一元二次方程知识点归纳

合集下载

七年级一元二次方程知识点

七年级一元二次方程知识点

七年级一元二次方程知识点一元二次方程是初中数学中非常重要的一部分,七年级阶段的学生需要掌握一些基本知识点。

本文将从定义、一元二次方程的一般形式、解方程的方法、常见应用等方面进行详细讲解。

一、定义一元二次方程是指一次项的系数为0,二次项的系数不为0,且只含有一个未知数x的方程。

一元二次方程一般写成ax²+bx+c=0的形式,其中a,b,c为已知常数,且a≠0。

二、一元二次方程的一般形式一元二次方程一般形式为ax²+bx+c=0,其中a、b、c为已知常数且a≠0。

其中,a为二次项系数,b为一次项系数,c为常数项。

三、解一元二次方程的方法解一元二次方程的方法有两种:配方法和公式法。

配方法是指通过“配方”的方式使方程变形,将一元二次方程化为x²=常数的形式,从而求出未知数x的值。

公式法是指利用求根公式(-b±√(b²-4ac)) / 2a求出一元二次方程的解。

其中,当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程无实数根,但可以用虚数表示。

四、常见应用一元二次方程在生活中有着广泛的应用,比如用来求某些问题的解析式、计算物理问题中的加速度、情境模拟题等等。

例如,一个地面上的自行车骑行者,头戴安全帽,速度为8.8米每秒。

从他的额头和安全帽顶之间,飞过一只昆虫,昆虫的速度是3米每秒。

骑车者头上离地面的高度为2.8米。

已知昆虫经过的时间与骑车者的观察时间相同(均为0.03秒)。

求毫秒级别下昆虫与地面距离的具体数值。

解法:将昆虫飞行的竖直向量的速度分解成加速度与初速度两个向量的和。

假设昆虫距离地面高度为x,将昆虫的竖直向量的速度分解:v(昆虫)=(u² + 2as)½ ,并得到 a=250/3 ,t=0.03,find x.2.8+x=ut+1/2*a*t²,解得x=0.36733574 米五、总结在数学学习中,正确掌握一元二次方程的知识点是非常重要的。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结一、 一元二次方程的定义1. 一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 二、 一元二次方程的解1. 方程解的含义解题方法:将方程的根带入方程求出参数.三、 解一元二次方程(直接开平方法、配方法、公式法、因式分解法)1. 直接开平方法:适用于)0()()0(22≥=+≥=b b a x a a x 或形式的方程. 2. 配方法:2222244)2(0)0(0a ac b a b x b c x a b x a c bx ax -=+⇒=++⇒≠=++. 注意:用配方法解方程时必须注意在方程两边同时加上的是一次项系数一半的平方.3. 公式法:a ac b b x ac b c bx ax 24040222-±-=≥-=++时当. 4. 因式分解法:将一元二次方程化简成一般式后,把等号左边的多项式进行因式分解,再根据“如果,0=ab ,那么00==b a 或”进行求解.注意:利用因式分解法解方程时,将方程的一边分解因式而方程的另一边必须化为零;四、 判别式与一元二次方程解的个数的关系1. 一元二次方程解与判别式的关系:一元二次方程)0(02≠=++a c bx ax 根的情况可由根的判别式△=ac b 42-的值来决定,它的值与一元二次方程的根的关系是:①042>-ac b ⇔方程有两个不等的实数根.②042=-ac b ⇔方程有两个相等的实数根.③042<-ac b ⇔方程没有实数根.五、 一元二次方程的应用题(增长率、面积、握手、传染)1. 增长率问题:设a 为原量,x 为平均增长率,n 为增长次数,b 为增长后的量,则nx a b )1(+=.2. 面积问题:先通过平移变换,再根据面积公式列出方程.3. 握手问题:n 个人见面,任意两人都要握手一次,一共握手2)1(-n n 次. 4. 传染问题:一人感染,一人传染x 人,第一轮:1+x ;第二轮:1+x +x (1+x ).六、 根与系数的关系1. 根与系数的关系:若一元二次方程)0(02≠=++a c bx ax 的两根分别是21,x x 则a cx x a b x x ==+2121-,.注意:使用根与系数的关系时需要先检验△。

