响应信息。
使用MATLAB的freqz()函数可以计算滤波器的传递函数。
该函数的参数为滤波器的系数b和a,以及频率取样点的数量。
示例代码如下:freq_points = 512; % 频率取样点数量[h, w] = freqz(b, a, freq_points);绘制滤波器的幅频响应曲线经过计算得到的传递函数能够提供滤波器的幅频响应信息。
通过绘制幅频响应曲线,可以直观地观察滤波器的频率特性。
使用MATLAB的plot()函数可以绘制滤波器的幅频响应曲线。
该函数的参数为频率点和传递函数的幅值。
示例代码如下:magnitude = abs(h); % 幅值plot(w/pi, magnitude);xlabel('归一化频率');ylabel('幅值');title('巴特沃斯低通数字滤波器幅频响应');通过频域图像观察滤波器的性能通过绘制滤波器的频域图像,可以直观地观察滤波器对不同频率的信号的响应情况。
巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (3)3.4脉冲响应不法 (5)3.5实验所用MATLAB函数说明 (7)4.设计思路 (9)5、实验内容 (9)5.1实验程序 (9)5.2实验结果分析 (13)6.设计总结 (13)7.参考文献 (14)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,阻带截止频率120Hz,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。
如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。
巴特沃斯数字滤波器的设计与仿真实现

总770期第三十六期2021年12月河南科技Henan Science and Technology信息技术巴特沃斯数字滤波器的设计与仿真实现黄波(成都大学电子信息与电气工程学院,四川成都610106)摘要:数字通信系统传输数字信号时经常混杂着各种频率的干扰信号,数字滤波器可以利用数值运算,起到其他模拟滤波器根本无法实现的杂波滤除作用。
本文首先讨论了数字滤波器的原理,进一步给出了巴特沃斯数字滤波器的设计思路,然后利用MATLAB软件实现了对巴特沃斯数字滤波器的仿真试验,分析了巴特沃斯数字滤波器的各类幅频特性、相关的设计方法和对应的设计步骤等。
通过巴特沃斯数字滤波器的设计与实现,完成了低通滤波、高通滤波、带通滤波、带阻滤波的仿真试验,最后得到巴特沃斯数字滤波器的幅频特性曲线,并研究了巴特沃斯数字滤波器的相关幅频特性。
关键词:数字滤波器;巴特沃斯;MATLAB;幅频特性中图分类号:TN951文献标识码:A文章编号:1003-5168(2021)36-0010-03Design and Simulation of Butterworth Digital FilterHUANG Bo(School of electronic information and electrical engineering,Chengdu University,Chengdu Sichuan610106)Absrtact:When transmitting digital signals,digital communication systems are often mixed with interference signals of various frequencies.Digital filters can use numerical operation to achieve clutter filtering that other analog filters can not achieve at all.This paper first discusses the principle of digital filter,further gives the design idea of Butter⁃worth digital filter,then realizes the simulation of Butterworth digital filter by using MATLAB software,and analyzes various amplitude frequency characteristics,relevant design methods and corresponding design steps of Butterworth digital filter,through the design and implementation of Butterworth digital filter,the simulation of low-pass filter, high pass filter,band-pass filter and band stop filter are completed.Finally,the amplitude frequency characteristic curve of Butterworth digital filter is obtained,and the related amplitude frequency characteristics of Butterworth digi⁃tal filter are studied.Keywords:digital filter;butterworth;MATLAB;amplitude frequency characteristic数字滤波器作为数字信号处理的基础单元,可以完成对数字信号实现信号过滤、信号检测和相关参数估计等处理工作。
