发酵罐设计资料.

合集下载

发酵罐的设计与放大

发酵罐的设计与放大
对于均匀相反应主要是①、⑥两点, 目前已广泛地用于制药、味精、酶制、食 品行业等。
发酵罐的组成
• 主要包括釜体、搅拌装置、传热装置、轴封 装置。还根据需要加其他的附件,如各种接 管(为了便于检修内件及加料、排料),安装 温度计、压力表、视镜、安全泄放装置(为了 操作过程中有效地监视和控制物料的温度、 压力)等。
• 轴封装置为搅拌罐和搅拌轴间的密封,以防 止反应物料的逸出和杂物的渗入。通常采用 填料密封或机械密封。
• 发酵罐的特点 必须具备足够的强度、密封性、耐蚀性及稳定性。
发酵罐的工作要求
清洁卫生;反应过程能保持恒定的温度,以利于发 酵菌很好地进行发酵;搅拌器使物料混合均匀、加快反 应速度、缩短发酵周期、强化传热;将发酵过程中产生 的热量及时带走,保证反应正常进行。
• 减少工厂发酵设备投资约30%左右,酵母 发酵周期短,发酵液中酵母浓度高,分离 酵母后的废液量少。
• 设备结构简单,溶氧效果高,能保证发酵 所需的空气,并能使气液分离细小,均匀 地接触,吸入空气中70-80%的氧被利用。 操作方便。
• 电量小
采用不同型式、容积的自吸式发酵罐 生产葡萄糖酸钙、力复霉素、维生素C、酵 母、蛋白酶等,都取得了良好的效果。
1.5 固定化发酵罐
• 圆筒形的容器中填充固定化酶或固定化微 生物的设备。
• 生物利用率高
1.6 管道式发酵罐
• 利用液体的流动代替搅拌 作用,实现混合和传质的 目的。处于试验阶段。
改良通风式发酵罐
• (1)瓦尔德夫发酵罐,有独特的消泡装置。 • (2)一种带有上下两个分离搅拌器的发酵罐。上搅
自吸式发酵罐的结构
• 罐体 • 自吸搅拌器及导轮 • 轴封 • 换热装置 • 消泡器
自吸式发酵罐的充气原理 • 自吸式发酵罐的主要的构件是

发酵罐的设计Microsoft Word 文档 (2)

发酵罐的设计Microsoft Word 文档 (2)

表1-1 发酵罐主要设计条件项目及代号 参数及结果 备注发酵菌种 黑曲霉N-588菌株 根据参考文献[1]选取 工作压力 0.25MPa 由工艺条件确定 设计压力0.25MPa 由工艺条件确定 发酵温度(工作温度) 35℃ 根据参考文献[1]选取 设计温度 150℃ 由工艺条件确定 冷却方式 蛇管冷却由工艺条件确定 培养基 薯干粉232kg;水827kg 根据参考文献[8]选取 发酵液密度 1059kg/m 由工艺条件确定 发酵液黏度2⨯10-3Pa.s由工艺条件确定2.2几何尺寸的确定根据工艺参数和高径比确定各部几何尺寸;高径比H/D=2.5,则H=2.5D 初步设计:设计条件给出的是发酵罐的公称体积(80m 3) 公称体积Vo --罐的筒身(圆柱)体积和底封头体积之和 全体积V --公称体积和上封头体积之和封头体积 ()214h )6b V D D π=+封(()230040.15V D H D π=+ (近似公式)假设0H /=1.9794D ,根据设计条件发酵罐的公称体积为80M 3 由公称体积的近似公式()230040.15V D H D π=+ 可以通过V 0=(π/4)D 3H 0/D+0.15D 3=80m 3 计算出罐体直径D=3607.07mm ,取整 D=3600mm 罐体总高度H=2.5D=2.5X3600=9000mm 其他相关尺寸:搅拌叶直径D i =1/3D=1200mm椭圆封头短半轴长度ha=0.25D=0.25X3600mm=900mm=3X1200mm=3600mm搅拌叶间距S=3Di=1200mm底搅拌叶至底封头高度C=Di查阅文献[2] ,当公称直径DN=3600时,标准椭圆封头的总深度Hf=900mm,=50mm内表面积Af=14.64mm2,容积Vf=6.62mm3 ,hb=H-2Hf=9000-2X900=7200mm罐体直筒部位高度 H则此时Ho/D=7200/3600=2与前面的假设相等,故可认为D=3600是合适的公称体积调整为: Vo=π/4X3.62X7.2+6.62=79.9m3发酵罐的全体积V=π/4D2Ho+2Vf=π/4X3.62X7.2+2X6.62=86.52m3表2-2 100m3发酵罐的几何尺寸项目及代号参数及结果备注公称体积80m3 设计条件全体积86.52m3 计算罐体直径3600mm 计算发酵罐总高9000mm 计算搅拌叶直径1200mm 计算椭圆封头短半轴长900mm 计算搅拌叶间距3600mm 计算底搅拌叶至封头高度1200mm 计算椭圆封头直边高度50mm 计算3罐体主要部件尺寸的设计计算 3.1罐体考虑压力,温度,腐蚀因素,选择罐体材料和封头材料,封头结构、与罐体连接方式因糖化酶是偏酸性(pH 值为4.5),其中发酵液对钢腐蚀性不大的,故可以选用16MnR 钢;封头设计为标准椭圆封头,因D>500mm ,所以采用双面缝焊接的方式与罐体连接。

发酵罐的设计范文

发酵罐的设计范文

发酵罐的设计范文发酵罐是用来进行微生物发酵过程的设备,广泛应用于食品、医药、饲料、酒精等行业。

它的设计对于保证发酵过程的顺利进行具有重要意义。

首先,在设计发酵罐时,需要考虑容器的材质选择。

常见的发酵容器材质有玻璃、不锈钢、塑料等。

其中,不锈钢是目前最常用的材料,因为它具有良好的耐腐蚀性能和机械强度,能够适应不同的发酵工艺和条件。

此外,不锈钢材质还易清洗,能够保证发酵过程的卫生安全。

其次,发酵罐的设计应考虑容器的形状和尺寸。

一般而言,发酵罐的形状可以是圆柱形、椭圆形或立方形,尺寸则根据实际需要而定。

圆柱形发酵罐具有较小的基底面积,体积利用率较高,适用于大规模的发酵过程;而椭圆形发酵罐能够减小搅拌时的死角和液流的旋转,有利于发酵物料的均匀混合;立方形发酵罐则容易进行工艺控制和操作。