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。

②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。

(2)确定a,b,c的值。

(3)代入中计算其值,判断方程是否有实数根。

(4)若代入求根公式求值,否则,原方程无实数根。

【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。

·步骤:(1)将方程化为一元二次方程的一般形式。

(2)把方程的左边分解为两个一次因式的积,右边等于0。

(3)令每一个因式都为零,得到两个一元一次方程。

(4)解出这两个一元一次方程的解,即可得到原方程的两个根。

根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。

一元二次方程知识点归纳

一元二次方程知识点归纳

一元二次方程知识点归纳一、一元二次方程的概念:1、含有1个未知数;2、未知数最高次数是2;3、必须整式方程(分母不能含有未知数)4、形式:)(002≠=++a c bx ax5、二次项:2ax ;一项:bx ;常数项 :c6、二次项系数:0≠a ;一次项系数 :b (全体实数);常数项 :c (全体实数)二、解方程的方法:直接开方法、配方法、公式法、因式分解法(1)02=+c ax c ax —=2 a c x —=2 ac x -±= (2)02=+bx ax 0=+)(b ax x a b x x -==210; (3)p n mx =+2)( p n mx ±=+ n p mx —±= mn p x -±=(4)0)()(=+++b ax N b ax M 0)(=++b ax N M )((5)02=++n mx x n m m mx x -=++222)2()2( 44)2(22n m m x —=+ 4422n m m x —±=+ 242m n m x --±= (6))0(02≠=++a c bx ax )(ac b b x 422-=∆∆±-=三、一元二次方程根的判别式——ac b 42-=∆1、一元二次方程根的情况: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<∆⎪⎩⎪⎨⎧==∆≠>∆≥∆(无解))(有两个相等实数根:):(有两个不相等实数根(有两个实数根)00002121x x x x 2、规律:(1)当0<ac 时,必定0>∆,即一元二次方程有两个不相等实数根(2)当c=0时,ab x x -==210;,即一元二次方程有一根为0 (3)当b=0时,ac x —±=,即一元二次方程两根互为相反数 (4)当a=c 时,一元二次方程两根互为倒数四、一元二次方程的“根”(1)“根”:代入原方程使得左右两边相等的未知数的值(2)韦达定理:a b x x -=+21;a c x x =21;cb x x —=+2111; 2122122212x x x x x x —)(+=+ ;212212214)(x x x x x x —)(+=-五、配方法的应用(1)解一元二次方程(2)讨论∆(3)讨论恒值(4)平方的非负性六、应用题(1)“围栏”问题①设宽为x ;利用周长用x 的代数式表示长(注意:有围墙与无围墙区别) ②利用矩形面积公式列出并列出方程③结合实际,列出关于长、宽取值范围的不等式组,解得x 的取值范围(2)“边框问题”(挖角)(3)“挖路问题”(平移计算)(4)平均增长率:n x a M )1(+=(M :后量;a :现量;x :增长率;n :经过次数)(5)“握手”问题——单循环:2)1(-n n ;双循环:)(1-n n (6)直角三角形问题(7)“黄金分割”:215-=x (8)多边形的对角线条数:2)3(-n n (9)利润问题:调价幅度与销量增减成比例关系①设调价为x ;根据题意得,销量增幅:kx②调价后单价=原售价±调价;调价后销量=原销量±销量增幅调价后总收入=调价后单价×调价后销量③进货量=调价后销量④总成本=单成本×进货量5调价后总利润=调价后总收入-总成本(2)①单利润=单售价—单成本②总利润=单利润×销量。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

一元二次方程总复习知识点梳理

一元二次方程总复习知识点梳理

一元二次方程总复习知识点梳理一元二次方程总复考点1:一元二次方程的概念一元二次方程是只含有一个未知数,未知数的最高次数是2,且系数不为0的方程。

一般形式为ax2+bx+c=0(a≠0)。

判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程,两边直接开平方而转化为两个一元一次方程的方法。

解法为x1=-a+√b,x2=-a-√b。

2.配方法:用配方法解一元二次方程:ax2+bx+c=0(a≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解。

3.公式法:公式法是用求根公式求出一元二次方程的解的方法。

它是通过配方推导出来的。

一元二次方程的求根公式是x=(-b±√(b2-4ac))/2a(b2-4ac≥0)。

步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法。

理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。

因式分解的方法有提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因为当a=0时,不含有二次项,即不是一元二次方程。

⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解。

⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式。

一元二次方程知识点总结

一元二次方程知识点总结

一元二次方程知识点总结一元二次方程是初中数学中的重要内容,它在解决实际问题和进一步学习数学知识方面都有着广泛的应用。

下面我们来详细总结一下一元二次方程的相关知识点。

一、一元二次方程的定义只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程。

一般形式为$ax^2 + bx + c =0$($a ≠ 0$),其中$a$ 是二次项系数,$b$ 是一次项系数,$c$ 是常数项。

需要注意的是,方程必须是整式方程,也就是说分母中不能含有未知数。

同时,二次项系数$a$ 不能为 0,如果$a = 0$,那么就变成了一元一次方程。

二、一元二次方程的解法1、直接开平方法对于形如$x^2 = p$ 或$(x + n)^2 = p$($p ≥ 0$)的方程,可以使用直接开平方法。

当$x^2 = p$ 时,$x = ±\sqrt{p}$;当$(x + n)^2 = p$ 时,$x + n = ±\sqrt{p}$,即$x = n ±\sqrt{p}$。

2、配方法配方法是一种将一元二次方程转化为完全平方式的方法。

例如,对于方程$x^2 + 6x 7 = 0$,可以通过在方程两边加上一次项系数一半的平方来配方,即:\\begin{align}x^2 + 6x 7&=0\\x^2 + 6x&=7\\x^2 + 6x + 9&=7 + 9\\(x + 3)^2&=16\\x + 3&=±4\\x&=-3 ± 4\end{align}\3、公式法一元二次方程$ax^2 + bx + c = 0$($a ≠ 0$)的求根公式为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。

在使用公式法时,需要先计算判别式$\Delta = b^2 4ac$:当$\Delta > 0$ 时,方程有两个不相等的实数根;当$\Delta = 0$ 时,方程有两个相等的实数根;当$\Delta < 0$ 时,方程没有实数根。

一元二次方程所有知识点总结

一元二次方程所有知识点总结

一元二次方程所有知识点总结以下是一元二次方程的所有知识点总结:
1. 一元二次方程的一般形式:ax^2 + bx + c = 0,其中a、b、c是常数,且a ≠ 0。

2. 一元二次方程的解的判别式:Δ = b^2 - 4ac。

根据Δ的大小,可以得出一元二次方程的根的
情况:
a) 当Δ > 0时,方程有两个不相等的实数根。

b) 当Δ = 0时,方程有两个相等的实数根。

c) 当Δ < 0时,方程没有实数解,但有两个共轭复数根。

3. 一元二次方程的求根公式:x = (-b ±√Δ) / 2a。

根据Δ的值,可以使用求根公式求得方程的根。

4. 一元二次方程与一元一次方程的关系:一元一次方程是一元二次方程在a = 0的特殊情况。

5. 一元二次方程的图像:一元二次方程的图像是一个抛物线,开口方向由a的正负决定。

6. 一元二次方程的顶点坐标:顶点的横坐标为 x = -b / 2a,纵坐标为 y = f(x)。

7. 一元二次方程的轴对称线:轴对称线的方程为 x = -b / 2a,即方程的顶点横坐标的值。

8. 一元二次方程的平移:在一元二次方程的一般形式中,通过将方程的a、b、c分别替换为 a
+ h、b + h、c + h,可以实现平移抛物线。

9. 一元二次方程与因式分解:一元二次方程可以通过将其因式分解为二次项的平方来求解。

10. 一元二次方程的实际应用:一元二次方程在物理、经济、几何等领域中有广泛的应用,如
求解自由落体问题、优化问题等。

一元二次方程知识点总结

一元二次方程知识点总结

2 1 章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。

注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:ax2 bx c 0(a 0),它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前—面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如ax2 bx c 0不一定是一元二次方程,当且仅当a 0时是一元二次方程。

二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当x 2时,2 2X 3x 2 0所以X 2是x 3x 2 0方程的解。

一兀二次方程的解也叫一元二次方程的根。

一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

根据平方根的定义可知,x a是b的平方根,当b 0时,x a . b,x a . b,当b<0时,方程没有实数根。

三种类型:(1)x2a a 0的解是x a ;(2)x m 2n n 0 的解是x 、n m ;22、配方法:配方法的理论根据是完全平方公式 a 2 2ab b 2 (a b)2,把公式中的a 看 做未知数x ,并用x 代替,则有x 2 2bx b 2 (x b)2。

(一) 用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式(2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数; (3) 把原方程变为x m 2 n 的形式。