巴特沃斯滤波器课程设计

《数字信号处理》课程设计报告学院信息工程学院专业通信工程专业班级学号学生姓名二0一0年十二月巴特沃斯高通数字滤波器设计要求:设计一个数字高通滤波器,要求通带截止频率ωp=0.8πrad,通带衰减不大于3dB,阻带截止频率ωs=0.44dB,阻带衰减不小于15dB。
希望采用巴特沃斯型滤波器。
一、课程设计目的:1.了解巴特沃斯高通数字滤波器滤波器的概念及原理。
2、掌握巴特沃斯高通数字滤波器滤波器的设计方法。
3、综合运用数字信号处理的理论知识对语音信号进行时频分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。
4、综合运用专业及基础知识,解决实际工程技术问题的能力。
二、1、数字滤波器所谓数字滤波器,是指输入输出均为数字信号,通过数字运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。
按照不同的分类方式,数字滤波器可以有很多种类型,但总起来可以分为两大类:经典滤波器和现代滤波器。
经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的成分分别占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波目的。
但是,如果信号和干扰的频谱相互重叠,则经典滤波器无法有效滤除干扰,最大限度恢复信号,这就需要现代滤波器。
现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度抑制干扰,同时最大限度恢复信号,达到最佳的滤波效果的目的。
2、模拟滤波器模拟滤波器的理论和设计方法已经发展的相当成熟,且有多种典型的模拟滤波器供我们选择,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器等。
这些滤波器有严格的设计公式、现成的曲线和图表供设计人员使用,而且所涉及的系统函数都满足电路实现条件。
c 2巴特沃斯低通滤波器的设计方法

2.数字滤波器的技术指标
我们通常用的数字滤波器一般属于选频滤波器。假设数字滤 波器的传输函数H(ejω)用下式表示:
H (e j ) H (e j ) e j ()
通带纹波幅度 阻带纹波幅度 通带截止频率 3dB通带截止频率 阻带截止频率
数字低通滤波器的技术要求
5
通带内和阻带内允许的衰减一般用dB数表示,通带内允许的
脉冲响应不变法 阶跃响应不变法 双线性变换法
Desired IIR
7
5.2 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟, 且有若干典型的模拟滤波器供我们选择,如巴特沃斯 (Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭 圆(Elliptic)滤波器、贝塞尔(Bessel)滤波器等,这些滤 波器都有严格的设计公式、现成的曲线和图表供设计 人员使用。
输函数
Ha ( p) N 1 1
( p pk )
(5.2.12)
k 0
15
式中,pk为归一化极点,用下式表示:
pk
sk c
最大衰减用ap表示,阻带内允许的最小衰减用as表示,ap和as分别 定义为:
H (e j0 ) ap 20 lg H (e jp ) dB
H (e j0 ) as 20 lg H (e js ) dB
(5.1.3) (5.1.4)
如将|H(ej0)|归一化为1,(5.1.3)和(5.1.4)式则表示成:
11
2.巴特沃斯低通滤波器的设计方法
幅度平方函数:
Ha(
j) 2
1 (
1
)2N
c
(5.2.6) 两个参数:N, Ωc
数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。
巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。
本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。
在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。
巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。
要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。
巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。
一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。
确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。
