数值分析实验二

合集下载

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析实验报告二

数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。

(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。

(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。

2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。

数值分析实验(2)

数值分析实验(2)

实验二 插值法 P50专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉MATLAB 编程;2、学习插值方法及程序设计算法。

二、实验题目1、已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0()i f x0.980.920.810.640.38试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10iiix y x i i =+=,()4P x 及()S x 。

2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()21125f x x=+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 12345678可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式)()(111k kk kk k x x x x y y y x L ---+=++ 点斜式kk kk k k k kx x x x y x x x x y x L --+--=++++11111)( 两点式2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L ijnk kk j n ===∑=n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)()(...)()(...)()()(1100=------=--3、牛顿插值多项式...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω4、三次样条函数若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。

数值分析实验报告二2汇总

数值分析实验报告二2汇总
legend('数据点(xi,yi)','牛顿插值曲线y=f(x)');xlabel('x');ylabel('y');
title('数据点(xi,yi)和牛顿插值曲线y=f(x)的图形')
运行结果:
实验结果分析:
最小二乘法拟合的曲线误差最小。
也可以得到三图合一的图像:
在以上命令的基础上
运行命令plot(x1,y1,'r*',x,y,'b-',t,p1,'k-',x,P2,'y-')
% f积分函数
% a/b:积分上下限
% tol:积分误差
% R:Romberg积分值
% k:二分次数
k=1;
h=b-a;
%第一步
T(k,1)=h/2*(f(a)+f(b));
err=1;
whileerr>=eps
T(k,k)= Tห้องสมุดไป่ตู้k,1);
h=h/2;
%第二步求梯形值T0
temp=0;
i=1;
whilei<2^k
实验结果分析:
本题用了三种方法计算,虽然三种方法的结果差别不大,但得到结果的过程不同,每个方法都有其优缺点。
成绩评定
签字:年月日
-3002399751579999/9007199254740992*x^3-311/1125899906842624*x^2+4128299658423301/562949953421312*x-2533274790396013/281474976710656
拉格朗日插值
实验步骤:

《数值分析实验》实验

《数值分析实验》实验

数值分析实验实验1 方程求根一、实验目的:1.掌握常用的求非线性方程近似根的数值方法,用所学方法求非线性方程满足指定精度要求的数值解,比较各种方法的异同点并进行收敛性分析。

2.通过对二分法与牛顿迭代法作编程练习与上机运算,进一步体会二分法与牛顿迭代法的不同特点。

3.编写割线迭代法的程序,求非线性方程的解,并与牛顿迭代法作比较。

二、实验内容:1.用二分法求方程0104)(23=-+=x x x f 在1.5附近的根。

2.用牛顿迭代法求方程033)(23=--+=x x x x f 在1.5附近的根。

3.用简单迭代法求解非线性方程3sin )1(2=-+x x 的根。

取迭代函数)1sin 3(*5.0)(2x x x --+=ϕ,精度取2101-⨯4.(选做)用牛顿法求下列方程的根: (1)02=-x e x ; (2)01=-x xe ; (3)02lg =-+x x 。

5.(选做)编写一个弦截法程序,求解题目4中的方程。

6.(选做)Matlab 函数fzero 可用于求解非线性方程的根。

例如,fzero(@(x) x^3+4*x^2-10, 1.5)可以求解题目1。

尝试用此方法求解实验中的其他题三、实验要求:1.程序要添加适当的注释,程序的书写要采用缩进格式。

2.程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应,如插入删除时指定的位置不对等等。

3.程序要做到界面友好,在程序运行时用户可以根据相应的提示信息进行操作。

四、实验步骤1.按照实验内容和实验要求编写代码 2.编译并运行代码 3.检查是否发生错误五、实验源代码与实验结果实验1源代码:运行结果:实验2源代码:运行结果:实验3源代码:运行结果:4(1)的源代码:运行结果:4(2)的源代码:运行结果:4(3)的源代码:运行结果:5(3)的源代码:运行结果:六、实验心得体会通过本次实验我加深了对二分法、简单迭代法、牛顿迭代法和弦截法算法思想的了解,并对各个不同方法的优劣有了更深的理解。

数值分析实验,用程序实现列主元消去法解方程组

数值分析实验,用程序实现列主元消去法解方程组

《数值分析》实验报告实验序号:实验二 实验名称: 列主元消去法解方程组 学号: 姓名:任课教师: 专业班级:)1、 实验目的:用列主元Gauss 消元法解n 阶线性代数方程组:⎪⎪⎩⎪⎪⎨⎧=+⋯++⋯⋯⋯⋯⋯=+⋯++=+⋯++nn nn 2n21n12n 2n 2221211n 1n 212111b a a a b a a a b a a a x x x x x x x x x 其基本做法是把上述方程组通过列主元Gauss 消元转化为一个等价的三角形方程组,然后再进行回代就可以求出方程组的解。