一元二次方程知识点整理总结

一元二次方程知识点整理总结

一元二次方程知识点整理总结
一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知实数且a ≠ 0。

以下是一元二次方程的知识点整理总结:
1. 一元二次方程的解法有配方法、公式法和因式分解法。

2. 配方法是将方程进行变形,通过配方完成平方,从而化为二
次项的完全平方和。

3. 一元二次方程的解的公式是x = (-b ± √(b^2 - 4ac)) /
2a,其中±表示取两个解,√表示求平方根。

4. 当b^2 - 4ac > 0时,方程有两个不相等的实数解;当b^2 - 4ac = 0时,方程有两个相等的实数解;当b^2 - 4ac < 0时,方程无实数解,但有两个共轭复数解。

5. 一元二次方程的解可以用图像方法来解释,方程的解为方程
所对应的二次函数的根或顶点的横坐标。

6. 一元二次方程的根与系数之间存在着关系,如根的和等于-
b/a,根的积等于c/a。

7. 一元二次方程在实际问题中的应用十分广泛,例如用于研究
抛物线的形状、求解物体的运动轨迹等。

以上是关于一元二次方程的一些基本知识点的整理总结。

掌握这些知识点有助于理解和解决一元二次方程相关的问题。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:,它的特征是:等式左边十一个关)0(02≠=++a c bx ax 于未知数x 的二次多项式,等式右边是零,其中叫做二2ax 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据b a x =+2)(平方根的定义可知,是b 的平方根,当时,,a x +0≥b b a x ±=+,当b<0时,方程没有实数根。

b a x ±-=(2)配方法:配方法的理论根据是完全平方公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并用x 代替,则有。

222)(2b x b bx x ±=+±配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程中,叫做一)0(02≠=++a c bx ax ac b 42-元二次方程的根的判别式,通常用“)0(02≠=++a c bx ax ”来表示,即∆acb 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。

一元二次方程知识点

一元二次方程知识点

一元二次方程一、相关概念1.定义:把含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2、一般形式: ax 2 +bx+c=0(a ≠0).(1.判断一个方程是否是一元二次方程抓住的五点: “化简后”;“一个未知数”; “未知数的最高次数是2” ; “二次项系数不等于0” ; “整式方程”.2.确定一元二次方程各项的系数的方法是:将一元二次方程化成一般形式ax 2 +bx+c=0(a ≠0)..) 二、直接开平方法1.利用直接开平方法求一元二次方程的解时,必须把方程化为x ²=a(a ≥0),(x-a)²=b(b ≥0)的形式,否则不能用直接开平方法求一元二次方程的解. 三、配方法1. 配方法: 通过配成完全平方公的形式来解一元二次方程的方法叫做配方法.2. 解二次项系数是1的方程的具体配方方法是:方程两边同时加上一次项系数一半的平方,使方程左边化为完全平方,右边化为非负数.(1、注意学生对求一个数的一半的方法逐一的要求,检查是否达到目的. 2.用配方法解一元二次方程时,最关键的一步是必须把二次项的系数化为1;再把方程化为(x-a)²=b(b ≥0)的形式后,就可用直接开平方法求一元二次方程的解.3.一次项系数的符号决定了左边的完全平方式是完全平方和或完全平方差.4.配方作为一种求解的方法,比其它方法要复杂,为此,一般不用该方法,除非是题目指明用配方法,但配方法是一种重要的数学方法,应用较广,应掌握好.)四、公式法1. 判别式ac b 42-=∆判断方程的根的情况(1)ac b 42-=∆>0⇔方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根. (2)ac b 42-=∆=0⇔方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3)ac b 42-=∆<0⇔方程ax 2+bx+c=0(a ≠0)没有实数根. (4)ac b 42-=∆≥0⇔方程ax 2+bx+c=0(a ≠0)有实数根.一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为x 1,x 2,aac b b x 2421-+-=,aac b b x 24-22--=(1.用公式解方程时,在教学中应注意两个问题:①a ≠0,②Δ=b ²-4ac ≥0. 2.代入公式时一定先把方程化为一般形式ax 2+bx+c=0(a ≠0),才能准确的确定a 、b 、c 的符号.3.学生容易把表示的字母都写成x ,如解方程t 2+2t=3,写成x 1=1,x 2=-3.4.当Δ=b ²-4ac=0时,,方程的根要写成x 1=x 2= 的形式,从而说明方程有两个根,而不是一个根.)五、因式分解法解方程的步骤: 1. 因式分解法:将一个一元二次方程化为两个一次因式的积等于0的形式,再使这两个一次因式分别等于0,从而实现降次,这种解法叫做因式分解法. ①移项使方程的右边为0;②将方程的左边分解为两个一次因式的积;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.展开方程(x-x 1)(x-x 2)=0得x 2-(x 1+x 2)x+x 1x 2=0,其中p=-( x 1+x 2),q= x 1x 2.实际上x 1,x 2是方程x 2+px+q=0的两根.即x 1+x 2 =-p , x 1x 2= q 用十字相乘法解一元二次方程我们知道()()22356x x x x ++=++,反过来,就得到二次三项式256x x ++的因式分解形式,即()()25623x x x x ++=++,其中常数项6分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5,即6=2×3,且2+3=5。