根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。
设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。
数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。
常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。
在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。
同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。
综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。
巴特沃斯数字带通滤波器

巴特沃斯数字带通滤波器《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月目录1. 课题描述2. 设计原理2.1 滤波器的分类2.2 数字滤波器的设计指标2.3 巴特沃斯数字带阻模拟滤波器2.3.1 巴特沃斯数字带通滤波器的设计原理2.3.2 巴特沃斯数字带通滤波器的设计步骤3. 设计内容3.1 用MATLAB编程实现3.2 设计结果分析4. 总结5. 参考文献课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:设计巴特沃斯数字带通滤波器,通带频率200~500hz,阻带上限频率600hz, 阻带下限频率150hz,通带衰减最大0.5dB,阻带最小衰减40dB,采样频率2000hz,画出幅频、相频响应曲线,并设计信号验证滤波器设计的正确性。
二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。
2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的MATLAB函数的说明)(3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年月日1 .课题描述数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。
数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。
使用MATLAB信号处理箱和BW(巴特沃斯)设计低通数字滤波器。
2.设计原理2.1 滤波器的分类数字滤波器有低通、高通、带通、带阻和全通等类型。
它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。
如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。
数字高通巴特沃斯滤波器的设计

目录摘要 (1)Abstract (1)引言 (1)1.数字高通滤波器的设计原理 (1)1.1双线性变换法简介 (1)1.2方案论证及确定 (2)2.设计步骤 (2)3.设计方案 (3)3.1解析计算 (3)3.2 MATLAB程序仿真 (4)结束语 (7)参考文献 (8)数字高通巴特沃斯滤波器的设计摘要:本文基于巴特沃斯高通滤波器的设计原理及双线性变换,介绍了数字高通滤波器的设计原理和设计步骤,并结合MATLAB实现数字高通巴特沃斯滤波器的仿真。
该设计证明数字高通巴特沃斯滤波器具有平稳的幅频特性。
关键词:巴特沃斯;模拟低通;数字高通;频率;MATLAB仿真The Analysis of Digital Butterworth High-Pass Filter Design Abstract: Based on the Butterworth high-pass filter design principle and the bilinear transform, this paper introduce digital high-pass filter design principles and design steps, and with the help of MATLAB a simulation on digital high pass Butterworth filter is successfully finished.The design demonstrates that the Butterworth high-pass filter has smooth amplitude frequency characteristics.Key words:Butterworth;Analog low-pass filter;Digital high-pass filter;Frequency;MATLAB simulation引言滤波器是一种对信号有处理作用的器件或电路。
巴特沃斯低通滤波器设计

巴特沃斯低通滤波器一、设计要求(1)设计一巴特沃斯数字低通滤波器,在0.3π通带频率范围内,通带幅度波动小于1dB ,在0.5π~πrad 阻带频率范围内,阻带衰减大于12dB 。
