大型发酵罐设计及实例

大型发酵罐设计及实例
大型发酵罐设计及实例

大型发酵罐设计及实例

上海医药工业设计院(200040) 石荣华

全国化工设备设计技术中心站(200040) 虞军

随着生化技术的提高和生化产品的需求量不断增加,对发酵罐的大型化、节能和高效提出了越来越高的要求。目前国际抗生素发酵罐的容积以80~200 米3 为主,而轻工的氨基酸、柠檬酸的发酵罐较普遍使用150~300 米3 ,国际上最大标准式发酵罐为美国ADM 公司赖氨酸发酵罐,其容积为10 万加仑,折合公称容积为380 米3 。众所周知发酵是一个无菌的通气(或厌氧) 的复杂生化过程,需要无菌的空气和培养基的纯种浸没培养,因而发酵罐的设计,不仅仅是单体设备的设计,而且涉及培养基灭菌、无菌空气的制备、发酵过程的控制和工艺管道配制的系统工程。

1 国内发酵罐现况

改革开放后,国内发酵罐的装备得到了显著改善,具体表现在:

容积:抗生素发酵扩大至100~150m3 。

赖氨酸发酵已达200m3 。

材质:逐步由碳钢改为不锈钢。

传热:由单一的罐内多组立式蛇管改为罐壁半圆形外盘管为主,辅之罐内冷却管。

减速机:由皮带减速改为齿轮减速机。

搅拌机:由单一径向叶轮改为轴向和径向组合型叶轮。

但由于发酵罐的系统设计没有受到人们普遍重视,有许多抗生素生产人员往往仅重视发酵工艺和菌种,或

限于资金和发酵厂房现状,对发酵罐的大型化和优化缺乏足够重视。就发酵罐而言,目前头国内基本上在原有50m3 基础上进行改革, 罐径为3.00 毫米,罐筒体略有变化,形成57m3 、60m3 等罐体,电机相应作些变化有75 、95 和1.5kW 不等,传热为立式蛇管和搅拌叶轮基本不变为六叶蜗轮,减速采用皮带轮。因而同国际上存在不少的差距,有必要通过对发酵罐系统设计的认识提高,将我国抗生素发酵装备水平向前推进。

2 发酵罐的设计

2.1 发酵罐的型式

发酵过程可以通过固体培养和深层浸没培养来完成,从生产工艺来说可分为间隙分批、半连续和连续发酵等,但是工业化大规模的发酵过程,则以通气纯种培养为主。

通过纯种培养的发酵罐有自吸式发酵罐、标准式发酵罐、气升式发酵罐、喷射式叶轮发酵罐、外循环发酵罐和多孔板塔式发酵罐等。自吸式发酵罐系通过发酵罐内叶轮的高速转动,形成真空将空气吸入罐内,由于叶轮转动产生的真空,其吸入压头和空气流量有一定限制,因而仅适用对通气量要求不高的发酵品种;塔式发酵罐是将发酵液置于多层多孔塔板的细长罐体内,在罐底部通入无菌空气,通过气体分散进行氧的传递,但其供氧量也受到一定限度;

气升式发酵罐、喷射式叶轮发酵罐、外循环发酵罐均是通过无菌空气在罐内中央管或通过旋转的喷射管和罐外喷射泵将发酵液进行一定规律的运动,从而达到气液传质,目前气升式发酵罐在培养基较稀薄,供氧量要求不过分高的条件下(如(V1C 发酵) 得到了较为广泛使用,其它喷射式叶轮发酵罐、外循环发酵罐也有一定的用途;但在发酵工业中,仍数兼具通气又带搅拌的标准式发酵罐用途最为普遍,标准式发酵罐被广泛使用抗生素、氨基酸、柠檬酸等各个领域。

2.2 标准式发酵罐

随着发酵产品需求量增加,发酵过程控制和检测水平提高,发酵机理的了解和最优化的机理认识水平提高,以及空气无菌处理技术水平的提高,发酵罐的容积增大已成为抗生素工业的趋势。

2.2.1 罐的几何尺寸

主要是关心发酵罐的H/ D ,一般随着罐体高度和液层增高、氧气的利用率将随之增加,容积传氧系数KLa 随之提高,但其增长关系不是线性关系,随着罐体增高, KLa 的数值增长速率随之减慢,而随着罐体容积增大,液柱增高,进罐的空气压力随之提高,伴随空压机的出口压力提高和能耗的增加,而且压力过大后,特别是

在罐底气泡受压后体积缩小,气液界面的面积可能受到影响,过高的液柱高度,虽增加了溶氧的分压,但同

样增加溶解二氧化碳分压,增加了二氧化碳浓度,对某些发酵品种又可能抑制其生长,而且罐体的高度,同

厂房高度密切相关。因而发酵罐的H/ D 之比,既有工艺的要求,也应考虑经济和工程问题必须综合考虑后予以确定。

对于细菌发酵罐来说,在筒体高度H/ 罐直径D

宜为2~2.5 ,对于放线菌的发酵罐的H/ D 一般为1.8~2.2 。

2.2.2 通气和搅拌

好氧发酵是一个复杂的气、液、固三相传质和传热过程,良好的供氧条件和培养基的混和是保证发酵过程传热和传质必要条件。

好氧发酵需要通入充沛的空气,以满足微生物需氧要求,因而空气量通入量越大,微生物获得氧有可能越多;其次培养液层高度越大,空气在培养基停留时间就有可能增加,有益于微生物利用空气中的氧;但是空气中氧是通过培养基传递给微生物,传递速率很大程度上取决气液相的传质面积,也就是说取决气泡的大小和

气泡的停留时间,气泡越小和越分散就使微生物可以越充沛获得氧气,但是强化气泡的粉碎单靠气体分布

器的形式和结构是不够的,或者说效果是不明显的,只有通过发酵罐内的叶轮转动将气泡粉碎,才可获得最佳的发酵供氧条件。通过搅拌器的搅拌作用,使培养基在发酵罐内

得到充分宏观混和,尽可能使微生物在罐内每一处均能得到充足氧气和培养基中的营养物质,此外良好的

搅拌有利于微生物发酵过程产生的热量传递给冷却管和发酵罐的冷却内表面。这就是具有通气和搅拌的标准式发酵罐普遍使用在生化工程的原因。

2.2.3 搅拌叶轮

发酵罐内安装搅拌器首先用来分散气泡以得到

尽可能高的传质系数KLa 。此外还要使被搅拌的发酵液循环来增加气泡的平均停留时间,并在整个系统中均匀分布,阻止其聚并。

早先在机械搅拌式发酵罐通常装有数个径向圆盘涡轮搅拌器,但容易使被搅拌的介质分层而形成几个区,

因而在罐下部和上部之间形成氧分压梯度,导致罐内上、下部之间的KLa 值的差异。

近来发酵罐的搅拌系统多采用在罐底部安装一个用来分散空气的涡轮搅拌器,其上再安装一组轴流式搅拌器,用来循环培养介质、均匀分布气泡、加强热量传递和消除罐内上、下部之间含氧量梯度差。

2.2.

3.1 搅拌叶型式

(1) 带圆盘敞式涡轮搅拌叶———高湍流,径向流。

(2) 倾斜叶片(pitched biade) 涡轮(p - 4) ———45°四叶片,轴向流。

(3) 反向倾斜(Reversing pitch) 搅拌叶———二个向上,二个向下,径向流。

(4) 高效轴流式搅拌叶———A3.0 ,轴向流。

(5) 混合流搅拌叶———A3.5 ,轴向流,少量径向流。

(6) 凹叶径流式搅拌叶( Concave blade radial) ———CD - 6 ,径向流。

2.2.