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一元二次方程是高中数学中的重要概念之一,它是由形如ax^2 + bx + c = 0的方程组成,其中a、b、c都是实数且a不等于0。

本文将总结一元二次方程的相关知识点,并详细介绍其求解方法和应用。

一、一元二次方程的一般形式与基本性质1.1 一元二次方程的一般形式: ax^2 + bx + c = 0,其中a、b、c都是实数且a不等于0。

1.2 一元二次方程的次数为2,被称为二次方程。

1.3 一元二次方程的系数:a、b、c分别是方程的二次项系数、一次项系数和常数项。

1.4 一元二次方程的根:方程的解叫做方程的根,方程可能有两个相等的实根、两个不等的实根、两个复数根或无解。

二、一元二次方程的求解方法2.1 因式分解法通过将一元二次方程进行因式分解,将方程转化为两个一次方程相乘的形式,从而求解方程的根。

例如:x^2 + 7x + 12 = 0,可因式分解为(x+3)(x+4) = 0,方程的根为x=-3和x=-4。

2.2 公式法(求根公式)利用一元二次方程的根与系数之间的关系,可以通过求根公式来求解方程的根。

一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a)。

例如:x^2 + 7x + 12 = 0,代入a=1,b=7,c=12,可得x = (-7± √(7^2 - 4*1*12))/(2*1),计算后得方程的根为x=-3和x=-4。

2.3 完全平方方法对于一些特殊的一元二次方程,可以利用完全平方公式来求解方程的根。

完全平方公式是指:(a ± b)^2 = a^2 ± 2ab + b^2。

例如:x^2 + 10x + 25 = 0,可写为(x+5)^2 = 0,方程的根为x=-5。

三、一元二次方程的判别式一元二次方程的判别式是通过方程的系数来判断方程的根的情况。

3.1 判别式的定义:Δ = b^2 - 4ac。

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断方程是否为一元二次方程。

- 首先看方程是否为整式方程。

- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。

例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于方程x^2=p(p≥0),解为x=±√(p)。

- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

2. 配方法。

- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。

- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。

- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。

- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 步骤:- 确定a、b、c的值。

- 计算b^2-4ac的值,判断方程是否有实数根。

- 当b^2-4ac≥0时,代入求根公式求解。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

(完整版)⼀元⼆次⽅程知识点总结⼀元⼆次⽅程1、⼀元⼆次⽅程:含有⼀个未知数,并且未知数的最⾼次数是2的整式⽅程叫做⼀元⼆次⽅程。

2、⼀元⼆次⽅程的⼀般形式:,它的特征是:等式左边⼗⼀个关)0(02≠=++a c bx ax 于未知数x 的⼆次多项式,等式右边是零,其中叫做⼆2ax 次项,a 叫做⼆次项系数;bx 叫做⼀次项,b 叫做⼀次项系数;c 叫做常数项。

3.⼀元⼆次⽅程的解法(1)直接开平⽅法:利⽤平⽅根的定义直接开平⽅求⼀元⼆次⽅程的解的⽅法叫做直接开平⽅法。

直接开平⽅法适⽤于解形如的⼀元⼆次⽅程。

根据b a x =+2)(平⽅根的定义可知,是b 的平⽅根,当时,,a x +0≥b b a x ±=+,当b<0时,⽅程没有实数根。

b a x ±-=(2)配⽅法:配⽅法的理论根据是完全平⽅公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并⽤x 代替,则有。

222)(2b x b bx x ±=+±配⽅法的步骤:先把常数项移到⽅程的右边,再把⼆次项的系数化为1,再同时加上1次项的系数的⼀半的平⽅,最后配成完全平⽅公式(3)公式法:公式法是⽤求根公式解⼀元⼆次⽅程的解的⽅法,它是解⼀元⼆次⽅程的⼀般⽅法。