根据实际需要选择合适的形状和尺寸,以满足发酵工艺的要求。

同时,发酵罐的设计还需要考虑气体供应和排出的设施。

发酵过程中,微生物需要氧气进行呼吸,因此罐体需要有合适的进气装置,以保证微生物的正常生长。

常见的进气装置有机械式搅拌、气体通道等。

同时,还需要考虑废气的排出,避免微生物产生过量气体而影响发酵过程。

此外,温度和酸碱度是影响发酵过程的关键因素,因此在设计发酵罐时需要考虑温度和酸碱度的控制设备。

发酵罐通常会设置恒温装置,以保持适宜的发酵温度。

常见的恒温设备有水浴、电热传导等。

对于酸碱度的控制,可以通过添加酸碱溶液等方式进行调节。

最后,发酵罐的设计还需要考虑搅拌和控制系统。

搅拌过程有助于增加氧气传递、混合反应物料和促进产物的分散。

搅拌系统通常包括电机、搅拌桨和传动装置等。

对于控制系统,需要设置相应的传感器和控制器,以对温度、酸碱度、溶解氧等过程参数进行监测和控制。

总之,发酵罐的设计是一项复杂而重要的任务,需要考虑容器材质选择、形状尺寸、气体供应排出、温度酸碱度控制以及搅拌控制系统等方面。

只有合理设计,才能满足发酵过程的要求,保证产品的质量和产量。

发酵罐设计实验报告

发酵罐设计实验报告

80m3 通用式发酵罐的设计第一章设计方案1.1发酵罐体积确实定1.2发酵罐散热方式确实定1.3搅拌桨的选择和搅拌层数确实定其次章设备参数确实定2.1发酵罐搅拌器搅拌功率的计算2.2发酵罐散热设备的计算第三章设计计算汇总表3.1 设计数据汇总表附图:80m3通用式发酵罐工艺条件图0 第一章 设计方案1.1 发酵罐体积确实定所设计发酵罐为通用式发酵罐,且公称容积为 80m ³。

公称容积近似为圆柱体容积,设 H =3D由于是通用式发酵罐,所以可得D =V =3√π D 2H 4V 0解得发酵罐直径D = 3.24m 取发酵罐直径D = 3.5m通用式发酵罐主要尺寸如下:0.785 × 31. 本设计取H 0 = 3即H = 3D = 10.5mD取发酵罐高H 0 = 10m 2. 搅拌器直径承受六弯叶涡轮搅拌器,直径为D i = D/3 = 3.5 ÷ 3 = 1.2m3. 相邻两组搅拌器的间距本设计S = 3D i = 3.5m 4. 下搅拌器与罐底距离:故本设计取C = D i = 1.2m 5. 挡板宽度和与罐壁距离挡板宽度:W = 0.1D i = 0.12m 挡板与罐壁的距离:B = W /5 = 0.02m 6. 封头高度h = h a + h b当封头公称直径2m 时,h b = 25mm当封头的公称直径大于2m 时,h b = 40mm 。

4本设计D > 2m ,h b = 40mm式中,h a 当为标准封头时取h a = 0.25D = 3.5= 0.9 。

7. 装罐系数h = h a + h b = 0.04 + 0.9 = 0.94m本设计取装罐系数ŋ = 0.7 8. 液柱高度9. 椭圆封头容积H L = ŋH + h a + h b = 0.7 × 10 + 0.94 = 7.94mπ D π3.5 V 2 = 4 D 2(h b + 6) = 4 × 3.52 × (0.04 + 6) = 6m ³10. 全罐高度1.2 发酵罐散热方式确实定H = H 0 + 2h = 11.880m参考有关资料可知大于 5 m ³的发酵罐应承受列管式散热器。

发酵罐 设计

发酵罐 设计

成套液体发酵设备一、种子罐20L(304/夹套/机械搅拌)(一)性能指标要求:1、罐体:公称容积:20L;装料系数70%;夹套控温。

设计压力:0.3MPa,工作压力:0.15Mpa设计温度:130℃,工作温度:121℃。

罐体材质:06Cr19Ni10(304);夹套材质:06Cr19Ni10(304)罐体接口:专用放料阀(带蒸汽灭菌)、专用取样口(带蒸汽灭菌)、罐侧设有pH、DO、温度传感器接口、视镜视灯,补料接口、接种口、移种口、进气排气、压力表口、备用口等多个工艺标准接口。

表面处理:罐内无死角;可见焊缝磨平,角焊缝磨成光滑过度,无表面缺陷。

内精抛光,抛光精度Ra0.6um;外一次抛光。

灭菌方式:在位蒸汽灭菌,灭菌的同时可搅拌。

2、搅拌:搅拌形式:顶部直联机械搅拌系统搅拌轴:精密加工,具有理想的动平衡效果,长期使用不变形。

搅拌桨:CFD模拟优化设计搅拌桨。

罐内壁设有三块折流挡板。

机架:不锈钢机架机械密封:约翰克兰机械密封,德国技术,安全可靠。

电机:直流电机0.25KW,50-1000rpm。

3、空气:转子流量计显示和调节,需要的空气压力0.1~0.4Mpa;4、蒸汽:压力表显示管道压力,手动阀门开度调节。

蒸汽精过滤器(不锈钢壳体,聚四氟乙烯烧结滤芯,过滤精度:1μm,过滤能力:99%)5、排气:压力表显示罐压,手动阀门开度调节。

6、水:不锈钢热水箱,热水循环泵控制加热,冷水电磁阀控制冷却。

7、支管道:管路系统均符合微生物发酵要求,与物料接触管路均为304不锈钢无缝管,采用氩气保护无污染焊接配套规格硅熔胶铸造球阀、截止阀、针阀、隔膜阀、死角排气阀以及配件材质与相应管路材质相同。

(二)、发酵过程控制系统:1、温度自控(PT100/PID控制/独立热水箱)2、压力、通气量手控(压力表/转子流量计)3、消泡自控(消泡电极/PID控制)4、PH自控(梅特勒PH电极1-14)二、种子罐200L(304/夹套/机械搅拌)(一)性能指标要求:1、罐体:公称容积:200L;装料系数70%;夹套控温。