3.2 叶轮选型

为了在气体分散系统中,加强速度梯度或剪切率,形成高湍流以减少气相和液相之间的传质阻力,并保持整个混合物的均匀,将径向流涡轮搅拌器与高效轴向流搅拌叶组合起来是较佳选择。

在分散气体作业的罐内,搅拌叶的数目取决于通气的液面高度和罐直径之比。

而搅拌叶之间的距离不得小于最小搅拌叶的直径。轴流式搅拌叶的直径约为径流式搅拌叶直径的1.3 倍。径流式搅拌叶直径为罐直径的013~014倍,高效轴流搅拌叶直径为罐直径的014~0165 倍。空气分配器位于最底部的搅拌叶之下。

气一液反应器的流动型式决定分散的均匀度,并且影响气体的截留率(gas hold up) 、传质速率和局部溶氧浓度。

当气体流量一定时,罐内流型取决于搅拌叶的速度。搅拌叶转速低时,搅拌叶的作用被上升气流吞没,增加搅拌速度,气体就在整个罐内形成循环,此时这个出现了完全分散的搅拌速度,以Ncd 表示:以后再加大搅

拌叶转速,罐内整体流型保持不变、增加搅拌强度也就增加了气体截留率和传质速率。

在整体流型变化的同时,围绕着搅拌叶叶片的流动也在变化。在气体流速低时,气体在叶片后部形成涡流。随着气体流量的增加,空穴(cavity) 逐渐加大,直到空穴依附到叶片后缘。气流速度更高时就形成一系列

大的空穴。

搅拌叶所需功率的多少与空穴生成的过程和相应通气的流型密切相关。空穴增大则搅拌叶功率减小,相对功率需求(即:通气功率Pg 与不通气功率PN 之比) 是在夫劳德准数不变时的通气准数的函数。

进行搅拌器设计时,需同时计算出Pg 和PN 。

搅拌叶的不通气功率可用下式计算。

PN = NpρN3D5

功率准数NP 是搅拌叶的雷诺准数NRe的函数。

容积传氧系数KLa 数值的求取,文献报导有很多,最成功的是将其与气体表面线速度和单位体积输入功率相关联:

KLa = C( PgV)αηβ

C —受液体性质的强烈影响,此外还包括表面

活性剂、不溶性油等。

Pg —通气功率;

V —发酵液体积;

η—空气线速度;

α、β—指数。

2.2.

3.3 轴向流和径向流相结合的叶轮对于泵或者搅拌器而言,功率就是流量和压头的乘积,即: P

∞QH。“压头”一项不但包括了流体净排出压头,而且还包括由于涡流损失、内部再循环和磨擦等形成的内部压头损失。如果搅拌叶的直径和转速已定,增加其功率准数(例如,采用更多、更宽的叶片,更陡的投入角等) ,压头的增加要大于流量的增加。

在多数发酵过程中流量往往显得更为重要。如果为了分散气体而加大压头,则可在罐底部用一个径向涡轮搅拌叶来分散气体。罐内其余的搅拌叶则采用低功率、高流量的轴向流搅拌叶。后者增加了向罐底部的涡轮搅拌叶供给的流体量,也有助于分散作用。并可减少气泡的聚并(coalescence) ,改善传质。

2.2.4 传热

发酵过程中微生物的生化反应要产生大量热量,这些热量必须及时被带出罐体,否则培养基温度升高,就会影响发酵最佳条件,引起微生物发酵中断。

一般抗生素在发酵过程中会产生每米3 ,每小时约16~25MJ (即4000~6000 大卡/ 米3·时) ,另外培养基经实消和连消后温度较高,需要将其冷却至培养温度,这就需要发酵罐具有足够的传热面积和合适的冷却介质,将热量及时带出罐体。

冷却介质一般应采用低温水和循环水。某些北方的工厂“因地制宜”采用深井水冷却,如果深井水目前水需付较高的费用,也许会认为可降低生产成本,但是发酵罐冷却水量极大,如果采用深井水,这对于水资源是极大浪费,因而是不可取的。

发酵罐的冷却,主要是考虑微生物发酵过程的发酵热和机械搅拌消耗的功率移送给培养基的热量。此外还要考虑,发酵罐消毒的冷却或实消后的冷却时间。目前一般发酵罐的冷却传热面的型式,小型罐(5 米3 以下) 为夹套、大型发酵罐为几组立式蛇管。立式蛇管虽具有传热系数高的优点,但他占据了发酵罐容积,据计算罐内立式蛇管体积约占发酵罐的1.5 %容积,若罐内的蛇管一旦发生泄漏,将造成整个罐批的发酵液染菌、此外罐内蛇管也给罐体清洗带来了不便。

近来新型发酵罐的冷却面移至罐外,采用半圆形外蛇管,该蛇管具有传热系数高,罐体容易清洗,增强罐体强度,因而可大大降低罐体壁厚,使整个发酵罐造价降低,且提高发酵罐的容积,增大放罐体积,因而是值得推广的新技术,国内已经建立了专业的制造厂,解决了对蛇管加工技术难关,为发酵罐设计开创一个新的罐型。外蛇管的设计主要要解决外蛇管的冷却介质的流速和阻力降,因而外蛇管的大小和分组,需要通过计算才能获得满意的效果。

2.2.5 变速搅拌

由于发酵过程中,微生物的培养要求是不同的,往往在发酵中期,微生物处于旺盛生长时间对氧的需要量较高,而在发酵初期和发酵后期微生物的需氧量较低,特别是发酵后期,菌丝体已处于老化阶段,培养基的粘度也较高,剧烈的搅拌会加速菌丝体的自溶,影响发酵水平的提高。如果能设计一个变速搅拌,按照微生物

需氧量来调节搅拌转速,这样不但能创造最佳的培养条件,也能节约发酵过程的能量消耗,因而不少生物工程设备人员试图在大型发酵罐上采用变速搅拌。

由于抗生素品种的不同,微生物在发酵全过程对氧需求变化的程度不一,在中小型罐内的变速搅拌获得了

成功,据文献介绍,可提高发酵单位10~20 % ,降低搅拌能耗10~30 % ,但是在大型罐内,由于变速装置的复杂性和投资增加限制了它的推广使用。

在大型发酵罐如果培养基采用实罐消毒时,为了使消毒时培养基的传热较为理想,因而需要开动搅拌,但此时往往不通入空气,因而使搅拌功率上升,如果操作不当,就有可能损坏电机。目前发酵罐设计时,推荐使用多极电机,可以在实消时低速搅拌,在正常发酵时搅拌全速运行,目前这种双速马达已使用于发酵过程中满足不同需氧量的搅拌操作。

2.2.6 发酵罐的能量消耗

发酵罐的能量消耗主要由如下三部分组成:搅拌器电机耗能、通入无菌空气的制备能量及培养基消毒和冷却能量。培养基消毒和冷却能量主要取决于工艺过程和菌种特性,而搅拌功率和无菌空气消耗能量两者的目的相同,主要是为了供应微生物足够的氧气。

如一个50 米3 抗生素发酵罐,搅拌功率为75~95kW ,通气量为35 标米3/ 分,要制备35 标米3/ 分无菌空气,空压站大约需要消耗175kW 电能,也即该50 米3 发酵罐消耗270kW 电能,从上述数字可以获知发酵罐的60~70 %能量用于无菌空气的制备,为了剖析搅拌功率和无菌空气消耗能量的关系,我们采用溶氧速率KLa 来分析:

KLa =α( Pg

V

)αηβ

式中Pg

V 为单位发酵液的耗能,η为空气在罐内线速度,α、β为指数,根据实验测定α的数值要远大于β数值,也就是说适当降低通气量或适当增加搅拌功率,可以获得同样的供氧速率。但是无菌空气的制备需要投资较大的空压站,而且空气量的增大,降低了发酵罐装料系数,增加了发酵液在尾气中的夹带,而且也增加了

无菌过滤系统的费用,相对而言,增加搅拌功率化费的投资就较少。因而国外抗生素发酵的一条经验为:适当增加电机功率和降低通气量,对发酵的总能耗降低是非常有利的。

3 测量仪表和控制

发酵过程的自动化依赖于对发酵过程中工艺参数的检测,测量的物理参数为温度、压力、流量、泡沫(液位) 、搅拌转速、功率、浊度、粘度。化学参数为pH、氧化还原电位、溶解O2 、溶解CO2 、排气成分、糖、氮、磷及效价分析。

目前使用得比较普遍的是罐温、罐压、pH、补糖、补水和加油消沫的测量及自动控制;空气流量、发酵液体积、溶氧、电机电流和功率进行检测。由于生化工程的要求,这些检测元件必须能满足蒸汽灭菌和不能对发酵液产生污染。

在生物合成中必须对生长环境中各个控制变量进行综合、进行过程的监控和得到新的状态变量,如呼吸商、碳平衡等,利用计算机的在线控制和离线控制,获得最佳的控制效果。

目前国内华北制药厂、山东新华济宁抗生素厂、哈尔滨制药厂、新昌制药厂等数十个发酵车间已经使用计算机来控制发酵生产,有些工厂已经实现全厂计算机管理,取得了良好效果。

控制系统采用集散型微机,它是一种中小规模DCS 控制系统,由操作工作站现场控制(或监视) 单元、信号转换单元、通讯总站组成,系统可靠性高,具有良好的人机接口界面。