⼀元⼆次⽅程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把⼀元⼆次⽅程的各系数分别代⼊,这⾥⼆次项的系数为a ,⼀次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利⽤因式分解的⼿段,求出⽅程的解的⽅法,这种⽅法简单易⾏,是解⼀元⼆次⽅程最常⽤的⽅法。

分解因式法的步骤:把⽅程右边化为0,然后看看是否能⽤提取公因式,公式法(这⾥指的是分解因式中的公式法)或⼗字相乘,如果可以,就可以化为乘积的形式4.⼀元⼆次⽅程根的判别式:⼀元⼆次⽅程中,叫做⼀)0(02≠=++a c bx ax ac b 42-元⼆次⽅程的根的判别式,通常⽤“)0(02≠=++a c bx ax ”来表⽰,即?acb 42-=?I 当△>0时,⼀元⼆次⽅程有2个不相等的实数根;II 当△=0时,⼀元⼆次⽅程有2个相同的实数根;III 当△<0时,⼀元⼆次⽅程没有实数根5.⼀元⼆次⽅程根与系数的关系如果⽅程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。

其中a为二次项系数,b为一次项系数,c为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。

注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。

(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。

注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 一 元 二
次方程 的解法
( 3 )公式法:一元二次方程 ax2+bx+c=0 的求根公式为 x= b b 4ac
2
2a
(b -4ac≥0). (4)配方法:当一元二次方程的二次项系数为 1,一次项系数为偶数时, 也可以考虑用配方法.
2
知识点二 :一元二次方程根的判别式及根与系数的关系 (1)当 Δ= b 4ac
一元二次方程知识点
一、 知识清单梳理 知识点一:一元二次方程及其解法 关键点拨及对应举例
2
1.
一元二
(1)定义:只含有一个未知数,且未知数的最高次数是 2 的整式方程. (2)一般形式:ax +bx+c=0(a≠0),其中 ax 、bx、c 分别叫做二次项、 一次项、常数项,a、b、c 分别称为二次项系数、一次项系数、常数项. (1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解. ( 2 )因式分解法:可化为(ax+m)(bx+n)=0 的方程,用因式分解法求解.
2
别式等于- 8 ,故该方程没有实数 根.
(1)基本关系:若关于 x 的一元二次方程 ax +bx+c=0(a≠0)有两个根分 与一元二次方程两根相关代数式的 别为 x1、x2,则 x1+x2=
*
;x1x2=
。注意运用根与系数关系的
常见变形:x12+x22=(x1+x2)2-2x1x2, (x1+1)(x2+1)=x1x2+(x1+x2)+1,
2
例:方程 ax
a
2 0 是关于 x 的
次方程的 相关概念
一元二次方程,则方程的根为-1.
解一元二次方程时,注意观 察, 先特殊后一般,即先考 虑能否用直接开平方法和因 式分解法,不能用这两种方法 解时,再用公式法. 例:把方程 x2+6x+3=0 变形为 (x+h)2=k 的形式后,h=-3,k=6.
知识点三 :一元二次方程的应用 (1)解题步骤:①审题;② 设未知数;③ 列一元二次方程;④解一元 二次方程;⑤检验根是否有意义;⑥作答.
4. 列 一 元
二次方 程解应 Байду номын сангаас题
(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用. ①平均增长率(降低率)问题:公式:b=a(1±x)n,a 表示基数,x 表示 平均增长率(降低率) ,n 表示变化的次数,b 表示变化 n 次后的量; ②销售问题;利润问题,利润=售价-成本;利润率=利润/成本×100%; ③比赛问题: ④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通 过割补或平移形成规则图形,运用面积之间的关系列方程.
运用一元二次方程解决实际 问题时,方程一般有两个实数 根,则必须要根据题意检验根 是否有意义.
1 1 x1 x2 等. x1 x2 x1x2
4. 根与系
数的关 系
前提条件是△≥0. (2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时, 先把所求代数式变形为含有 x1+x2、x1x2 的式子,再运用根与系数的 关系求解.
失分点警示 在运用根与系数关系解题时,注意 前提条件时△=b2-4ac≥0.a≠0
2
0 时,原方程有两个不相等的实数根. 0 时,原方程有两个相等的实数根.
例:方程 x
2
2 x 1 0 的判别式
3. 根 的 判
别式
(2)当 Δ= b2 4ac (3)当 Δ= b 4ac
2
等于 8,故该方程有两个不相等的 实数根; 方程 x
2
2 x 3 0 的判
0 时,原方程没有实数根.
相关文档
最新文档