发酵罐设计

发酵罐设计

绪论氨基酸的制造是从1820年水解蛋白质开始的。

味精俗名又叫味素,英文为Mono Sodium Glutamte 简称MSG。

其化学名称是a_氨基戊二酸.1950年在实验室用化学方法合成氨基酸.以前1866年德国人Ritthansen利用硫酸水解小麦面筋.最先分离出谷氨酸.1872年Dittener推断出氨基酸的结构。

1908年日本人因菊君与铃木合作从海带中提取谷氨酸成功,并开始制造味之素产品.1910年日本味之素公司用水解发生生产谷氨酸.1936年美国人从甜菜中提取谷氨酸,直到1956年和协发酵公司开始以淀粉糖蜜为原料采用发酵法生产谷氨酸成功.1957年发酵法味精投入工业化生产.1966年采用醋酸发酵法生产谷氨酸.60年代后期各国味精工业兴起,均用发酵法生产味精.我国味精生产开始于1923年,由吴蕴初先生创办了上海天厨味精厂.该厂首先采用盐酸水解面筋生产味精.同年沈阳味精厂开始用豆粕水解生产味精.从1958年开始我国的味精生产进入转换期.开始研究发酵法制GLU的工艺.1964年上海天厨味精厂以黄色短杆菌617为生产菌株,采用发酵法生产GLU中型实验,获得成功,接着投入工业化生产.杭州味精厂与中科院微生物研究所等单位协作进行北京短棒杆菌As,2PP发酵法生产谷氨酸发酵实验1965年获得成功并投入工业生产.由发酵法生产味精并获得成功.原料由原来的植物性蛋白改变为淀粉质原料.我国淀粉资源丰富,为我国味精工业的发展开拓奠定了广阔的前景,并使得我国的味精工业迅速发展起来,产量占世界总产量的35.1%,我国成为世界上产味精最多的国家之一.当前我国味精行业提高经济效益的发展对策是:合理利用原料,采用高产酸新品种,采用新工艺,新技术,新设备,提高生产水平,防止噬菌体传染防止染杂菌,节能降耗,逐步实现自动化控制提高劳动生产率,全面降低成本,参与国际竞争,同时搞好废水处理,提高环境与社会效益.味精分子式与L型,分子量187.13比重1.65无色晶体,有特殊鲜味,味精作为调味品除了能增加食物的美味外,它在人体中具有特别的生理作用,活跃蛋白质代谢,维持细胞机能降低血液中的氨,防止氨中毒等作用国内味精规格有数种.以谷氨酸钠的含量分类有99%,95%,90%,80%四种.其中三种分别加如了景致的食盐以外观形状可分为结晶味精与粉状味精环境,环境问题是不可忽略的,味精行业是高污染的行业,废液的排出可能会对环境造成污染,污染类型可分为自然环境,生物环境和社会环境,环境是人类和生物赖以生存和发展的所有要素及条件的综合。

化工原理课程设计——发酵罐的设计

化工原理课程设计——发酵罐的设计

化工原理课程设计设计说明书设计题目:发酵罐设计姓名xxx班级XXX学号XXX完成日期XXX指导教师XXX目录第一章啤酒发酵罐结构与动力学特征 (4)一、概述 (4)二、啤酒发酵罐的特点 (4)三、露天圆锥发酵罐的结构 (5)3.1罐体部分 (5)3.2温度控制部分 (6)3.3操作附件部分 (6)3.4仪器与仪表部分 (6)四、发酵罐发酵的动力学特征 (7)第二章发酵罐的化工设计计算 (8)一、发酵罐的容积确定 (8)二、基础参数选择 (8)三、D、H的确定 (8)四、发酵罐的强度计算 (10)4.1 罐体为内压容器的壁厚计算 (10)五、锥体为外压容器的壁厚计算 (12)六、锥形罐的强度校核 (14)6.1内压校核 (14)6.2外压实验 (15)6.3刚度校核 (15)第三章发酵罐热工设计计算 (15)一、计算依据 (15)二、总发酵热计算 (16)第四章发酵罐附件的设计及选型 (20)一、人孔 (20)二、接管 (20)三、支座 (21)第五章发酵罐的技术特性和规范 (22)一、技术特性 (22)二、发酵罐规范表 (23)参考文献 (25)发酵罐设计实例第一章啤酒发酵罐结构与动力学特征一、概述啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。

我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。

改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。

由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。

为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。

尤其是采用设计多种形式的大容量发酵和储酒容器。

这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。

发酵罐设计说明书

发酵罐设计说明书

目录前言 (1)第一章、概述 (2)1.1、我酸 (2)1.2、賊酸的新工艺 (2)1.3、机械搅拌通风发酵罐 (3)1.3.1、通用型发酵罐的几彳可尺寸比例 (3)1.3.2、罐体 (3)133、搅拌器和挡板 (3)1.3.4、消泡器 (4)1.3.5、联轴器及轴承 (4)126、变速装置 (4)1.3.7、通气装置 (4)138、轴封 (5)139、附属设备 (5)第二章、设备的设计计算与选型 (5)2.1、发酵罐的主要尺寸计算 (5)2.1.1、圆筒体的径、高度与封头的高度 (5)2.1.2、圜筒体的壁厚 (7)2.1.3、封头的壁厚 (7)2.2、搅拌装置设计 (8)2.2.3、电痕率 (10)2.3、冷却装置设计 (10)2.3.1、 冷却方式 (10)2.3.2、 冷却水耗臺 (10)2.3.3、 冷却管组数和管径 (12)2.4零部件 (13)2.4.1人孔和视谯 (13)2.4.2 接管口 ................................................................. 13 243、梯子 (15)2.6支座的选型蹄总结 附录 (18)符号的总结 ...................................................................... 18 参考文献 . (20)生物工程设备课程设计任务书―、课程设计题目”1000计的机械搅拌发酵罐”的设计。

2.5®体重 ..................................................................15 16 第三章、计算结果的总、结 ............................................................16 17二课程设计容1、设备所担负的工艺操作任务和工作性质,工作参数的确定。