生化反应过程中,补料和调节pH 是一个较为复杂系统、一般采用流量计测量加之调节阀补料、也有使用计量泵定量控制流量或采用定量小罐脉冲定数补料。

为了保证计算机控制顺利完成操作,稳定和优质的仪表是关键,仪表的测量点的位置应根据罐内发酵液的

流型进行合理的布点,以避免测得的参数仅表示局部的指标,此外仪表使用一段时间后的纠偏也十分重要。为了更好发挥计算机控制的长处,尽可能完美的工艺目标数据确定和开展对发酵生化机理的研究越来越显得重要。

4 设计实例

4.. 范围和用途

我院自90 年代初就开始了对新型发酵罐进行系统研究和开发,为了更好地学习兄弟厂的先进发酵罐装备,和将国外的成熟经验向国内同行进行宣传,因而成立了发酵罐及其系统协作组,并同有关设备制造厂联合共同对新型搅拌叶轮和传动装置进行完善和提高。

自1992 年起我院在乙酰螺旋霉素、青霉素、黄原胶、可的松、酶制剂、柠檬酸、维生素B、利福霉素、赤霉素、红霉素、泰乐霉素及中药保健品等品种中采用了新型发酵罐,其发酵罐体积为抗生素发酵罐最大为150 米3 、柠檬酸发酵罐最大为280 米3 。搅拌型式为轴向流和径向流的组合叶轮。该搅拌器适用于低通气量的发酵罐、各种球状菌、丝状菌、真菌和霉素。发酵罐和气、液、固多相的反应,特别在高粘度的发酵液中取得了良好效果(如黄原胶发酵罐) ,近年来,我院已设计了新型发酵罐图纸30 余套,绝大多数已用于生产实践。据返回的信息表明,其性能均优于单纯径向流的传统发酵罐,在能量消耗的降低、空气量的减少、发酵单位的提高、操作稳定性等指标上取得了较好的效果。现将设计的主要发酵罐列表如下: 我院设计的主要发酵罐一览表

发酵罐

容积

发酵罐几

何尺寸

规格用于品种备注

15 米3 <2400 ×4500

37kW 180 转/ 分

弯叶+ SPIDI - 轴I 型

利福平种子罐

25 米3 <2400 ×5000

55kW 138 转/ 分

弯叶+ SPIDI - 轴I 型

可的松氧化反应罐

50 米3 <3200 ×7000

95kW 130 转/ 分

弯叶+ SPIDI - 轴I 型

可的松氧化反应罐

<3000 ×7500

1.0kW 120 转/ 分

弯叶+ 三档SPIDI - 轴I 型

利福霉素

<3200 ×5500

75kW 135 转/ 分

喷射搅拌+ SPIDI - 轴I 型

乙酶螺旋霉素

60 米3 <3000 ×9000

75kW 130 转/ 分

SPIDI - 径Ⅰ型+ SPIDI - 轴Ⅱ型

赤霉素

65 米3 <3200 ×7500

132kW 129 转/ 分

直叶+ SPIDI - 轴Ⅰ型

红霉素

100 米3 <3600 ×9000

132kW 129 转/ 分

SPIDI - 径Ⅰ型+ SPIDI - 轴Ⅱ型

赤霉素

1.0 米3 <3600 ×9000

155kW 1.0 转/ 分

SPIDI - 径Ⅰ型+ SPIDI - 轴Ⅱ型

泰乐霉素

150 米3 <4000 ×8900

155kW 1.0 转/ 分

弯叶+ SPIDI - 轴Ⅰ型

利福霉素

4.2 生化反应罐

氢化可的松是重要的激素产品,每年出口为国家赢得了大量外汇,山东新华制药厂氢化可的松车间是该产

品我国最主要的生产装置之一,该厂原有为15 米3 氧化反应发酵罐,通气比为1∶01.~012 ,搅拌为蜗轮式叶轮,生产工艺为实消。

氢化可的松氧化发酵罐的功能是将空气均匀分散于液相中,在微生物的催化下进行氧化反应,为了提高气

液相的分散效果,提高氧的溶氧浓度和传质速率,设备直径<2400mm ,直筒高度为5000mm ,新设计的25 米3 发酵罐采用三挡搅拌叶轮,底层为六弯叶圆盘蜗轮,上层和中层为SPIDI 型轴向流搅拌叶轮,搅拌转速138 转/ 分,电机功率仍为55kW ,经过多年来的实践,证明该搅拌系统:

(1) 使整个罐体的发酵液得到较均匀混合,此外由于径向流和轴向流搅拌叶轮组合,加强了气泡的分散,提高了发酵液中的溶氧浓度,提高了氢化可的松氧化反应的收率。

(2) 同时经实际测定,实耗电流有所下降,也就是说能耗有所降低。

(3) 此外采用了轴向流和径向流组合搅拌器后,由于强化宏观混和,因而减少由于操作人员和物料理化性

质带来的反应收率的波动,缩小了罐批之间的质量波动,稳定了生产的技术经济指标。

为了扩大生产,厂方决定将氢化可的松的氧化发酵罐放大至50 米3 ,该容积在氢化可的松生产中是我国最大的生化反应罐,在总结25 米3 发酵罐基础上,于1999 年开始了放大设计,放大设计不仅对罐体的几何尺寸,传质传热效率,搅拌叶轮的混和时间,溶氧速率,气泡占容和叶轮对菌体的剪切力等因素进行了综合考

虑确定,罐体直径为<3200mm ,筒体直径为7000mm ,采用外盘管进行传热,搅拌叶轮采用一挡径向流叶轮以提高气泡的分散度,上层和中层采用改进型的轴向流叶轮,搅拌转速为130 转/分,单位体积的功率较25 米3 罐进一步下降,采用95kW电机,经过实践证明,50 米3 生化反应罐取得了成功,氧化反应收率得到了提高,单体体积发酵液所消耗的功率进一步有所下降;操作的稳定性也获得满意的效果,50 米3 新型发酵罐在氢化可的松的氧化反应中的运行,提高了工厂的劳动生产率,降低了反应的生产成本,取得了较好的效果。

从该发酵罐的设备设计而言,采用外盘管作为传热面,取消了50 米3 发酵罐的内蛇管,使罐内变得空畅,增加了约1 %体积,且方便了清洗,对减少罐内染菌起到了有益的帮助;外盘管不仅获得了良好传热效果,而且也可作为罐体的加强圈,因而大大减少了直筒体的壁厚,节约了材料,降低了造价;搅拌轴上增设了稳定器,减少了轴的晃动,因而在50米3 发酵罐中取消了底轴承;采用了三分式的联轴器,方便了搅拌轴的检修。4.3 抗生素发酵罐

抗生素发酵罐是抗生素工业中关键设备,由于它对发酵水平和能耗高低起到至关重要的作用,因而一直是

我们重视发酵罐设计的关注点。

4.3.1 红霉素发酵罐

陕西某药厂红霉素是全国非常重要的生产企业,近几年来在各大专院校、科研院所和厂方努力下,红霉素的生产水平得到了大幅度的提高,发酵水平提高70 %以上,我院配合该药厂在65 米3 红霉素发酵的搅拌系统做了一定的工作,为该厂红霉素发酵水平的提高,在装备上提供了一些可能,在此基础上对原有的50 米3 发酵罐也进行了改造,并且配合开展了100 米3 新的红霉素发酵罐的设计工作。现对65 米3 红霉素新型发酵罐设计进行介绍:

65 米3 红霉素发酵罐的设备直径:3200mm ;

筒体高度:7500mm ;

搅拌叶轮:组合叶轮;

其中:一挡直叶涡轮(径向流) ;

三挡SPIDI - 轴I 型(轴向流) ;

搅拌转速:129 转/ 分;

电机功率:132kW;

传热:四组半圆管+ 六块平板式内蛇管(兼作全挡板) ;

传动:减速机、噪音低。

该发酵罐1999 年设计完成后,即加工投入生产。在各方面科技人员全力支持和合作下,该发酵罐运行正常,设备维修工作量极小,特别是生产环境的噪音大大低于现有50 米3 发酵罐,特别可喜的是在工艺的带动下,发酵单位提高了70 %左右,根据统计,其振幅大大高于原有50 米3 发酵罐,且在能量消耗、罐批之间波动性均得到了优化。