二.设计过程巴特沃斯双线性变换法(1)数字指数:p w =0.3π,s w =0.5π,(2)求p Ω,s Ω利用频率预畸变公式得:p Ω=2T tan 2p w =2T tan 320π=1.019⨯1Ts Ω=2T tan 2s w =2T tan 4π=2T (3)确定滤波器阶数sp λ=s p ΩΩ=211.019TT ⨯=1.963 sp k≈0.132 N=—lg lg sp sp k λ=—lg 0.132lg1.963≈3.0023 N=4 (4)确定系统函数G(p)= 43212.613 3.4142 2.61311p p p p ++++ c Ω=p Ω()10.12101p a N --=1.019⨯1T⨯()10.1124101-⨯⨯-=1.2065T P=11211c s z s T z ---=Ω+=1c Ω⨯2T ⨯1111z z ---+=11211.20651z z ---+ H(z)=G(p)=12341234146434.1675441.3465432.542711.06234 1.69864z z z z z z z z--------++++-+-+三.软件仿真(1)将分子分母带入Matlab 验证b=[1 4 6 4 1];a=[34.16754 -41.34654 32.5427 -11.06234 1.69864];[H,w]=freqz(b,a,1000);plot(w,20*log10(abs(H)/max(H)),'-');grid;xlabel('frequency');ylabel('magnitude');-250-200-150-100frequency m a g n i t u d e图(a )频率——幅度衰减图0.3π≈0.940.9250.930.9350.940.9450.950.955frequency m a g n i t u d e图(b)0.5π≈1.57frequency m a g n i t u d e图(c)(2)用Matlab 直接仿真出低通滤波器wp=2*tan(0.3*pi/2)*1000;ws=2*tan(0.5*pi/2)*1000;ap=1;as=12;[n,wn]=buttord(wp,ws,ap,as,'s');[b,a]=butter(n,wn,'s');[bn,an]=bilinear(b,a,1000);[H,w]=freqz(bn,an);plot(w,abs(H),'-');grid;xlabel('frequency');ylabel('magnitude');legend('双线性变化法');figure(2);plot(w,20*log10(abs(H)/max(H)),'-');grid;00.51 1.522.533.5frequency m a g n i t u d e0.3π≈0.94图(d)0.5π≈1.57图(e)四.分析将计算得出的低通滤波器系统函数H(z)的分子分母各项系数用Matlab验证,得图(a)幅频关系图。
巴特沃斯高通滤波器系数计算

b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
(4)巴特沃斯带阻滤波器系数计算 [b,a]=butter(ceil(n/2),[W1,W2],′stop′)
n为用buttord()设计出的带阻滤波器阶数。 butter(n,[W1,W2],′stop′)将返回2*n阶滤波器系数;
高通滤波器 在采样频率为8000Hz的条件下设计一个高通滤波器,要求 通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内 波动3dB,阻带内最小衰减65dB。
则有:
ωp=1500/4000 ωs=1000/4000 Rp=3 Rs=65
带通滤波器 在采样频率为8000Hz的条件下设计一个带通滤波器,要求 通 带 截 止 频 率 为 [ 8 0 0 Hz,1500Hz], 阻 带 起 始 频 率 为 [ 5 0 0 Hz,1800Hz], 通 带 内 波 动 3 dB, 阻 带 内 最 小 衰 减 45dB。
数字滤波器
一、数字滤波器的设计参数
fp:通带截止频率(Hz); fs:阻带起始频率(Hz); R
减; Rs:阻带内最小衰减(dB)。
设采样率为fN,则可将以上频率参数转换为归一化角频率: ωp:通带截止角频率(rad/s)
ωp =fp/(fN/2) ωs:阻带起始角频率(rad/s)
2 系数计算 由巴特沃斯滤波器的阶数n以及截止频率ωn可以计算出对应 传递函数H(z) 的分子分母系数。 MATLAB提供的命令是: (1) [b,a]=butter(n,Wn)
n为低通滤波器阶数; Wn为低通滤波器截止频率; b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
设计巴特沃斯数字带通滤波器

设计巴特沃斯数字带通滤波器,要求通带范围为:0.25π rad ≤ω≤0.45π rad,通带最大衰减为3dB ,阻带范围为0≤ω≤0.15π rad 和0.55π rad ≤ω≤πrad ,阻带最小衰减为40dB 。
利用双线性变换设计,写出设计过程,并用MATLAB 绘出幅频和相频特性曲线。