发酵罐设计

发酵罐设计

1 前言生物反应工程与设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。

发酵罐是发酵设备中最重要、应用最广的设备,是发酵工业的心脏,是连接原料和产物的桥梁。

随着工业技术的发展,市面上出现了种类繁多、功能更加完备的新型发酵罐。

如何选择或者设计一种合适的发酵罐将会成为一个研究热点。

本文旨在通过相应的参数计算和设备计算完成年产20吨庆大霉素的机械通风发酵罐初步设计。

2 常见的发酵罐2.1机械搅拌通风发酵罐机械搅拌发酵罐是利用机械搅拌器的作用,使空气和发酵液充分混合,促使氧在发酵液中溶解,以保证供给微生物生长繁殖、发酵所需的氧气,又称通用式发酵罐。

可用于啤酒发酵、白酒发酵、柠檬酸发酵、生物发酵等。

图1 机械通风发酵罐2.2气升式发酵罐气升式发酵罐把无菌空气通过喷嘴喷射进发酵液中,通过气液混合物的湍流作用而使空气泡打碎,同时由于形成的气液混合物密度降低故向上运动,而含气率小的发酵液下沉,形成循环流动,实现混合与溶氧传质。

其结构简单、不易染菌、溶氧效率高和耗能低,主要类型有气升环流式、鼓泡式、空气喷射式等。

图2 气升式发酵罐原理图2.3自吸式发酵罐自吸式发酵罐是一种不需要空气压缩机,而在搅拌过程中自吸入空气的发酵罐。

叶轮旋转时叶片不断排开周围的液体使其背侧形成真空,由导气管吸入罐外空气。

吸入的空气与发酵液充分混合后在叶轮末端排出,并立即通过导轮向罐壁分散,经挡板折流涌向液面,均匀分布。

与机械发酵罐相比,有一个特殊的搅拌器,但没有通气管。

罐为负压,易染菌,当转速较大时,会打碎丝状菌。

图3 自吸式发酵罐3 已知工艺条件(1)年产量:G=20 t (庆大霉素) (2)年工作日:M=300天 (3)发酵周期:t=6天(4)发酵平均单位:μm =1400单位/毫升(5)成品效价:μp =580单位/毫克 (6)提炼总效率:ηp =87%(7)每年按300天计算,每天24小时连续运行。

发酵罐设计说明书

发酵罐设计说明书

目录前言 (1)第一章、概述 (2)1.1、柠檬酸 (2)1.2、柠檬酸的生产工艺 (2)1.3、机械搅拌通风发酵罐 (3)1.3.1、通用型发酵罐的几何尺寸比例 (3)1.3.2、罐体 (3)1.3.3、搅拌器和挡板 (3)1.3.4、消泡器 (4)1.3.5、联轴器及轴承 (4)1.2.6、变速装置 (4)1.3.7、通气装置 (4)1.3.8、轴封 (5)1.3.9、附属设备 (5)第二章、设备的设计计算与选型 (5)2.1、发酵罐的主要尺寸计算 (5)2.1.1、圆筒体的内径、高度与封头的高度 (5)2.1.2、圆筒体的壁厚 (7)2.1.3、封头的壁厚 (7)2.2、搅拌装置设计 (8)2.2.1、搅拌器 (8)2.2.2、搅拌轴设计 (8)2.2.3、电机功率 (10)2.3、冷却装置设计 (10)2.3.1、冷去卩方式 (10)2.3.2、冷却水耗量 (10)2.3.3、冷却管组数和管径 (12)2.4零部件 (13)2.4.1 人孔和视镜 (13)2.4.2 接管口 (13)2.4.3、梯子 (15)2.5发酵罐体重 (15)2.6支座的选型 (16)第三章、计算结果的总结 (16)设计总结 (17)附录 (18)符号的总结 (18)参考文献 (20)生物工程设备课程设计任务书一、课程设计题目“ iooom的机械搅拌发酵罐”的设计。

二、课程设计内容1、设备所担负的工艺操作任务和工作性质,工作参数的确定。

2、容积的计算,主要尺寸的确定,传热方式的选择及传热面积的确定。

3、动力消耗、设备结构的工艺设计。

三、课程设计的要求课程设计的规模不同,其具体的设计项目也有所差别,但其基本内容是大体相同,主要基本内容及要求如下:1、工艺设计和计算根据选定的方案和规定的任务进行物料衡算,热量衡算,主体设备工艺尺寸计算和简单的机械设计计算,汇总工艺计算结果。

主要包括:(1)工艺设计①设备结构及主要尺寸的确定(D, H, HL,V,V L,Di等)②通风量的计算③搅拌功率计算及电机选择④传热面积及冷却水用量的计算(2)设备设计①壁厚设计(包括筒体、封头和夹套)②搅拌器及搅拌轴的设计③局部尺寸的确定(包括挡板、人孔及进出口接管等)④冷却装置的设计(包括冷却面积、列管规格、总长及布置等)2、设计说明书的编制设计说明书应包括设计任务书,目录、前言、设计方案论述,工艺设计和计算,设计结果汇总、符号说明,设计结果的自我总结评价和参考资料等。