列主元消元的基本做法是选取系数矩阵的每一列中绝对值最大的作为主元,然后采取和顺序Gauss 消元法相同的步骤进行 ,求得方程组的解。

要求显示出每一个列主元以及每一大步消元后的系数矩阵),...,2,1(n k =(k )A 和常数项),...,2,1(n k =(k )b ,最后显示出方程组的解),...,2,1(n i x i =。

2、 实验内容:(1)实验分析:1. 列主元Gauss 消元法的算法思想:1. 输入增广矩阵B ;。

2. 对k =1,2,…,n ,循环:(a ) 按列选主元||:max ik ni j a a ≤≤=保存主元所在行的指标k i 。

(b ) 若a=0,则系数矩阵奇异,计算停止;否则,顺序进行。

(c ) 若k i =k 则转向(d );否则换行ki kj i b b nj a a k j k ↔=↔,...,2,1 ,(d ) 计算乘子.,...,1,/n k i a a a m ik kk ik ik +=⇒=(e ) 消元: nk i b m b b nk j i a m a a k ik i i kj ij ij ij ,...,1;:,...,1,;:+=-=+=-=3. 回代 1,...,1, ,/:1-=⎪⎪⎭⎫ ⎝⎛-=∑+=n n i a b a b b ii n i j j ij i i 用右端项b 来存放解x 。

数值分析实验报告纸非线性方程的数值解法及其并行算法

数值分析实验报告纸非线性方程的数值解法及其并行算法

>>二 :牛顿切线
[k,piancha,xdpiancha,xk,yk]=diedai2(1.5,0.0001,100) ans = 1.0000 ans = 2.0000 ans = 3.0000 ans = 4.0000 ans = 5.0000 ans = 6.0000 ans = 7.0000 ans = 0.8306 1.2408 0.6694 1.5361
i=i+1;xk=x(i);[(i-1) piancha xdpiancha xk] end if (piancha >1)&(xdpiancha>0.5)&(k>3) disp('请用户注意:此迭代序列发散,请重新输入新的迭 代公式') return; end if (piancha < 0.001)&(xdpiancha< 0.0000005)&(k>3) disp('祝贺您!此迭代序列收敛,且收敛速度较快') return; end p=[(i-1) piancha xdpiancha xk]'; 建立并保存下面的M文件fun.m function y=fun(x) y=2*x^3-x^2-5; >>[k,piancha,xdpiancha,xk,yk]=diedai2(1.5,0.0001,30) 牛顿切线法的 MATLAB 主程序 现提供名为 newtonqx.m 的 M 文件: function [k,xk,yk,piancha,xdpiancha]=newtonqx(x0,tol,ftol,gxma x) x(1)=x0; for i=1: gxmax x(i+1)=x(i)-fnq(x(i))/(dfnq(x(i))+eps); piancha=abs(x(i+1)-x(i)); xdpiancha= piancha/( abs(x(i+1))+eps); i=i+1; xk=x(i);yk=fnq(x(i)); [(i-1) xk yk piancha

数值分析实验报告2——Runge现象

数值分析实验报告2——Runge现象

数值分析课程实验报告——插值逼近题目一.Runge 函数的插值1. Runge 函数Runge 函数的表达式为:21()125R x x =+ 其在[-1,1]区间上的函数图像如图1.1。

在课程学习中我们知道,对Runge 函数进行高次插值时有可能在两端出现不收敛的情况,即Runge 现象。

下面将分别用四种不同的插值方法在[-1,1]区间上对Runge 函数进行插值,并分析是否产生Runge 现象,比较插值效果。

图1.1.Runge 函数在[-1,1]区间的函数图像2.Newton 插值首先根据课本上的Newton 插值算法进行编程(代码略)。

核心思想就是用符号变量进行中间运算,以便将最终的插值函数用符号表达式表示出来,并进一步生成图像。

此处插值节点选择为等距插值节点,即:0.1(0,1,2,,)i x ih i =-+= (20)其中h=0.1。

插值曲线与原曲线的对比如图1.2(蓝色为原曲线,红色为插值曲线)。

从图中看出,在区间中部,二者吻合较好;但在区间两端二者则产生了明显偏差,甚至可以达到一个非常大的数值(e20量级)。

因此,在等距节点的20次Newton 插值下,产生了明显的Runge 现象。

图1.2.Newton 插值曲线与原曲线对比3. Lagrange 插值此处同样是根据Lagrange 插值的具体算法进行编程。

但插值节点不再是等距分布,而是如下形式:21cos()(0,1,2,,)42i i x i π+==…20 插值曲线与原曲线的对比如图1.3(蓝色为原曲线,红色为插值曲线)。