接下来对该65 米3 发酵罐的设备设计作一介绍:

(1) 搅拌叶轮下端部,设置了稳定器,可使搅拌系统的振动大大降低。

(2) 搅拌轴的支承考虑取消底轴承,利用减速机的轴承及机架上的轴承作为主要支承点,并在罐内设置一

个中间轴承,在轴端设置稳定器。

(3) 该罐所选用的机械密封也与常规的不同,采用了静环为剖分式的202F 型单端面小弹簧外流式机械密封,除了保留带短节联轴器以方便调换机械密封以外,可在不拆卸带短节联轴器及机架轴承的情况下,更换机械密封的静环,缩短维修时间,减轻劳动强度。

(4) 该罐的传热系统采用外半圆夹套与内传热挡板相结合的形式。

(5) 发酵罐的传热主要靠外半圆夹套,设置了四组Φ150mm 的外半圆管夹套。

(6) 发酵液冷却夏天使用低温水,冬天使用循环水,为了尽可能延长循环水冷却使用时间,降低全年耗能费用。因而经计算后认为,单纯采用外半圆管磁罐的传热面积略感不足,因此加设了六组内排管以增加传热面积,此排管采用直排结构,管子间的间隙用钢棒填充,使其同时能起到全挡板的作用,因而不必在罐内另行

设置挡板。

(7) 为了便于冷却水接管的布置,六组内传热挡板通过两组Φ200mm 的外半圆管将其联结起来,从而使其

冷却水的进出口与外半圆管的进出口保持一致的方向。

(8) 为了减少罐内的管路,取消了通常采用的视镜冲洗管,采用具有冲洗口的带灯视镜。

(9) 该罐根据用户的要求,对罐内壁及罐内部件均采取抛光处理。

4.3.2 赤霉素发酵罐

1996 年我院为江西某药厂设计了70 米3 赤霉素发酵罐,该发酵罐设备直径3200mm ,直筒高度8500mm ,采用一挡径向流和二挡轴向流的组合叶轮,搅拌转速125 转/ 分,电动功率155kW ,投入运行后取得了较好的效果,提高了赤霉素发酵单位。

但是我们对该设备进行了分析,由于新型组合叶轮在同样功率消耗的情况下,提供了较高的溶氧浓度,不但满足了菌体生长的需要,而且还有富裕。为此在2001 年为湖南某厂设计100 米3 赤霉素发酵罐时,我们在总结前阶段工作的经验上,结合该厂的实际生产数据,对其现有的60 米3 发酵罐进行了改进,摸索最佳条件,从而为进一步提高新型发酵罐的技术水平作出努力。该60 米3 的试验发酵罐采用了类似国外半圆管式SPIDI 径向I 型和改进型SPI2DI 轴向II 型组合叶轮,搅拌转速为130 转/ 分,进行试车,实测电流为1.0~1.5A ,也就是说实耗功率为50~55kW ,在如此低的搅拌能耗情况下,取得了和原有全部由涡轮式径向叶轮相当的发酵水平,而且经多批试验,发酵周期在180 小时的发酵液各项理化指标和发酵单位达到了原

来200 小时的数据,也就是说为该品种的发酵周期缩短至180 小时提供了可能。据此我们进行了100 米3 发酵罐设计,其主要技术参数如下:

直径:Φ3800 ;

筒体高度:9000mm ;

传热面积:140 米2 ;

搅拌转速:125 转/ 分;

设计功率:135kW;

叶轮:一挡SPIDI 径向I 型叶轮;

三挡SRIDI 一轴向II 型叶轮;

传动:减速机。

目前该罐图纸已经交付,正在施工,不久即可以投产运行。

机械原理课程设计,详细

目录 一、设计题目 (2) 1、牛头刨床的机构运动简图 (2) 2、工作原理 (2) 二、原始数据 (3) 三、机构的设计与分析 (4) 1、齿轮机构的设计 (4) 2、凸轮机构的设计 (10) 3、导杆机构的设计 (16) 四、设计过程中用到的方法和原理 (26) 1、设计过程中用到的方法 (26) 2、设计过程中用到的原理 (26) 五、参考文献 (27) 六、小结 (28)

一、设计题目 ——牛头刨床传动机构 1、牛头刨床的机构运动简图 2、工作原理 牛头刨床是对工件进行平面切削加工的一种通用机床,其传动部分由电动机经 带传动和齿轮传动z 0—z 1 、z 1 、—z 2 ,带动曲柄2作等角速回转。刨床工作时,由导 杆机构2、3、4、5、6带动刨刀作往复运动,刨头右行时,刨刀进行切削,称为工 作行程;刨头左行时,刨刀不进行切削,称为空回行程,刨刀每切削完一次,利用 空回行程的时间,固结在曲柄O 2 轴上的凸轮7通过四杆机构8、9、10与棘轮11和棘爪12带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。

二、原始数据 设计数据分别见表1、表2、表3. 表1 齿轮机构设计数据 设计内容齿轮机构设计 符号n01d01 d02 z0 z1 z1’m01 m1’2n2 单位r/min mm mm mm mm r/min 方案Ⅰ1440 100 300 20 40 10 3.5 8 60 方案Ⅱ1440 100 300 16 40 13 4 10 64 方案Ⅲ1440 100 300 19 50 15 3.5 8 72 表2 凸轮机构设计数据 设计内容凸轮机构设计 符号L O2O4 L O4D φ[α]δ02 δ0 δ01δ0/ r0 r r 摆杆运动规 律单位mm mm °°°°°°mm mm 方案Ⅰ150 130 18 45 205 75 10 70 85 15 等加速等减 速 方案Ⅱ165 150 15 45 210 70 10 70 95 20 余弦加速度方案Ⅲ160 140 18 45 215 75 0 70 90 18 正弦加速度方案Ⅳ155 135 20 45 205 70 10 75 90 20 五次多项式 表3 导杆机构设计数据 设计内容导杆机构尺度综合和运动分析 符号K n2L O2A H L BC 单位r/min mm 方案Ⅰ 1.46 60 110 320 0.25L O3B 方案Ⅱ 1.39 64 90 290 0.3L O3B 方案Ⅲ 1.42 72 115 410 0.36L O3B 表4 机构位置分配表 位置号位置 组 号 学生号 A B C D 1 1 3 6 8/ 10 2 5 8 10 7/ 1/ 4 7 8 10 1 5 7/ 9 12 2 1/ 4 7 8 11 1 3 6 8/ 11 2 5 7/ 9 11 1/ 3 6 8/ 11 3 2 5 7/ 9 12 1/ 4 7 9 12 1 3 6 8/ 12 2 4 7 8 10

啤酒露天发酵罐的设计

安徽工程大学课程设计任务书 课题名称:生物反应器设计(啤酒露天发酵罐设计) 姓名:吕超绍 指定参数: 1.全容:40m3 2.容积系数:75% 3.径高比:1:3 4.锥角:700 5.工作介质:啤酒 设计内容: 1.完成生物反应器设计说明书一份(要求用A4纸打印) 1)封面 2)设计任务书 3)生物反应器设计化工计算 4)完成生物反应器设计热工计算 5)完成生物反应器设计数据一览表 2.完成生物反应器总装图一份(用CAD绘图A4纸打印)设计主要参考书: 1.生物反应器课程设计指导书

2.化学工艺设计手册 3.机械设计手册 4.化工设备 5. 化工制图 露天发酵罐设计计算步骤 第一节发酵罐的化工设计计算 一、发酵罐的容积确定 在选用时V全=40m3的发酵罐 则V有效=V全×?=40×75%= 30m3(?为容积系数) 二、基础参数选择 1.D:H: 选用D:H=1:3 2.锥角:取锥角为700 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,锥体一段,槽钢材料为A3钢,冷却介质采用20%、-4℃的酒精溶液 5.罐体所承受最大内压:2.5㎏/㎝3 外压:0.3㎏/㎝3 6.锥形罐材质:A3钢外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料:环氧树脂 三、D、H的确定 由D:H=1:3,则锥体高度H1=D/2tan350=0.714D(350为锥角