设计思路及计算:(1)确定技术指标,求得数字边缘频率:10.25Pp rad ωπ=,20.45Pp rad ωπ=,3p a dB =10.15Ps rad ωπ=,20.55Ps rad ωπ=,40s a dB =(2)将数字带通滤波器的技术指标转换为模拟带通滤波器技术指标:用双线性变换法,则2tan 2T ωΩ=,可得 (3)将带通滤波器的指标转换为模拟低通指标。
模拟低通归一化边界频率为:1Lp Ω=,()()2212221 1.9748Ps Pp Pp Ls Ps Pp Pp Ω-ΩΩΩ==ΩΩ-Ω(4)确定低通滤波器阶数N4020100.01s δ-==,()2211lg 1lg 10.01 6.76812lg 1.97482lg s s p N δ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭≥==⎛⎫Ω⎪ ⎪Ω⎝⎭取N =7。
(5)c c ΩΩ=Ω=1c Ω≈巴特沃兹模拟滤波器:(217)14711H (),()jK a k kk s p es p π++===-∏再由双线性变换即可得到所求。
代码实现:>>[N,Wn]=buttord([.25 .45],[.15 .55],3,40)N =7Wn =0.2482 0.4525>> [b,a]=butter(7,[.2482 .4525])b =Columns 1 through 100.0001 0 -0.00070 0.0022 0 -0.00360 0.0036 0Columns 11 through 15-0.0022 0 0.00070 -0.0001a =Columns 1 through 101.0000 -5.3094 16.2918-34.7303 56.9401 -74.5112 80.0108 -71.1129 52.6364-32.2233Columns 11 through 1516.1673 -6.4607 1.9827-0.4217 0.0523>> [h,w]=freqz(b,a,100); >>subplot(211)>>h1=20*log10(abs(h));>>plot(w/pi,h1);>>axis([0 1 -50 10]); >>subplot(212)>>plot(w/pi,angle(h))则滤波器传递函数为:幅频和相频曲线:由上图可知,已满足设计要求。
DSP实验4 巴特沃斯滤波器的设计与实现

实验四 巴特沃斯数字滤波器的设计与实现1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减; s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化角频率参数:p ω:通带截止角频率(rad/s ) ,)2//(N p p f f =ω;s ω:阻带起始角频率(rad/s ) ,)2//(N s s f f =ω通过以上参数就可以进行离散滤波器的设计。
● 低通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频 率为2000Hz ,通带内波动3dB ,阻带内最小衰减为50dB ,则p ω=1500/4000,s ω=2000/4000,p R =3dB ,s R =50dB 。
● 高通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频 率为1000Hz ,通带内波动3dB ,阻带内最小衰减为65dB ,则p ω=1500/4000,s ω=1000/4000,p R =3dB ,s R =65dB 。
● 带通滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻 带起始频率为[500Hz ,1800Hz],通带内波动3dB ,阻带内最小衰减为45dB ,则p ω=[800/4000,1500/4000],s ω=[500/4000,1800/4000],p R =3dB ,s R =45dB 。
● 带阻滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻 带起始频率为[1000Hz ,1300Hz],通带内波动3dB ,阻带内最小衰减为55dB ,则p ω=[800/4000,1500/4000],s ω=[1000/4000,1300/4000],p R =3dB ,s R =45dB 。
DSP_19巴特沃斯滤波器

2
1 p 1 c
2N
(2) 设 T=1,将数字域指标转换成模拟域指标得
20lg H a j 0.2 1 20lg H a j 0.3 15
代入巴特沃斯滤波器的幅度平方函数得
0.2 0.3 0.1 1.5 1 10 1 10 c c 解这两个方程得 N 5.8858 ,取 N 6,c 0.7032
2N 2N
0.3 100.11 c
2N
2N
0.2 101.5 , c
2N
0.3 100.1 c
2N
101.5 1
100.1 0.2 1.5 , lg 10 1 0.3
100.1 2
p 100.11 1 0.1 2 10 1 T
N
解 (1) 根据滤波器的指标得
20lg H e j 0.2 1 20lg H e j 0.3 15
16
巴特沃斯滤波器
Butterworth Filter
H a ( j p )
1 1
1 1
过渡带
1 p 1 c
2N
2 2
T
通带 阻带
p
2
15
c T