生物发酵罐设计报告

生物发酵罐设计报告

生物发酵罐设计报告一、引言生物发酵是指利用微生物在适宜条件下进行代谢活动,产生有用物质的过程。

生物发酵技术在食品、饲料、医药、化工等行业有广泛应用。

发酵罐是生物发酵过程中装置的关键部分,设计合理的发酵罐能够提高发酵效果,降低能耗,提高生产效率。

本报告将对发酵罐的设计进行详细阐述。

二、设计目标1.提供合适的发酵环境:发酵罐内的温度、湿度、pH值等参数需要精确控制,以满足微生物生长的要求。

2.实现高效的氧气传递:发酵罐内需要保持充足的氧气供应,以促进微生物的代谢过程。

3.提供良好的搅拌效果:发酵过程中需要对培养基进行均匀的混合,以保证微生物充分接触到培养基。

4.实现可靠的物料输入和产物输出:发酵过程中需要定期添加原料和收集产物,设计合理的输入和输出系统能够提高生产效率。

三、发酵罐设计方案1.材料选择:发酵罐应采用耐腐蚀的材料,如不锈钢,以保证长期使用的稳定性。

2.结构设计:发酵罐采用立式圆筒形结构,底部设有锥形底板,以方便培养基的排出。

罐体上部设置天窗和进气口,方便观测和气体输入。

3.加热和冷却系统:发酵罐底部设有加热和冷却系统,通过控制加热和冷却介质的流动,实现对发酵罐内温度的精确控制。

4.pH调节系统:发酵罐内设有pH传感器和调节装置,可以根据实时监测到的pH值,自动调节pH值以满足微生物生长的需要。

5.搅拌系统:发酵罐内设有搅拌器,通过机械或气体动力驱动,实现对培养基的均匀搅拌,以确保微生物与培养基的充分接触。

6.氧气供应系统:发酵罐顶部设置氧气输入装置,并配备氧气流量计,根据不同微生物的需氧性,设定合理的氧气输入量。

7.输入和输出系统:发酵罐底部设有原料输入和产物输出口,通过泵或其他输送设备实现物料的输入和输出,可根据需要进行定时或连续操作。

四、结论在设计生物发酵罐时,需要充分考虑发酵环境、氧气传递、搅拌效果以及输入和输出系统等因素。

设计合理的发酵罐能够提高生物发酵过程的效率和产量,减少能耗,从而实现经济效益和环境友好性。

发酵罐设计设计说明书 14日

发酵罐设计设计说明书 14日

江西科技师范学院生物工程专业《化工原理课程设计》说明书题目名称22000L维生素A发酵罐的设计专业班级2009级生物工程2班学号学生姓名指导教师2011 年10 月31 日目录一、设计方案的拟定 (1)1.1设计条件 (1)1.2发酵工艺 (1)1.2.1主要生产工艺流程 (1)1.2.2培养基 (2)1.2.3发酵控制要点 (2)1.3发酵罐尺寸及整体设计 (2)1.3.1罐体几何尺寸的确定 (2)1.3.2罐体 (3)1.3.3罐体壁厚 (3)1.3.4封头壁厚计算 (3)1.4人孔及各管道接口的设计 (4)1.4.1人孔和视镜的设计 (4)1.4.2接口管 (4)1.4.3管道接口 (4)1.4.4仪表接口 (5)二、计算 (7)2.1通风量计算 (7)2.2传热量的计算 (7)三、设备选型 (9)3.1搅拌器的选择 (9)3.1.1不通气条件下的轴功率P0 (9)3.1.2通气搅拌功率P g的计算 (9)3.1.3电机及变速装置选用 (10)3.2换热器的选择 (10)3.2.1冷却方式 (10)3.2.2装液量 (10)3.2.3冷却水耗量 (10)3.2.4冷却面积 (11)四、附录 (12)五、总结 (15)六、参考文献 (16)一、设计方案的拟定维生素A 的化学名为视黄醇,是最早被发现的维生素。

维生素A 有两种。

一种是维生素A 醇(retionl ),是最初的维生素A 形态(只存在于动物性食物中);另一种是胡萝卜素(carotene ),在体内转变为维生素A 的预成物质(provitaminA ,可从植物性及动物性食物中摄取)。

本论文针对β-胡萝卜素的发酵生产进行工艺计算、主要设备工作部件(如罐体、罐体壁厚、封头壁厚计算、搅拌器、仪表接口、人孔和视镜、管道接口等)尺寸的设计。

1.1设计条件22000L 机械搅拌通风式发酵罐发酵生产维生素A 。

1.2发酵工艺许多种微生物都能合成β-胡萝卜素,如接合笄霉、三孢布拉氏霉菌、好食链孢霉、耐盐杜氏藻和绿藻等菌丝中形成的大量类胡萝卜素都可应用于工业生产。

200立方米机械搅拌通风发酵罐设计方案

200立方米机械搅拌通风发酵罐设计方案

200立方米机械搅拌通风发酵罐设计方案设计方案:200立方米机械搅拌通风发酵罐一、设计目标1.发酵罐容积为200立方米,确保能够达到大规模发酵的要求;2.设计可实现机械搅拌和通风两个功能,保证发酵过程中充分混合和氧气供应;3.确保发酵过程的操作简便、稳定可靠,并且具备良好的节能性能;4.满足卫生标准,保证发酵罐内部的洁净环境;5.设计具备可持续发展特点,符合环保要求。

二、设计内容1.发酵罐结构设计:a.发酵罐采用圆柱体结构,罐体材料选用不锈钢,具有良好的耐腐蚀性能;b.罐体壁厚度符合设计要求,保证罐体的强度和稳定性;c.设计合理的进出料口和观察窗口,方便操作和监测发酵过程;d.安装适当数量的温度传感器和pH传感器,实时监测发酵过程中的温度和酸碱度;e.罐顶设计可拆卸,方便维护和清洁。

2.机械搅拌设计:a.选择适当尺寸和功率的搅拌器,确保能够充分搅拌发酵物料;b.搅拌器安装在罐体底部,支持搅拌叶片可调节的设计,以适应不同的搅拌要求;c.搅拌器动力源采用电动机,具备可调速功能,以符合不同阶段的搅拌需求;d.搅拌器与罐壁的间隙适当,以减少搅拌时的能量损失。

3.通风设计:a.罐体设计适当数量和位置的通风口,以保证发酵物料在发酵过程中的氧气供应;b.通风设备采用低噪音、高效率的通风机,确保能够提供充足的氧气;c.设计合理的通风系统,保证发酵罐内对流的循环,并且可以适应不同阶段的通风需求。

4.温控系统设计:a.安装温度传感器和控制器,监测和调节发酵过程中的温度;b.配备加热装置和制冷设备,以实现对发酵物料温度的控制;c.控制系统具备自动控制和报警功能,以确保发酵过程的稳定性。

5.卫生设计:a.罐内表面设计光滑,易于清洗;b. 安装CIP(Cleaning In Place)系统,方便对罐内进行高效清洗和消毒;c.安装合适数量和位置的排污口,便于清除废液和残渣。

6.节能设计:a.选择高效的搅拌器和通风设备,以减少能量消耗;b.利用余热回收系统,将发酵产生的热能用于加热或其他用途。

啤酒发酵罐设计

啤酒发酵罐设计

啤酒发酵罐设计:一罐法发酵,即包括主、后发酵和贮酒成熟全部生产过程在一个罐内完成。

1)发酵罐容积的确定:根据设计,每个锥形发酵罐装四锅麦汁,则每个发酵罐装麦汁总量V=59.35×4=237.4 m3锥形发酵罐的留空容积至少应为锥形罐中麦汁量的25%,则发酵罐体积至少应为237.4(1+25%)=296.75 m3,为300 m3。