的一半) 封头高度H 2=D/4=0.25D 圆柱部分高度H 3=(3.0-0.714-0.25)D=2.04D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2 /4×H 1+24 π×D 3 + 4 π×D 2 ×H 3 =0.187D 3+0.13D 3 +1.60D 3 =40 得D=2.75m 查JB-T4746-2002《椭圆形封头和尺寸》取发酵直径D=2800mm 再由V 全=40m 3 ,D=2.8m 得径高比为: D: H=1:2.9 由D=2800mm 查表得 椭圆封头几何尺寸为: h 1=700mm h 0=40mm F=8.85m 2 V=3.12m 3 筒体几何尺寸为: H=5712mm F=50.24m 2 V=35.17m 3 锥体的几何尺寸为: h 0=40mm r=420mm H=2169mm F=()220.70.3cos 0.644 sin d a a ππ ?? -++? ??? =0.619m 2

块状物品推送机机械原理课程设计

机械原理课程设计说明书设计题目:块状物品推送机的机构综合与结构设计 班级: 姓名: 学号: 同组成员: 组长: 指导教师: 时间: 一、设计题目 (2) 二、设计数据与要求 (2) 三、设计任务 (3) 四、方案设计 (4) 1.凸轮连杆组合机构 (4) 2.凸轮机构 (5) 3.连杆机构 (6)

4.凸轮齿轮组合机构 (7) 五、方案尺寸数据及发动机参数 (7) 六、运动分析 (8) 1.位移分析 (8) 2.速度分析 (9) 3.加速度分析 (10) 七、飞轮设计 (11) 八、个人总结 (12) 一、设计题目 在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序。现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置,如图所示。 二、设计数据与要求 1.向上推送距离H=120mm,生产率为每分钟推送 物品120件。 2.推送机的原动机为同步转速为3000转/分的三

相交流电动机,通过减速装置带动执行机构主动件等速转动。 3.由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从最 低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置又回 到最低位置;最后当主动件再转过900时,推杆在最低位置停留不动。 4.设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其值 为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其值 为100N。 5.使用寿命10年,每年300工作日,每日工作16小时。 6.在满足行程的条件下,要求推送机的效率高(推程最大压力角小于350), 结构紧凑,振动噪声小。 三、设计任务 1.至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进 行机构综合。 2.确定电动机的功率与满载转速。 3.设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图。 4.在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速 度和加速度变化曲线。 5.如果希望执行机构主动件的速度波动系数小于3%,求应在执行机构主动 件轴上加多大转动惯量的飞轮。 6.进行推送机减速系统的结构设计,绘制其装配图和两张零件图。 7.编写课程设计说明书。

啤酒发酵罐设计

啤酒发酵罐设计:一罐法发酵,即包括主、后发酵和贮酒成熟全部生产过程在一个罐内完成。 1)发酵罐容积的确定: 根据设计,每个锥形发酵罐装四锅麦汁, 则每个发酵罐装麦汁总量V=59.35×4=237.4 m3 锥形发酵罐的留空容积至少应为锥形罐中麦汁量的25%, 则发酵罐体积至少应为237.4(1+25%)=296.75 m3, 为300 m3。 取发酵罐体积V 全 2)发酵罐个数和结构尺寸的确定: 发酵罐个数N=nt/Z=8×17/4=34 个 式中n—每日糖化次数 t—一次发酵周期所需时间 Z—在一个发酵罐内容纳一次糖化麦汁量的整数倍 锥形发酵罐为锥底圆柱形器身,顶上为椭圆形封头。 设H﹕D=2.5﹕1,取锥角为70°,则锥高h=0.714D V全=лD2H/4+лD2h/12+лD3/24 得D=5.1 m H=2.5D=12.8 m h=3.6 m 查表知封头高h封=h a+h b=1275+50=1325 mm 罐体总高H总= h封+H+h=1325+12800+3600=17725 mm 3)冷却面积和冷却装置主要结构尺寸确定: 因双乙酰还原后的降温耗冷量最大,故冷却面积应按其计算。 已知Q=862913 kJ/h 发酵液温度14℃3℃ 冷却介质(稀酒精)-3℃2℃ △t1=t1-t2′=14-2=12℃ △t2=t2-t1′=3-(-3)=6℃ 平均温差△t m=(△t1-△t2)/㏑(△t1/△t2) =(12-6)/ ㏑(12/6) =8.66℃ 其传热系数K取经验值为4.18×200 kJ/(m2﹒h﹒℃) 则冷却面积F=Q1/K△t m =862913/(4.18×200×8.66) =119.2 m2 工艺要求冷却面积为0.45~0.72 m2/ m3发酵液 实际设计为119.2/237.4=0.50 m2/ m3发酵液

发酵罐设计要点

目录 前言 (2) 设计方案的拟定 (3) (1) ......................................................................................................................................... 、机械搅拌生物反应器的型式 ................................................... .3 (2) ......................................................................................................................................... 、反应器用途 . (3) (3) ......................................................................................................................................... 、冷却水及冷却装置 ........................................................ ..3 (4)、设计压力罐内0.4MPa;夹套0.25 Mpa (4) 表-发酵罐主要设计........ (4) 工艺设计及计算 ........................................................... ..5 (1)生产能力、数量和容积的确定 (5) (2)主要尺寸计算 (5) (3)冷却面积的计算 (6) (4)搅拌器设计 (6) (5)搅拌轴功率的计算 (7) (6)i求最高热负荷下的耗水量W ....................................................................... .8 ii 冷却管组数和管径 (9) iii冷却管总长度L计算 (10) iv每组管长I o和管组高度 (10) V 每组管子圈数n0 (10) Vi 校核布置后冷却管的实际传热面积 (10) (7)设备材料的选择 (10) (8)发酵罐壁厚的计算 (11) (9)接管设计 (12) (10)支座选择 (13) 设计结果汇总 (14) 参考资料 (14) 发酵罐设计心得体会 (15)

机械原理课程设计+例题实例

《机械原理》课程设计 计算说明书 设计题目:健身球检验分类机 院校:武汉大学东湖分校工学院 专业:机械设计制造及其自动化 班级:2005级(1)班 设计者:方旭东 学号:2 指导老师:张荣 日期:2009年1月6日 目录 设计任务书············································ 设计方案说明·········································· 一、设计要求·········································· 二、方案确定·········································· 三、功能分解·········································· 四、选用机构·········································· 五、机构组合设计······································ 六、运动协调设计······································ 七、圆柱直齿轮设计····································

八、方案评价·········································· 参考文献··············································· 设计小结··············································· 方案设计说明 一.设计要求 设计健身球自动检验分类机,将不同直径尺寸的健身球按直径分类。检测后送入各自指定位置,整个工作过程(包括进料、送料、检测、接料)自动完成。 健身球直径范围为ф40~ф46mm,要求分类机将健身球按直径的大小分为三类。 1. ф40≤第一类≤ф42 2. ф42<第二类≤ф44 3. ф44<第三类≤ф46 电机转速:720r/min,生产率(检球速度)20个/min。 二.方案确定 初选了三种设计方案,如下: 方案一:

啤酒 发酵课程设计

长春工业大学化学与生命科学学院生物工程专业 《发酵工程》课程设计说明书 一、总论 1.1概论 传统啤酒发酵工艺 (1)主发酵又称前发酵,是发酵的主要阶段,也是酵母活性期,麦汁中的可发酵性糖绝大部分在此期间发酵,酵母的一些主要代谢产物也是在此期内产生的。发酵方法分两类,即上面发酵法和下面发酵法。我国主要采用后种方法。下面重点介绍下面啤酒发酵法。 加酒花后的澄清汁冷却至6.5~8.0℃,接种酵母,主发酵正式开始。酵 ,这是发酵的主要生化反母对以麦芽糖为主的麦汁进行发酵,产生乙醇和CO 2 应。主要步骤如下: ①用直接添加法添加酵母在密闭酵母添加器内将回收的酵母按需要量与麦汁混匀(约1:1),用压缩空气或泵送入添加槽内,适当通风数分钟。 ②酵母添加量添加量常按泥状酵母对麦汁体积百分率计算,一般为 0.5%~0.65%,通常接种后细胞浓度为800万~1200万个/ml。接种量应根据酵母新鲜度,稀稠度,酵母使用代数、发酵温度、麦汁浓度以及添加方法等适当调节。若麦汁浓度高,酵母使用代数多,接种温度及酵母浓度低,则接种量应稍大,反之则少。 ③发酵第一阶段又称低泡期。接种后15~20小时,池的四周出现白沫,并向中间扩展,直至全液面,这是发酵的开始。而后泡沫逐渐培厚,此阶段维持2.5~3天,每天温度上升0.9~1℃,糖度平均每24小时降1°Bx。 ④发酵第二阶段又称高泡期。为发酵的最旺盛期,泡沫特别丰厚,可高达25~30cm。由于麦汁中酒花树脂等被氧化,泡沫逐渐变为棕黄色。此阶段2~3天,每天降糖1~1.5%。 ⑤发酵第三阶段又称落泡期。高泡期过后,酵母增殖停止、温度开始下降,降糖速度变慢,泡沫颜色加深并逐步形成由泡沫、蛋白质及多酚类氧化

