平行线的性质2-人教版七年级数学下册教案设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时平行线的性质

【教学过程】

一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.

试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?

试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.

二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).

教师活动设计:引导学生讨论并回答.

学生口答,教师板书,并要求学生学习推理的书写格式. 活动2

总结平行线的性质.

性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3

如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)

∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)

∴∠2+∠4=180°(两直线平行,同旁内角互补).

三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻

a

b

3 c

1

2

4

活动4

解决问题.

问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)

A D

B C

学生活动设计:

学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.

〔解答〕因为ABCD是梯形.

所以AD//BC.

所以∠A+∠B=180°,∠D+∠C=180°.

又∠A=115°,∠D=100°.

所以∠B=65°,∠C=80°.

问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?

C

B

学生活动设计:

学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.

(1)∠1、∠3的大小有什么关系?∠2与∠4呢?

(2)反射光线BC与EF也平行吗?

学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .

教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.

〔解答〕略.

问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.

F

B

D

C

E

A

学生活动设计:

由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .

教师活动设计:

在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.

〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .

所以∠B +∠D =∠BEF +∠DEF =∠DEB .

即∠B +∠D =∠DEB .

变式思考:

如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).

E

D

C

B A

四、小结与作业.

小结:

1.平行线的三个性质:

两直线平行,同位角相等.

两直线平行,内错角相等.

两直线平行,同旁内角互补.

2.平行线的性质与平行线的判定有什么区别?

判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.

相关文档
最新文档