取发酵罐体积V全2)发酵罐个数和结构尺寸的确定:发酵罐个数N=nt/Z=8×17/4=34 个式中n—每日糖化次数t—一次发酵周期所需时间Z—在一个发酵罐内容纳一次糖化麦汁量的整数倍锥形发酵罐为锥底圆柱形器身,顶上为椭圆形封头。

设H﹕D=2.5﹕1,取锥角为70°,则锥高h=0.714DV全=лD2H/4+лD2h/12+лD3/24得D=5.1 m H=2.5D=12.8 m h=3.6 m查表知封头高h封=h a+h b=1275+50=1325 mm罐体总高H总= h封+H+h=1325+12800+3600=17725 mm3)冷却面积和冷却装置主要结构尺寸确定:因双乙酰还原后的降温耗冷量最大,故冷却面积应按其计算。

已知Q=862913 kJ/h发酵液温度14℃3℃冷却介质(稀酒精)-3℃2℃△t1=t1-t2′=14-2=12℃△t2=t2-t1′=3-(-3)=6℃平均温差△t m=(△t1-△t2)/㏑(△t1/△t2)=(12-6)/ ㏑(12/6)=8.66℃其传热系数K取经验值为4.18×200 kJ/(m2﹒h﹒℃)则冷却面积F=Q1/K△t m=862913/(4.18×200×8.66)=119.2 m2工艺要求冷却面积为0.45~0.72 m2/ m3发酵液实际设计为119.2/237.4=0.50 m2/ m3发酵液故符合工艺要求。

选取Ф109×4.5半圆形无缝钢管作为冷却管,d内=100mm,d平均=105mm每米管长冷却面积F0=105×10-3×1=0.105 m2则冷却管总长度L=F/ F0=119.2/0.105=1135 m筒体冷却夹套设置二段,且均匀分布。

发酵罐毕业设计说明书

发酵罐毕业设计说明书

摘要发酵罐是化工生产中实现化学反应的主要设备。

其作用:①使物料混合均匀;②使气体在液相中很好分散;③使固体颗粒在液相中均匀悬浮;④使不均匀的另一液相均匀悬浮或充分乳化。

目前已广泛地用于制药、味精、酶制、食品行业等。

它的主要组成部分包括釜体、搅拌装置、传热装置、轴封装置。

还根据需要加其他的附件,如装焊人孔、手孔和各种接管(为了便于检修内件及加料、排料),安装温度计、压力表、视镜、安全泄放装置(为了操作过程中有效地监视和控制物料的温度、压力)等。

釜体是由简体和两个封头组成,它的作用是为物料进行化学反应提供一定的空间。

搅拌装置是由传动装置,搅拌轴和搅拌器组成,它的作用是参加反应的各种物料均匀混合,使物料很好地接触而加速化学反应的进行。

搅拌装置可以分为非潜水型(仅驱动机和减速机及传动系统露在液体外面和潜水型(从驱动机至搅拌器全部潜入液体内)两种类型。

传热装置是在釜体内部设置蛇管或在釜体外部设置夹套,它的作用是使控制物料温度在反应所需要范围之内。

本发酵罐的设计容积是63立方米,属于大型罐设计,采用蛇管传热,三级搅拌。

关键词:搅拌罐;搅拌器;釜体;传热装置;轴封装置;人孔AbstractFermentation is a chemical reaction to achieve the production of major equipment. Its role is:①to mixed materials; ②the gas is well dispersed in the liquid phase; ③ making uniform solid particles suspended in liquid;④souneven suspension or other liquid emulsified in uniform。

For the uniform reaction, now is widely used in pharmaceutical, monosodium glutamate, enzyme system and food industries. Its main components include the reactor body, mixing equipment, heat transfer equipment and seal device. Also add other accessories needed, such as assembly and welding manhole, hand hole and all over (in pieces for ease of maintenance and feeding, nesting), install thermometers, pressure gauges, mirrors, safety relief device (for operation effectively monitor and control the material temperature, pressure) and so on. Mixing device is a gear, shaft and agitator stirring composition, its role is to participate in a variety of materials, reaction mixed evenly, so that good contact material to accelerate the chemical reaction. Mixing devices can be divided into non-diving type (only driven machines and gear and transmission system disclosed in the liquid outside and dive type (from the driving machine to sneak into a liquid blender all) types. Heat transfer device is set in the interior of reactor body coil or external tank set up in the jacket, its role is to control the materials needed in the reaction temperature range.The design of the fermentation tank volume is 63 cubic meters,and this is a large tank design with coil heat transfer and three mixings.Key words:mixing tank;mixer;kettle body;heat transfer equipment;seal device;manhole.目录摘要 .......................................... 错误!未定义书签。