巴特沃斯滤波器
Butterworth Filter
p 1 c T 同理可得 1 c
2N
100.11
2N
这些极点对称于虚轴,而虚轴上无极点;N为奇数时, 实轴上有两个极点;N为偶数时,实轴上无极点;各个 极点间的角度为 / N 。图示为 N=3时各极点的分布 情况。
巴特沃斯低通滤波器设计

L1'
2
600 1.304 104
0.7654H
5.61mH
C2
1 c RS
C2'
2
1 1.304 104
600
1.8478F
0.038uF
L3
RS c
L'3
2
600 1.304 104
1.8478H
13.53mH
C4
1 c RS
C4'
2
1 1.304 104
600
0.7654F
0.016uF
设计实现电路
巴特沃斯低通滤波器迅速设计总结
一:根据滤波器性
能指标(通带内旳
最大衰减 c ,阻带
内旳最小衰减 s ,
截至频率 c ,阻带
起始频率 s )利用
公式
N
lg
1
s2
-1
2 lg s / c
求巴特沃斯低通滤波 器旳阶次N。
二:根据阶次N和考尔 型电路
RS' 1
L1' 0.7654
L'3 1.8478
一般情况下,电路是在匹配情况下工作,所以取
信源内阻 Rs 和负载电阻 RL 相等。
此时满足
Ha ( j0)
RL RS RL
1 2
根据反射系数公式
(s)
(
s)=1- 4RS RL
s' s
H
a
s
H
a
-s
j
达林顿电路构造
Rs 源电阻 RL 负载电阻
RS
I1
Es
V1
1
2
LC
I2
无损
巴特沃斯滤波器设计

实际设计中所能得到的滤波器的频率特性与理想滤波器的频率特性之间存在着一些显著的差 别,现以低通滤波器的频率特性为例进行说明。
1. 理想滤波器的特性:
设滤波器输入信号为 x(t) ,信号中混入噪音 u(t) ,它们有不同的频率成分。滤波器的单位脉冲
响应为 h(t) 。则理想滤波器输出为:
位没有特殊要求,则可以各种不同的组合来分配左半平面和右半平面的零点。
(3)根据具体情况,对比 A() 与 Ha (s) 的低频或高频特性就可以确定出增益常数 k。
例 5.1 根据以下幅度平方函数 A2 () 确定滤波器的系统函数 Ha (s) 。
A2
()
16(25 2 )2 (49 2 )(36 2
为了克服脉冲响应不变法的多值映射这一缺点我们首先把整个s平面压缩变换到某一中介的平面的一横带里宽度为即从然后再通过上面讨论过的标准变换关系将此横带变换到整个z平面上去这样就使s平面与z平面是一一对应的关系消除了多值变换性也就消除了频谱混叠现象基本原理如图513所示
数字信号处理电子教案
第五章 IIR 数字滤波器设计
c ——截止频率 s ——阻带起始频率
1 1 11
H (e j )
s c ——过渡带宽 在通带内幅度响应以 1 的误差接近于 1,即
11 H (e j ) 11 c
通带
2
过渡带 阻带
0
c s
图 5-3 实际滤波器的频率特性
s 为阻带起始频率,在阻带内幅度响应以小于 2 的误差接近于零,即
4(s2 25)
4s2 100
Ha (s) (s 6)(s 7) s2 13s 42
二、巴特沃斯(Butterworth)低通滤波器的设计
(完整word版)巴特沃斯数字低通滤波器的设计—双线性变换法

课程设计任务书2010—2011学年第一学期专业: 通信工程 学号: 080110509 姓名: 郭威课程设计名称: 数字信号处理课程设计设计题目: 巴特沃斯数字低通滤波器的设计—双线性变换法完成期限:自 2011 年 1 月 3 日至 2011 年 1 月 9 日共 1 周一.设计目的1.巩固所学的理论知识。
2.提高综合运用所学理论知识独立分析和解决问题的能力。
3.更好地将理论与实践相结合。
4.掌握信号分析与处理的基本方法与实现。
5.熟练使用MATLAB 语言进行编程实现。
二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。
三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。
四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB的系统分析与设计一信号处理西安:西安电子科技大学出版社,1998.指导教师(签字):教研室主任(签字):批准日期:年月日数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。
本文是设计一个数字低通滤波器。
根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。
关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述 (1)2设计原理 (1)2.1 IIR数字滤波器设计原理 (1)2.2巴特沃斯低通滤波器的原理 (2)2.3双线性变换法 (3)3设计过程 (6)4结果分析 (8)总结 (11)参考文献 (12)1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第1章摘要 (2)第2章巴特沃斯滤波器的设计 (2)第3章脉冲响应不变法 (4)第4章 MATLAB简介 (7)4.1 MATLAB介绍 (7)4.2 MATLAB命令介绍 (8)第5章仿真过程及仿真图 (8)5.1 仿真程序 (8)5.2 仿真波形 (9)第6章设计结论 (10)第7章结束语 (10)参考文献 (11)第1章 摘要随着科学技术的发展,信号处理理论和分析方法已应用于许多领域和学科中。