从图中看出,插值曲线与原曲线吻合的很好,没有产生明显的Runge 现象。

对比产生了明显Runge 现象的20次Newton 插值,Lagrange 插值的最高次数虽然也是20,但由于此处的插值节点不是等距分布的(事实上,此处采用的插值节点正是Chebyshev 多项式的零点),而是中间疏两边密,因此两侧较密的节点很好地抑制了Runge 现象。

数值分析实验 实验报告

数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告引言在现代科学与工程领域,数值分析是一项重要的技术手段。

通过数值方法,我们可以利用计算机模拟和解决各种实际问题,如物理、化学、生物、经济等领域中的方程求解、优化问题、数据拟合等。

本实验旨在通过实际案例,探讨数值分析的应用和效果。

实验一:方程求解首先,我们考虑一个简单的方程求解问题。

假设我们需要求解方程f(x) = 0的根,其中f(x)是一个在给定区间[a, b]上连续且单调的函数。

为了实现这个目标,我们可以采用二分法、牛顿法、弦截法等数值方法。

在本实验中,我们选择使用二分法来求解方程f(x) = 0。

这种方法的基本思想是通过不断缩小区间[a, b]的范围,直到找到一个近似的根。

我们首先选取一个中间点c,计算f(c)的值,然后根据f(c)与0的关系,将区间[a, b]分成两部分。

重复这个过程,直到找到满足精度要求的根。

实验二:数据拟合接下来,我们考虑一个数据拟合的问题。

假设我们有一组离散的数据点,我们希望找到一个函数,使得该函数与这些数据点的拟合误差最小。

为了实现这个目标,我们可以采用最小二乘法等数值方法。

在本实验中,我们选择使用最小二乘法来进行数据拟合。

这种方法的基本思想是通过最小化数据点与拟合函数之间的误差平方和,来确定拟合函数的参数。

我们首先选择一个拟合函数的形式,如线性函数、多项式函数等。

然后,通过最小化误差平方和的方法,计算出拟合函数的参数。

实验三:优化问题最后,我们考虑一个优化问题。

假设我们需要在给定的约束条件下,找到一个使得目标函数取得最大或最小值的变量。

为了实现这个目标,我们可以采用梯度下降法、遗传算法等数值方法。

在本实验中,我们选择使用梯度下降法来解决优化问题。

这种方法的基本思想是通过迭代的方式,不断调整变量的取值,直到找到一个满足约束条件的最优解。

我们首先计算目标函数关于变量的梯度,然后根据梯度的方向和大小,更新变量的取值。

通过不断迭代,我们可以逐步接近最优解。

数值分析实验二

数值分析实验二

内江师范学院数值分析实验报告册编制张莉审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2013年9月说明一、学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;二、要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;三、各个实验按照学生水平分别设置了A、B、C、D四个等级,其中对应的难度系数为1、、、,也可根据实际完成情况制定相应地的难度系数,但总体保证难度排序为A级难度最大,B级次之,C级较易,D级最简单。

四、学生可以根据自己对各个实验涉及到的知识点掌握的程度自由选取A、B、C、D等级的实验题目。

五、学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;四、根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定,并给出实验成绩评定分。

实验名称: 实验二 插值与拟合 指导教师: 吴开腾 张莉 实验时数: 4 实验设备:安装了Matlab 、C ++、VF 软件的计算机 实验日期:2013年 10 月 23、30 日 实验地点: 第五教学楼北902 实验目的:1. 掌握插值方法的基本思想和基本步骤,能够根据实际问题选用适当地插值方法进行数值实验,并从实验过程中理解各类插值方法之间的联系与区别。

2. 理解各类插值方法优缺点,并能自行编程求解。

3. 理解插值方法与数据拟合的区别,掌握数据拟合方法解决实际问题的基本步骤和求解理论,并能通过数值实验进行验证。

实验准备:1. 在开始本实验之前,请回顾教科书的相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

(完整word版)数值分析课程设计实验二

(完整word版)数值分析课程设计实验二

实验二2.1一、题目:用高斯消元法的消元过程作矩阵分解。

设20231812315A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦消元过程可将矩阵A 化为上三角矩阵U ,试求出消元过程所用的乘数21m 、31m 、31m 并以如下格式构造下三角矩阵L 和上三角矩阵U(1)(1)212223(2)313233120231,1L m U a a m m a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦验证:矩阵A 可以分解为L 和U 的乘积,即A =LU 。