啤酒发酵罐设计总结

啤酒发酵罐设计总结

啤酒发酵罐设计总结
啤酒发酵罐是啤酒酿造过程中至关重要的设备之一,其设计要考虑到以下几个方面。

1. 容量:发酵罐的容量要根据啤酒酿造的规模来确定。

一般来说,大规模的啤酒厂需要更大容量的发酵罐,以满足产量需求。

2. 材质:发酵罐通常采用不锈钢材质,因为不锈钢具有耐腐蚀、易清洁等特点,能够保证啤酒的质量和卫生安全。

3. 结构:发酵罐一般为圆筒形,并配有上下两个圆形封头。

上部封头上通常有一些用于通气、取样和观察的口,下部封头上则有一个出口用于排出废物和收集啤酒。

4. 控温系统:发酵罐需要能够控制温度,以提供适合酵母发酵的条件。

一般会在发酵罐上安装温度探头,并配备温度控制系统,可以根据需要调节发酵罐内的温度。

5. 搅拌系统:发酵罐内的液体需要经常搅拌,以保证酵母均匀分布和氧气供应。

因此,发酵罐设计中需要考虑搅拌系统的安装位置和方式。

6. 清洗系统:发酵罐需要经常清洗,以去除残留物和细菌。

因此,设计中需要考虑清洗系统的设置,以确保能够方便有效地进行清洗操作。

7. 安全措施:发酵罐设计中需要考虑安全措施,如安装压力表、安全阀等,以避免因压力过高造成的危险。

啤酒发酵罐的设计需要考虑到容量、材质、结构、控温系统、搅拌系统、清洗系统和安全措施等方面,以确保啤酒酿造过程的顺利进行。

发酵罐设计说明书

发酵罐设计说明书

发酵罐设计说明书发酵罐设计说明书一、引言本文档是为了详细说明发酵罐的设计方案,包括设计目的、设计原则、设计要求和具体的设计方案等。

本文档的目标是确保发酵罐的设计满足生产需求,同时确保其安全性和可靠性。

二、设计目的发酵罐是用于发酵过程的容器,其设计目的是提供一个能够支持发酵过程的环境和设备,使得发酵过程能够顺利进行,同时确保产品质量和安全。

三、设计原则1.安全性:发酵罐的设计必须符合相关的安全标准和规范,确保操作人员和设备的安全。

2.可靠性:发酵罐的设计必须能够保证其正常运行和长期稳定性。

3.高效性:发酵罐的设计要考虑最大程度的提高发酵效率,提高生产效益。

4.可维护性:发酵罐的设计要考虑方便的维修和保养,降低维护成本。

四、设计要求1.容量要求:根据生产需求确定发酵罐的容量,确保足够的产能。

2.材料选择:选择适合发酵过程的材料,确保材料的耐腐蚀性和耐高温性。

3.冷却系统:设计合适的冷却系统,确保发酵过程中的温度控制。

4.气体控制系统:设计合适的气体控制系统,确保发酵过程中的气体供应和排放。

5.清洗系统:设计合适的清洗系统,确保发酵罐的清洁和卫生。

6.自动化控制系统:设计合适的自动化控制系统,确保发酵过程的自动化和监控。

五、设计方案1.发酵罐结构:设计合适的发酵罐结构,包括底部,侧壁,顶盖等部分。

2.冷却系统设计:设计合适的冷却系统,包括冷却介质循环系统和温度控制系统。

3.气体控制系统设计:设计合适的气体控制系统,包括气体供应和排放系统。

4.清洗系统设计:设计合适的清洗系统,包括清洗介质循环系统和清洗装置。

5.自动化控制系统设计:设计合适的自动化控制系统,包括传感器、控制器等设备。

六、附件本文档涉及的附件包括相关的设计图纸和技术参数表。

七、法律名词及注释1.安全标准:指根据相关法规和标准确定的保护人员和设备安全的要求。

2.耐腐蚀性:指材料对于化学物质的耐受性。

3.耐高温性:指材料对于高温环境的稳定性和可靠性。

发酵罐设计

发酵罐设计

目录前言 (2)设计方案的拟定................................................................................... (3)(1)、机械搅拌生物反应器的型式 (3)(2)、反应器用途 (3)(3)、冷却水及冷却装置 (3)(4)、设计压力罐内0.4MPa;夹套0.25 Mpa (4)表-发酵罐主要设计 (4)工艺设计及计算 (5)(1)生产能力、数量和容积的确定 (5)(2)主要尺寸计算 (5)(3)冷却面积的计算 (6)(4)搅拌器设计 (6)(5)搅拌轴功率的计算 (7)(6)i求最高热负荷下的耗水量W (8)ii 冷却管组数和管径 (9)iii冷却管总长度L计算 (10)iv 每组管长l和管组高度 (10)V 每组管子圈数n (10)Vi 校核布置后冷却管的实际传热面积 (10)(7)设备材料的选择 (10)(8)发酵罐壁厚的计算 (11)(9)接管设计 (12)(10)支座选择 (13)设计结果汇总 (14)参考资料 (14)发酵罐设计心得体会 (15)附录及设计图前言生化工程设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求我们综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。

在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对我们进行一次生化过程发酵设备设计的基本训练,使我们初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。

设计方案的拟定我们设计的是一台25M3机械搅拌通风发酵罐,发酵生产味精。

设计基本依据(1)、机械搅拌生物反应器的型式通用式机械搅拌生物反应器,其主要结构标准如下:①高径比:H/D=1.7-4.0②搅拌器:六弯叶涡轮搅拌器,Di :di:L:B=20:15:5:4③搅拌器直径:Di=D/3④搅拌器间距:S=(0.95-1.05)D⑤最下一组搅拌器与罐底的距离:C=(0.8-1.0)D⑥挡板宽度:B=0.1D,当采用列管式冷却时,可用列管冷却代替挡板(2)、反应器用途用于味精生产的各级种子罐或发酵罐,有关设计参数如下:①装料系数:种子罐0.50-0.65发酵罐0.65-0.8②发酵液物性参数:密度1080kg/m3粘度2.0×10-3N.s/m2导热系数0.621W/m.℃比热4.174kJ/kg.℃③高峰期发酵热3-3.5×104kJ/h.m3④溶氧系数:种子罐5-7×10-6molO2发酵罐6-9×10-6molO2⑤标准空气通风量:种子罐0.4-0.6vvm发酵罐0.2-0.4vvm(3)、冷却水及冷却装置冷却水:地下水18-20℃冷却水出口温度:23-26℃发酵温度:32-33℃冷却装置:种子罐用夹套式冷却,发酵罐用列管冷却。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非机械搅拌
伍式发酵罐 气升式发酵罐 喷射自吸式发酵罐 塔式发酵罐
8
一、发酵罐的类型
3、新型发酵罐
❖膜生物反应器
▪ 近年来生物工程领域的研究热点 ▪ 反应 和 分离的耦合 ▪ 使产物及时移去,降低产物的反馈抑制作用
2020/7/8
9
发酵罐大小的大致概念
室验室用发酵罐 1 L--50L 中试用发酵罐 50L--5000L
❖ 新建的酒精生产企业,其发酵罐单罐容积一般在1000 -2000米3之间
2020/7/8
11
发酵罐放大 与设计
发酵罐类型与结构
一 发酵罐的类型 二 发酵罐的结构
发酵罐设计与放大
三 发酵罐的设计 四 发酵罐的放大
12
二、发酵罐的结构 1. 通用式发酵罐
机械搅拌通风发酵罐
❖ 利用机械搅拌器的作用,使无菌空气和发酵液充分混 合,促进氧溶解,以保证微生物的生长繁殖所需要的 氧气。
❖ 约占发酵罐总数的70~80%,所以也称标准式或通用 式发酵罐。
2020/7/8
13
通用式发酵罐的结构
• 罐体 • 轴封 • 消泡器 • 搅拌器 • 联轴器 • 轴承 • 挡板 • 空气分布管 • 换热装置 • 人孔、管路、测量仪表等
2020/7/8
14
二、发酵罐的结构 1. 通用式发酵罐
通用式发酵罐的主要部件
▪ 抗生素、酶制剂、酵母、氨基酸,维生素等 ▪ 需要强烈的通风搅拌→提高氧传质系数KLa
❖厌氧发酵罐 (嫌气发酵罐)
▪ 丙酮丁醇、酒精、啤酒、乳酸等 ▪ 不需要通气
2020/7/8
7
一、发酵罐的类型
2、按供氧方式分类
机械搅拌
机械搅拌通风发酵罐 (通用式发酵罐)
机械搅拌自吸式发酵罐
通风 发酵罐
2020/7/8
部间距
2020/7/8
23
(1) 罐体的尺寸比例
以罐体直径D、搅拌器直径d为基准
❖ H/D=1.7-3 ❖ HL/D=2-2.5 ❖ d/D=1/3-1/2 ❖ W/D=1/12-1/8 ❖ B/D=0.8-1.0 ❖ (s/d)2=1.5-2.5 ❖ (s/d)3=1-2
2020/7/8
24
(2) 搅拌器
第九章 发酵罐放大与设计
2√√Fra bibliotek√√