本题目是设计一个脉冲响应不变法设计数字低通滤波器。
在对信号进行分析与处理时,信号中经常伴有噪声。
根据有用信号和噪声的不同特征,消除或削弱干扰噪声.提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。
从本质上说,滤波就是改变信号中各频率分量的相对幅度和相位。
根据性质分为模拟滤波器和数字滤波器。
前者处理的是连续时间信号,后者处理的是离散时间信号。
模拟滤波器的理论和设计方法已发展的相当成熟,如巴特沃斯滤波器,切比雪夫滤波器,椭圆滤波器,贝塞尔滤波器等,这些滤波器都有严格的设计公式,现成的曲线和图表供设计人员使用。
设计要求要设计一个巴特沃斯滤波器,在用脉冲响应不变法转换为数字滤波器。
第2章 巴特沃斯滤波器的设计2.1巴特沃斯滤波器的幅度平方函数及其特点巴特沃斯模拟滤波器幅度平方函数的形式是()N c N c a j j j H 222)/(11)/(11ΩΩ+=ΩΩ+=Ω (5-6)式中N 为整数,是滤波器的阶次。
Ω=0时,)(Ωj H a =1时;当Ω=c Ω时,)(c a j H Ω=1/2 ,所以c Ω又称为3dB 截止频率。
2.2幅度平方函数的极点分布及)(s H a 的构成将幅度平方函数2)(Ωj H a 写成s 的函数 Nc s j N c a a j s j j s H s H 22)/(11)/(11)()(Ω+=ΩΩ+=-=Ω(5-7) 此式表明幅度平方函数有2N 个极点,极点k s 用下式表示 )21221(2)212(2/1*)()1(N k j c c j N k j c N k e e e j s +++Ω=Ω=Ω-=πππ k=0,1,2,……(5-8)这2N 个极点分布在s 平面半径为c Ω的圆上,角度间隔是π/N 弧度。
N=3时,极点间隔为π/3弧度或60度。
极点对虚轴是对称的,且不会落在虚轴上。
当N 是奇数时,实轴上有极点;当N 为偶数时,则实轴上没有极点。
巴特沃斯滤波器的N 个极点为 1,1,0;)21221(-⋯⋯=Ω=++N k e s N k j c k ,π (5-9)则)(s H a 的表达式即滤波器的系统函数为 ∏-=-Ω=10)()(N k k N ca ss s H (5-10) 2.3频率归一化问题式(5-10)即为所求滤波器的系统函数,可看出)(s H a 与c Ω有关,即使滤波器的幅度衰减特性相同,只要c Ω不同,)(s H a 就不一样。
为使设计统一,可将所以的频率归一化。
这里采用对3dB 截止频率c Ω归一化。
2.4设计步骤总结以上讨论,低通巴特沃斯滤波器的设计步骤如下:1)根据技术指标p s p Ω,,αα和s Ω,用式(5-17)求出N 。
2)按照(5-13),求出归一化极点,代入(5-12),得到归一化传输函数。
也可以直接查表.3)将)(p H a 去归一化。
将p=s/c Ω代入)(p H a ,得到实际的滤波器传输函数)(s H a 。
如果技术指标没有给出3dB 截止频率c Ω,可以按照式(5-18)或(5-19)求出。
第3章 脉冲响应不变法3.1脉冲响应不变法的核心核心是通过对连续函数)(t h a 等间隔采样得到离散序列)(nt h a ,使)()(nT h n h a =(其中T 为采样间隔),因此脉冲响应不变法是一种时域上的转换方法,转换步骤如下)()()()()(z h n h nT h t h s H z a a a −−→−=−−−→−−−−→−变换等间隔采样拉氏逆变换设模拟滤波器)(s H a 只有单阶极点,且分母多项式的阶次高于分子多项式的阶次,将)(s H a 用部分分式表示,则∑=-=Ni i i a s s A s H 1)( 式中,i s 为)(s H a 的单阶极点。
将)(s H a 进行拉氏逆变换得到)()(t u e A t h t s N i ia i ∑=式中,)(t u 单阶阶跃函数。
对)(t h a 进行等间隔采样,采样间隔为T ,得到∑===N i snT ia nt u e A nT h n h 1)()()(对上式进行Z 变换,得到数字滤波器的系统函数∑=--=Ni sT i z e A z H 111)( 由这一转换过程看出,它对部分分式表达的模拟系统函数更为方便,对任一极点i s ,)(s H a 到)(z H 得转换可直接用下式来完成11--→-ze A s s A sT i i i 从上述可以看出1)S 平面的单极点i s s =变换到z 平面上sT e z =处的单级点。
2))(s H a 与)(z H 的部分分式的系数是相同的,都是i A 。
3)如果模拟滤波器是稳定的,所有极点i s 位于s 平面的左半平面,及极点的实部小于零,则变换后的数字滤波器的全部极点在单位圆内,即模小于1,因此数字滤波器也是稳定的。
3.2)(ωj e H 与)(Ωj H a 的关系下面分析从模拟滤波器转换到数字滤波器,s 平面和z 平面之间的映射关系,从而找到这种转换方法的优缺点。
这里以采样信号)(t h a 作为桥梁,推导其映射关系。