最新通用式发酵罐的设计与计算

一、通用式发酵罐的尺寸及容积计算 1. 发酵罐的尺寸比例 不同容积大小的发酵罐,几何尺寸比例在设计时已经规范化,具体设计时可根据发酵种类、厂房等条件做适当调整。通用式发酵罐的主要几何尺寸如下图。 (1)高径比:H 0︰D =(1.7~4)︰1。 (2)搅拌器直径:D i =3 1D 。 (3)相邻两组搅拌器的间距:S =3D i 。 (4)下搅拌器与罐底距离:C =(0.8~1.0)D i 。 (5)挡板宽度:W =0.1 D i , 挡板与罐壁的距离:B =( 81~51)W 。 (6)封头高度:h =h a +h b , 式中,对于标准椭圆形封头,h a =4 1D 。 当封头公称直径≤2 m 时,h b =25 mm ;当封头 的公称直径>2 m 时,h b =40 mm 。 (7)液柱高度:H L =H 0η+h a +h b , 式中,η为装料系数,一般情况下,装料高度取罐圆柱部分高度的0.7倍,极少泡沫的物料可达0.9倍,对于易产生泡沫的物料可取0.6倍。 2. 发酵罐容积的计算 圆柱部分容积V 1: 0214H D V π = 式中符号所代表含义见上图所示,下同。 椭圆形封头的容积V 2: )6 1(4642222D h D h D h D V b a b +=+=π π π 公称容积是指罐圆柱部分和底封头容积之和,其值为整数,一般不计入上封头的容积。其计算公式如下: )6 140221D h H D V V V b ++= +=(公π 罐的全容积V 0: )]6 1(2[4202210D h H D V V V b ++=+=π 如果填料高度为圆柱高度的η倍,那么液柱高度为: b a L h h H H ++=η0 装料容积V : )6 1(40221D h H D V V V b ++= +=ηπη 装料系数η:

【精品毕设】机械原理课程设计实例详解(包括源程序)

机械原理课程设计说明书课题名称:新型窗户启闭装置 学院:机电工程学院 专业:机械电子工程 班级:09级01班 小组成员: 指导老师: 课题工作时间:2011.9.1至2011.9.10

前言 机械原理课程设计是使学生较全面、系统巩固和加深机械原理课程的基本原理和方法的重要环节,是培养学生“初步具有确定机械运动方案,分析和设计机械的能力”及“开发创新能力”的一种手段。其目的是: 1) 以机械系统运动方案设计与拟定为结合点,把机械原理课程中分散于各章的理论和方法融会贯通起来,进一步巩固和加深学生所学的理论知识。 2) 使学生能受到拟定机械运动方案的训练,具有初步的机构选型与组合和确定运动方案的能力。 3) 使学生在了解机械运动的变换与传递及力传递的过程中,对机械的运动、动力分析与设计有一个较完整的概念。 4) 进一步提高学生运算、运用流行软件编写应用程序和技术资料的能力。 5) 通过编写说明书,培养学生表达、归纳、总结和独立思考与分析的能力。 要达到课程设计的目的,必须配以课程设计的具体任务:按照选定的机械总功能要求,分解成分功能,进行机构的选型与组合;设计该机械系统的几种运动方案,对各运动方案进行对比和选择;对选定方案中的机构——连杆机构、凸轮机构、齿轮机构,其他常用机构,组合机构等进行运动分析与参数设计;通过计算机编程,将机构运动循环图在计算机屏幕上动态地显示出来,并给出相应的运动参数值。 机械原理课程设计的主要方法,是采用解析法建立求解问题的数学模型,在此基础上应用目前流行的可视化编程语言(如:VB)编写求解程序,显示所设计机构的运动图形、运动参数值及机构仿真。 摘要:本次课程设计运用解析法建立了所设计的六杆机构的运动特性数学模型,利用Matlab运动仿真求出各铰接点和杆件的运动变化情况。然后基于Visual Basic程序设计运动仿真,绘出相应铰接点运动特性曲线,并将用解析法基于Matlab环境下运行的结果与Visual Basic程序设计仿真运动值进行比较。进

过程控制课程设计——啤酒发酵罐温度控制系统

内蒙古科技大学信息工程学院过程控制课程设计报告 题目:啤酒发酵罐的温度控制系统设计 学生姓名:赵晓红 学号:0967112235 专业:测控技术及仪器 班级:09测控2班 指导教师:左鸿飞

前言 啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。 啤酒的发酵过程是一个微生物代谢过程。它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。在发酵期间,工艺上主要控制的变量是温度、糖度和时间。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。 在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

发酵罐的设计

目录 第一章啤酒发酵罐结构与动力学特征 (3) 一、概述 (3) 二、啤酒发酵罐的特点 (3) 三、露天圆锥发酵罐的结构 (4) 3.1罐体部分 (4) 3.2温度控制部分 (5) 3.3操作附件部分 (5) 3.4仪器与仪表部分 (5) 四、发酵罐发酵的动力学特征 (6) 第二章发酵罐的化工设计计算 (7) 一、发酵罐的容积确定 (7) 二、基础参数选择 (7) 三、D、H的确定 (7) 四、发酵罐的强度计算 (9) 4.1 罐体为内压容器的壁厚计算 (9) 五、锥体为外压容器的壁厚计算 (11) 六、锥形罐的强度校核 (13) 6.1内压校核 (13) 6.2外压实验 (14) 6.3刚度校核 (14)

第三章发酵罐热工设计计算 (14) 一、计算依据 (14) 二、总发酵热计算 (15) 第四章发酵罐附件的设计及选型 (19) 一、人孔 (19) 二、接管 (19) 三、支座 (20) 第五章发酵罐的技术特性和规范 (21) 一、技术特性 (21) 二、发酵罐规范表 (22) 参考文献 (24)

发酵罐设计实例 第一章啤酒发酵罐结构与动力学特征 一、概述 啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

年产9万吨啤酒发酵罐的设计

1.1 啤酒的起源 啤酒的渊源可以追溯到人类文明的摇篮,东方世界的两河流域底格里斯河与幼发拉底河、尼罗河下游和九曲黄河之滨。最原始的啤酒可能出自居住于两河流域的苏美尔人之手,距今至少已有 9000 多年的历史。早在公元前 3000 年左右的埃及古王国时代,已经有作为饮料的麦酒(啤酒)和葡萄酒了。法老、贵族、祭司等人饮葡萄酒,一般平民消费价格低廉的麦酒。考古发掘证实,在古王国时代的墓葬中,不论是国王、贵族或平民,都将酒作为随葬品。自此之后,世界酒业彼此影响,飞速发展,经历了封建时代和工业社会,形成三大酒系(酿造酒、蒸馏酒和配制酒),精品众多,各国都有名闻世界的独特产品。 1.2 我国啤酒工业发展简况 综观仅有百年历史的中国啤酒工业,可以发现在改革开放以后涌现出了一大批具有品牌、技术、装备、管理等综合优势的优秀企业,如“青啤”、“燕京”、“华润”、“哈啤”、“珠江”、“重啤”、“惠泉”、“金星”等国际和国内的知名企业。由于啤酒的运输、保鲜等行业特点,加之地方保护主义作崇,使中国啤酒工业形成了诸侯割据、各自为政的"春秋战国"局面。纵然中国啤酒产量已突破2500万吨,位居世界第一;纵然已有四家中国啤酒集团的年产量超过100万吨,但与国际啤酒大国及啤酒发达国家相比,在集团化、规模化、质量、效益、品牌等方面我们均还比较落后。虽然“青啤”、“华润”、“燕京”等已开始踏上集团化、规模化道路,但在质量、效益等方面与国际品牌尚有一定差距。 未来几年里,我国啤酒行业的发展趋势为: 1.我国啤酒市场竞争会更加激烈;市场竞争趋于规范化,市场竞争由价格竞争转向品牌竞争和服务竞争。效益成为企业最终的追求目标。 2.整个行业逐步进入成熟期,行业内的整合速度进一步加快,整合过程规范化。企业向集团化、规模化发展,股份制优势更加明显。 3.啤酒企业的品牌意识增强,更加注重品牌战略的实施,市场对名牌产品的需求增加。企业的市场竞争能力增强,重视企业内部核心能力的培养。 4.在市场营销中,广告的投入量加大,包装形式多样化,营销方式多样化。 5.产品特点:首先,啤酒品种更加多样化、功能更加齐全。新品趋向特色型、风味型、轻快型、保健型、清爽型等。