发酵罐
3
发酵罐放大 与设计
发酵罐类型与结构
一 发酵罐的类型 二 发酵罐的结构
发酵罐设计与放大
三 发酵罐的设计 四 发酵罐的放大
4
❖了解发酵罐的类型 ❖ 掌握通用式发酵罐的基本结构 ❖了解发酵罐设计的基本原则和要求 ❖了解发酵罐放大设计的方法
2020/7/8
32
❖挡板的宽度: W/D=1/12~1/8(取0.1) ❖ 全档板条件:指在一定的搅拌转速下,在搅拌罐中增
加档板或其它附件时,搅拌功率不再增加,而旋涡基 本消失。一般要满足下式: (W/D)•Z =0.4 Z—档板数 一般装四块挡板
2020/7/8
33
发酵罐内的列管、排 管或蛇管也可起相应 的挡板作用。
❖ 材料一般为不锈钢。
2020/7/8
16
冷却蛇管
筒体
2020/7/8
椭圆封头
17
2020/7/8
18
(1)罐体 ❖ 为了便于清洗,小型发酵罐顶设有清洗用的手
孔。中大型发酵罐则装设有维修或清洗的人孔。 ❖ 罐顶还装有视镜。 ❖ 在罐顶上的接管有:进料管、补料管、排气管、
接种管和压力表接管。
2020/7/8
5
发酵罐的基本概念
❖ 发酵设备中最重要、应用最广的设备,是发酵工业 的心脏,是连接原料和产物的桥梁。
❖ 广义的发酵罐是指为一个特定生物化学过程的操作 提供良好而满意的环境的容器。工业发酵中一般指 进行微生物深层培养的设备。
2020/7/8
6
一、发酵罐的类型
1、按微生物代谢类型分类
❖好氧发酵罐 (通风发酵罐)
❖ 搅拌器的作用
▪ 使通入的空气分散成小气泡, 增加气液接触,促进氧溶解于 发酵液中。
2020/7/8
25
(2) 搅拌器
❖ 搅拌器的类型
类 径向式(涡轮式) 型 轴向式
平叶式、弯叶式和箭叶式 螺旋桨式、浆叶式
2020/7/8
轴向 径向
26
轴向式搅拌器
桨叶式
螺旋桨式
2020/7/8
27
径向式(涡轮式)搅拌器
9 2020/7/8
10 生产用发酵罐:> 5000 L
❖ 抗生素发酵罐的容积以80~200 米3 为主
❖ 氨基酸、柠檬酸的发酵罐较普遍使用150~300 米3
❖ 珠海益力味精集团有限公司630 米3机械搅拌发酵罐, 是世界上最大的通用式发酵罐之一。
❖ 越来越多的啤酒生产厂家采用 400m3 和600m3 大罐, 甚至 800m3 大罐。
2020/7/8
30
(3) 挡板
挡板
挡板
空气分布器 2020/7/8
31
❖ 挡板的作用: ——改变液流的方向,由径向流→轴向流,促使液 体激烈翻动,增加溶解氧。 ——防止搅拌过程中漩涡的产生,而导致搅拌器露 在料液以上,起不到搅拌作用。
2020无/7/挡8 板的搅拌器形成的流型
有挡板的搅拌器形成的流型
(1) 罐体 (2) 搅拌器 (3) 挡板 (4) 轴封 (5) 消泡器 (6) 空气分布管
2020/7/8
(7)联轴器 (8)轴承 (9)变速装置 (10)换热装置 (11)人孔 (12)管路 (13)测量仪表
15
(1)罐体
❖ 罐体由圆柱体及椭圆形或碟形封 头焊接而成。
❖ 小型发酵罐罐顶和罐身采用法兰 连接
19
结构
2020/7/8
20
发 酵 罐 结 构 图
2020/7/8
21
(1)罐体 ❖在罐身上的接管有冷
却水进出管、进空气 管、取样管、温度计 管和测控仪表接口。
2020/7/8
22
(1) 罐体的尺寸比例
❖ H:筒身高度 ❖ HL:液位高度 ❖ D:罐径 ❖ d: 搅拌器直径 ❖ s: 两搅拌器间距 ❖ B:下搅拌器距底
2020/7/8
34
❖一般具有冷却列管或排管的发酵罐内不另 设挡板。
❖挡板的长度自液面起到罐底为止。 ❖挡板与罐壁之间的距离为(0.2~0.4)W,
六平叶搅拌器 六弯叶搅拌器
六箭叶搅拌器
涡轮搅拌器要安一个圆盘? 为了避免气泡在阻力较小的搅拌器中心部分沿 轴上升
2020/7/8
28
2020/7/8
29
在相同的搅拌功率PG下,
▪ 粉碎气泡能力:平>弯>箭 ▪ 翻动流体能力:箭>弯>平
❖工厂多采用在同一搅拌轴上安装不同叶形的 搅拌器
▪ 上层:以混合为主的轴流型或箭叶搅拌器 ▪ 下层:以粉碎气泡为主的平叶涡轮搅拌器。
相关文档
最新文档