将)(t h a 的采样信号用)(t h a 表示,)()()(ˆnT t t h t h n a a-=∑+∞-∞=δ 对)(t h a 进行拉式逆变换,得到 snT n a st n a st a a e nT h dt e nT t t h dt e t h s H --∞∞--∞∞-∑⎰∑⎰=⎥⎦⎤⎢⎣⎡-==)()()(ˆ)(ˆ)(ˆδ 式中,)(nT h a 是)(t h a 在采样点t=nT 时的幅度值,它与序列的幅度相等,即)()(nT h n h a =,因此得到sT sT e z e z n n snT n az H z n h e n h s H ==--===∑∑)()()()(ˆ上式说明采样信号的拉氏变换与相应的Z 变换之间的映射关系为sTe z = (6-8)已知模拟信号)(t h a 的傅立叶变换)(Ωj H a 和其采样信号)(t h a 的傅立叶变换)(Ωj H a 之间的关系满足 ∑∞-∞=Ω-Ω=Ωk s a a jk j H T j H )(1)((6-9) 其中,T s /2π=Ω,将s=j Ω带入上式,得 ∑Ω-=ks a a jk s H T s H )(1)((6-10) ∑Ω-=ks a jk s H T z H )(1)((6-11) 上式表明将模拟信号)(t h a 的拉氏变换在s 平面上沿虚轴按照周期T s /2π=Ω延拓后,再按上式的映射关系映射到Z 平面上,就得到H(z)。
sTe z =可称为标准映射关系。
设 jw re z j s =Ω+=σ则得到: T w e r TΩ==σ (6-12)那么 1,01,01,0>><<==r r r σσσ上面关系式说明,s 平面左半平面映射z 平面单位圆内,s 平面的虚轴映射z 平面的单位圆上,s 平面右半平面映射z 平面单位圆外。
这说明:第一,如果)(s H a 因果稳定,转换后得到)(z H 仍因果稳定;第二,数字滤波器频率响应)(jwe H 模仿模拟滤波器的频率响应)(Ωj H a ,满足转换关系的两点要求。
3.3频率混叠现象实际上,任何一个模拟滤波器的频率响应都不是严格带限的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真。
如果原模拟信号的频带不是限于+/-π/T 之间,则会在他的奇数倍附近产生频率混叠,从而映射到z 平面上,在ω=+/-π附近产生频率混叠。
第4章 MATLAB 简介4.1 MATLAB 介绍设计平台MATLAB7.1 MATLAB 是美国 MathWorks 公司生产的一个为科学和工程计算专门设计的 交互式大型软件,是一个可以完成各种精确计算和数据处理的、可视化的、强大 的计算工具。
它集图示和精确计算于一身, 在应用数学、 物理、 化工、 机电工程、 医学、金融和其他需要进行复杂数值计算的领域得到了广泛应用。
它不仅是一个 在各类工程设计中便于使用的计算工具,而且也是一个在数学、数值分析和工程 计算等课程教学中的优秀的数学工具,在世界各地的高和大型计算机上运行,适 用于 Windows 、UNIX 等多种系统平台。
MATLAB 作为一种科学计算的高级语言之所以受欢迎, 就是因为它有丰富的 函数资源和工具箱资源,编程人员可以根据自己的需要选择函数,而无需再去编 写大量繁琐的程序代码,从而减轻了编程人员的工作负担,被称为第四代编程语 言的 MA TLAB 最大的特点就是简洁开放的程序代码和直观实用的开发环境4.2 MATLAB命令介绍Buttord—此函数是用来计算阶数N和3dB边缘频率矢量Butter—butter函数在知道了N和Ws来计算H(z)分子、分母多项式系数把buttord函数和butter函数结合起来,就可以设计任意的巴特沃斯滤波器。
Freqz—计算H(z)的幅频响应Subplot—分割figure,创建子坐标系Plot—一维曲线绘图Xlabel—x轴注解Ylabel—y轴注解Title—标题注解Axis—横纵坐标范围Grid on—显示网格Pha—计算显示相位第5章仿真过程及仿真图5.1 MATLAB程序Fs=1000; fp=100; fs=300; Ap=3; As=20;Wp=fp/(Fs/2);%计算归一化角频率Ws=fs/(Fs/2);[N,Wc]=buttord(Wp,Ws,Ap,As);%计算阶数和截止频率[b,a]=butter(N,Wc);%计算H(z)分子、分母多项式系数[H,F]=freqz(b,a,500,Fs);%计算H(z)的幅频响应,freqz(b,a,计算点数,采样速率) subplot(2,2,2)plot(F,20*log10(abs(H)))xlabel('频率(Hz)');ylabel('幅度(dB)')axis([0 500 -30 3]);grid onsubplot(2,2,1)plot(F,abs(H));xlabel('频率(Hz)');ylabel('幅度');title('低通滤波器')grid on;subplot(2,2,3)pha=angle(H)*180/pi;plot(F,pha);xlabel('频率(Hz)');ylabel('相位(dB)')grid on5.2仿真波形图5.2 幅度和相位波形图第6章 设计结论首先,这个滤波器的设计的整体思路是先设计一个巴特沃斯低通滤波器,因为模拟滤波器的设计已经很成熟了,有严格的设计思路,现成的公式和图表以及曲线可以查阅。