发酵放大方法

发酵罐的比拟放大 一、比拟放大的内容: 罐的几何尺寸,通风量,搅拌功率,传热面积和其他方面的放大问题,这些内容都有一定的相互关系。 二、比拟放大的依据 1、单位体积液体的搅拌消耗功率 2、搅拌雷诺准数 3、溶氧系数 4、搅拌桨末端线速度 5、混合时间 6、通过反馈控制条件,尽可能使重要环境因子一致。 三比拟放大和它的基本方法 比拟放大:是把小型设备中进行科学实验所获得的成果在大生产设备中予以再现的手段,它不是等比例放大,而是以相似论的方法进行放大。 首先必须找出表征着此系统的各种参数,将它们组成几个具有一定物理含义的无因次数,并建立它们间的函数式,然后用实验的方法在试验设备中求得此函数式中所包含的常数和指数,则此关系式在一定条件下便可用作为比似放大的依据。比拟放大是化工过程研究和生产中常用的基本方法之一。 在发酵工程中是否适用和发酵工程中所用的比拟放大方法 发酵过程是一个复杂的生物化学过程,影响这个过程的参数有物理的、化学的、生物的,有些虽然已经被认识了,但目前还不能准确快速地测量,有些则尚未被认识。 现在只研究了少数参数对此过程的关系,而假定其它参数是不变的,实际上不可能都是不变的。因此发酵生产过程设备比似放大理论与技术的完善,有赖于对发酵过程的本质的深入了解。 发酵工程中所用的比拟放大方法有:等KLa, 等πDN, 等Pg/V, 等Re或动量因子,相似的混合时间等。 发酵过程的控制和监测 一、发酵过程的监测内容与方式 发酵过程的参数检测意义 在发酵过程中,过程状态经历着不断的变化,尤其是批发酵这种状态的变化更快。 底物和营养物由于生物活性而变化,生物量的增加和生物量组成也在变化(包括物理、生化和形态学上的变化),而各种具有生物活性的产物被积累。 发酵过程检测和控制的目的就是利用尽量少的原料而获得最大的所需产物。 (一)发酵过程监控的主要指标 1.物理检测指标:温度;压力;搅拌转速;功耗;泡沫;气体流速;粘度等。 2.化学检测指标:pH;氧化还原电位;溶解氧;气体CO2、O2;糖含量;化合物含量等。3.生物检测指标:菌体浊度;A TP;各种酶活力;中间代谢产物。 当然并非所有产品的发酵过程中都需检测上述全部参数,而是根据该产品的特点和可能条件,有选择地检测部分参数。 (二)监控方式 一般监控系统包括3个部分。

机械原理课程设计完整版

《机械原理课程设计》 学院: 行知学院专业: 机械设计制造及其自动 化 姓名:陈宇学号: 10556109 授课教师:王笑提交时间: 2012 年 7 月1日 成绩:

目录 1.设计工作原理-----------------------------------------------------2 2.方案的分析--------------------------------------------------------4 3. 机构的参数设计几计算-----------------------------------------7 4. 机构运动总体方案图及循环图-------------------------------11 5.机构总体分析----------------------------------------------------13 6. 参考资料----------------------------------------------------------13

半自动钻床机构 一、设计工作原理 1.1、工作原理及工艺动作过程 该系统由电机驱动,通过变速传动将电机的1080r/min降到主轴的5r/min,与传动轴相连的各机构控制送料,定位,和进刀等工艺动作,最后由凸轮机通过齿轮传动带动齿条上下平稳地运动,这样动力头也就能带动刀具平稳地上下移动从而保证了较高的加工质量。 设计加工图(一)所示工件ф12mm孔的半自动钻床。进刀机构负责动力头的升降,送料机构将被加工工件推入加工位置,并由定位机构使被加工工件可靠固定。 1.2、设计原始数据及设计要求 半自动钻床设计数据参看表(一) 表(一)半自动钻床凸轮设计数据

啤酒发酵课程设计.

目录 一、总论 1.1概论 1.2设计依据 1.3设计指导思想 1.4设计范围 二、生产工艺 2.1生产方法的选择 2.2啤酒发酵流程CAD图纸(附) 三、设备选择 3.1主要工艺设备选型计算 3.2 啤酒罐CAD图纸(附) 四、设计结果的自我总结与评价 五、参考文献

合肥学院生物工程专业化工课程设计说明书 啤酒发酵罐课程设计 一总论 1.1概论 圆筒体锥底立式发酵罐 圆筒体锥底立式发酵罐(简称锥形罐),已广泛用于发酵啤酒后生产。锥形罐,可单独用于前发酵或后发酵,还可以将前,后发酵合并在该罐进行(一罐法)。这种设备的优点在于能缩短发酵时间,而且具有生产上的灵活性,帮能适合于生产各种类型啤酒的要求。目前,国内外啤酒工厂使用较多的是锥形发酵罐这种设备一般置于室外。冷媒多采用乙二醇或酒精溶液。也可使用氨作冷媒,优点心能耗低。采用的管径小,生产费用可以降低。最终沉积在锥底的酵母,可打开锥底阀门,把酵母排出罐外,部分酵母留作下次待用,安全阀和玻璃视镜。 影响发酵设备造价的因素 主要包括发酵设备大小,形式,操作压力及所需的新华通讯社却工作负荷,容光焕发器的形式主要指其单位容光焕发积所需的表面积,这是影响造价的主要因素。罐的高度与直径的比例为1.5-6:1.常用3:1或4:1.罐内真空主要是系列的发酵罐在密闭条件下转罐可进行内部清洗时造成成的,由于型发酵罐在工作完毕后放料的速度很快.有可能造成成一定期负压,另外即便函罐内留学生存一部分二氧化碳.在进行清洗时,二氧化碳有被子除去的可能所以也可能造成真空。由于清洗液中含有碱性物质能与二氧化碳起反应而除去罐内气体。 结构及特点 啤酒发酵罐是啤酒厂的主要设备之一,其发酵温度控制是依靠调节冷却系统的冷却流量来实现。目前国内外较多采用罐体外壁的夹套通入低温酒精水冷却罐内发酵液,而酒精水的降温是通过液氨蒸发来冷却的,其缺点是需要酒精水的中间换热循环。而本设计对目前现有的啤酒发酵罐,作了进一步发展和改进,其主要特点如下: ⑴把大罐的夹层当作蒸发器,液氨直接在夹套内蒸发,利用其气化潜热冷却罐内的啤酒液,从而省却了酒精水的中间换热循环,节省能耗12%以上。 ⑵把夹套当作蒸发器,由于夹套内的压力比酒精水系统的要高,为此,设置

发酵罐70t设计word版本

发酵罐70t设计

庆大霉素生产工艺流程图 ①装料系数:一级种子罐65% 二级种子罐70% 发酵罐75% ②发酵液物性参数:密度1050kg/m3 粘度50(CP)比热4.18kJ/kg.℃ ③Q p:发酵热 3500kcal/m3h=14700kJ/m3h 冷却装置:种子罐用夹套式冷却,发酵罐用列管冷却。 ④连续灭菌系统 培养基灭菌处理量:20m3/h 连消灭菌温度:1350C

⑤接种量 一级种子罐至二级种子罐按15%计算 二级种子罐至发酵罐按15%计算 已知工艺条件 (1)年产量 :G=70t(庆大霉素) (2)年工作日 M=300天 (3)发酵周期=6t 天 (4)发酵平均单位u1=1500单位/ 毫升 (5)成品效价u2=580单位/毫克 (6)提炼总效率=85% (7)装料系数=75% 工艺计算 V d =% 85*1500*300580*70*1000=106.14m 3 /d V 0=0.75 *1106.14=141.53m 3 /d 0 3 二级种子罐 (取损失比为15% ) 取周期为4天,则需发酵罐4台 V1= 7 .0)15.01(*15.0*14.106+=26.16m 3 一级种子罐 (取损失比为15% ) V2=65.0) 15..01(*15.0*15.0*14.106+=4.23m 3 取周期为4天,则需发酵罐4台 发酵罐 (1)高径比H/D=2.0~3.5 (2)搅拌器:六弯叶涡轮搅拌器,Di:di:L:B=20:15:5:4 (3)搅拌器间距:S=(0.95-1.05)D (4)搅拌器直径:Di=D/3 (5)最下一组搅拌器与罐底的距离:C=(0.8-1.0)D (6)罐内0.4MPa ;夹套0.25 MPa (7)挡板宽度:B=0.1D ,当采用列管式冷却时,可用列管冷却代替

机械原理课程设计样例模板

机械原理 课程设计说明书 设计题目 专业班级 姓名 学号 指导老师 成绩评定等级 评阅签字 评阅日期 6月 课程任务设计书 题号12自动打印机设计

一、工作原理及工艺动作过程 在某商品包装好的纸盒上, 为了某种需要而在商品上打印一种记号。它的主要动作有三个: 送料到达打印工位, 然后打印记号, 最后将产品输出。 二、原始数据和设计要求 (1)纸盒尺寸: 长100~150mm、宽70~100mm、高30~50mm。 (2)产品重量: 5~10N; (3)自动打印机的生产率: 80次/min; (4)要求机构的结构简单紧凑、运动灵活可靠、易于制造加工。 三、设计方案提示 ( 1) 实现送料——夹紧功能的机构能够采用凸轮机构或有一定停歇时间的连杆机构。当送料、夹紧机构的执行构件将产品推至指定位置, 执行构件停止不动, 维持推紧力(前有挡块挤压), 待打印机构执行件打完印记后, 被推走。

( 2) 实现打印功能的机构能够采用平面连杆机构或直动(摆动)凸轮机构。 ( 3) 实现输出功能的机构能够采用与送料、夹紧机构相类似的机构。为简化结构, 可考虑固定定位挡块, 而将输出运动与送料运动的方向互相垂直。 ( 4) 自动打印机系统采用一个电机驱动主轴控制三个机构的执行构件完成各自的功能运动, 如何将三个执行机构的主动件均固定在主轴上而达到设计要求是需要认真考虑的。 四、设计任务 ( 1) 按工艺动作要求拟定运动循环图; ( 2) 进行送料夹紧机构、打印机构和输出机构的选型; ( 3) 机械运动方案的评定和选择: (至少两个以上), 进行方案评价, 选出较优方案。 ( 4) 按选定的原动机和执行机构的运动参数拟定机械传动方案, 分配传动比, 并在图纸上画出传动方案图; ( 5) 对机械传动系统和执行机构进行运动尺寸计算; ( 6) 绘制系统机械运动方案简图; ( 7) 对执行机构进行运动分析, 画出运动线图; ( 8) 编写设计计算说明书。

啤酒发酵罐的温度控制设计与仿真

内蒙古科技大学 本科生课程设计论文 题目:啤酒发酵罐的温度控制设计与仿真学生姓名:张胜男 学号:1167112232 专业:测控技术与仪器 班级:11-2 指导教师:左鸿飞 2014年12 月14 日

前言 过程控制课程设计是测控技术与仪器专业的实践教学环节。本次过程控制课程设计主题为啤酒厂发酵罐温度控制系统的设计,要求我们了解发酵罐温度控制的工艺背景、设计控制方案以及仪表选型等。啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

内蒙古科技大学课程设计任务书

目录 1. 工艺简介及控制系统设计 (4) 1.1. 啤酒生产工艺 (4) 1.2被控对象特性及控制要求 (4) 1.2.1被控对象特性 (4) 1.2.2被控对象的控制要求 (5) 1.3啤酒发酵温控系统设计 (5) 1.3.1发酵温控系统主、副被控参数的选取 (6) 1.3.2主、副调节器调节规律的选择 (7) 1.3.3主、副调节正、反作用方式的选择 (7) 1.3.4串级系统的整定 (8) 2. 控制系统的建模 (8) 2.1 数学模型的定义及特征 (8) 2.2 建模应用 (9) 2.3建立数学模型的目的 (9) 3. 系统仿真技术 (10) 3.1 系统仿真技术概述 (10) 3.2使用MATLAB对实验结果进行仿真 (10)

发酵罐设计.doc

目录 前言??????????????????????????????? 2 方案的 定 ................................................................................... (3) (1)、机械拌生物反器的型式?????????????????.3 (2)、反器用途????????????????????. ???? 3 (3)、冷却水及冷却装置?????????????. ??????? ..3 (4)、力罐内 0.4MPa;套 0.25 Mpa ????????????? 4 表- 酵罐主要? . ??????????????????????? 4 工及算??????????????????????.. ??? ..5 (1)生能力、数量和容的确定????????????????.. ?5 (2)主要尺寸算???????????????????????? 5 (3)冷却面的算??????????????????????? 6 (4)拌器??????????????????????.. ??? 6 (5)拌功率的算????????????????????.. ??7 (6)i 求最高荷下的耗水量 W?????????????? ... ??? .8 ii 冷却管数和管径?????????????????????9 iii 冷却管度 L 算??????????????????10 iv 每管 l0和管高度???????????????????10 V 每管子圈数n 0?????????????????????10 Vi 校核布置后冷却管的面?????????????10 (7)材料的???????????????????????10 (8)酵罐壁厚的算??????????????????????11 (9)接管??????????????????????????12 (10)支座??????????????????????????13 果???????????????????????????14 参考料 ... ???????????????????????????? .14 酵罐心得体会? .. ???????????????????? ..15 附及 前言 生化工程设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求我们综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,

发酵罐设计(同名24165)

食品深加工类机械与设备 工艺设计 (装料量53m机械搅拌发酵罐设计) 设计小组:第2组 组长:张超 组员:田林亮 王金凯 张亮 专业:食品科学与工程 部门:生物研发部 日期: 2013年7月20日 德州市鸿泰环保设备有限公司研发部

目录 一、设计任务 (2) 二、设计要求 (3) 三、概述 (3) 四、总体结构设计 (4) 4.1罐头设计 (4) 4.2罐头及封头的几何尺寸的计算 (4) 4.3罐头压力测试 (6) 4.4确定夹套的几何尺寸的计算 (7) 4.5夹套压力试验 (8) 五、搅拌装置及附件设计 (8) 5.1搅拌轴计算 (8) 5.2搅拌器选型及分布 (12) 六、传动装置的设计 (14) 6.1电动机选型 (15) 6.2减速器选型 (16) 6.3联轴器选型 (20) 七、其他辅助设备的选型 (21) 7.1支座的选择 (21) 7.2人孔的选择 (23)

7.3视镜的选择 (23) 7.4无菌空气通风管设计 (23) 7.5消泡器 (24) 八、各自的设计任务 (24) 一、设计任务 装料量53m机械搅拌发酵罐设计 接管建议(推荐)

二、设计要求 1.机械搅拌发酵罐计算及整体结构设计,完成设计说明书。 (1)进行罐体及夹套(或内部蛇管)设计计算; (2)进行搅拌装置设计:搅拌器的选型设计;选择轴承、联轴器,罐内搅拌轴的结构设计,搅拌轴计算和校核; (3)传动系统的设计计算:尽可能采用V带传动,进行传动系统方案设计;进行带传动设计计算; (4)密封装置的选型设计; (5)选择支座形式并计算; (6)手孔或人孔选型; (7)选择接管、管法兰、设备法兰; (8)设计机架结构; (9)设计凸缘及安装底盖结构; (10)视镜的选型设计; (11)消泡装置设计; (12)无菌空气分布管设计。 2.绘制搅拌罐装配图(2号或3号图纸)。 三、概述 机械搅拌发酵罐是生物制药工厂常用类型之一,它是利用机械搅拌器的作用,使空气和醪液充分混合促使氧在醪液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气。 机械搅拌发酵罐可用于生产药用酵母、饲料酵母、活性干酵母、液体曲、谷氨酸、柠檬酸、抗生素、维生素、酶制剂、食用醋、赖氨酸等。机械搅拌发酵罐其实就是一种生物反应器,生物反应器是指为活细胞或酶提供适宜的反应环境,让他们进行细胞增殖或生产的装置系统。生物反应器为细菌的生长和繁殖提供适宜的生长环境,促进菌体生产人们需要的产物。广泛应用于乳制品、饮料、生物

相关文档
最新文档