二、算法分析:设矩阵111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,通过消元法可以将其化成上三角矩阵U ,具体算法如下: 第1步消元:111111(1)22112(1)331130,0;;2,3;i i i i i i i i a m a a a a m a i a a m a +=≠⎧⎪=+=⎨⎪=+⎩ 得到111213(1)(1)12223(1)(1)323300a a a A a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭第2步消元:(1)(1)(1)32322222(2)(1)(1)333332230,0;;a m a a a a m a ⎧+=≠⎪⎨=+⎪⎩ 得到的矩阵为111213(1)(1)22223(2)33000a a a A a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭三、程序及运行结果b1.mA=[20 2 3;1 8 1;2 -3 15];for i=1:2M(i)=A(i+1,1)/A(1,1);endfor j=2:3A1(j,2)=A(j,2)-M(j-1)*A(1,2);A1(j,3)=A(j,3)-M(j-1)*A(1,3);endM(3)=A1(3,2)/A1(2,2);A1(3,2)=0;A1(3,3)=A1(3,3)-M(3)*A1(2,3);M,A1运行结果为:M =0.0500 0.1000 -0.4051A1 =0 0 00 7.9000 0.85000 0 15.0443所以:10020230.051007.90.850.10.405110015.0443L U ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭验证:L=[1 0 0;0.05 1 0;0.1 -0.4051 1];U=[20 2 3;0 7.9 0.85;0 0 15.0443];A1=L*UA1 =20.0000 2.0000 3.00001.0000 8.0000 1.00002.0000 -3.0003 15.0000四、精度分析因为根据LU 的递推公式可知,L ,U 分别为下三角和上三角矩阵,其中L 不在对角线上的元素值为111()k ik ik is sk s kk l a l u u -==-∑,在计算每个系数时会产生相应的计算误差。

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)2010年11月13日郑州轻工业学院 机电工程系制冷与低温专业 10级研究生 王哲一.实验目的通过本实验了解学习特征值的内涵和幂法是求方阵的最大特征值及对应特征向量的一种迭代法。

利用幂法求方阵的最大特征值及对应特征向量的一种迭代法,等等。

主要了解掌握幂法的几种加速法,来求解特征值与特征向量。

培养编程与上机调试能力及应用数学软件(excel ,Matlab ,Linggo )等实现这几种方法。

二.幂法具体理论设An 有n 个线性无关的特征向量v 1,v 2,…,v n ,对应的特征值1,2,…,n ,满足基本思想:因为{v1,v2,…,vn}为Cn 的一组基,所以有:∑∑====ni ikini i i kk v A av a A xA 11)0()(∑∑==+==ni ii kik ni i k iiv a v a v a 21111λλλ])([21111∑=+=ni i i ki k v a v a λλλ若a 1=0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0迭代下去可求得及对应特征向量的近似值。

111111111111111)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a xAx A k kk kk k注:若A 的特征值不满足条件,幂法收敛性的分析较复杂但若。

则定理结论仍成立。

此时不同初始向量的迭代向量序列一般趋向于的不同特征向量。

三.用幂法求⎪⎪⎪⎭⎫ ⎝⎛=361641593642A的最大模特征值及对应特征向量1.利用excel 来求解特征值和特征向量矩阵A2 4 63 9 15 416 36计算区k x k|x k | max(x k ) y k0 1 11 1 1 1 1 1 1 1 112 27 56 12 27 56 56 0.21428571429 0.48214285714 12 8.3571428571 19.982142857 44.571428571 8.3571428571 19.982142857 44.571428571 44.571428571 0.1875 0.44831730769 13 8.1682692308 19.597355769 43.923076923 8.1682692308 19.597355769 43.923076923 43.923076923 0.1859676007 0.44617447461 14 8.1566330998 19.573473074 43.882661996 8.1566330998 19.573473074 43.882661996 43.882661996 0.18587370795 0.44604115118 15 8.1559120206 19.571991484 43.880153251 8.1559120206 19.571991484 43.880153251 43.880153251 0.185******** 0.4460328881 16 8.1558673562 19.571899699 43.879997817 8.1558673562 19.571899699 43.879997817 43.879997817 0.185******** 0.4460323763 17 8.1558645901 19.571894014 43.879988191 8.1558645901 19.571894014 43.879988191 43.879988191 0.185******** 0.44603234461 18 8.155864418819.57189366243.8799875948.155864418819.57189366243.87998759443.8799875940.185********0.4460323426512.利用Matlab 来求解特征值和特征向量 function y = maxa(x) k=1;n=length(x); for i=2:nif (abs(x(i))>abs(x(k))), k=i; end; end; y=x(k);A=[2,4,6;3,9,15;4,16,36]; x0=[1;1;1]; y=x0/maxa(x0) x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.001 x0=x1;y=x0/maxa(x0) x1=A*yend; ymaxa(x1)四.幂法的迭代公式:加速方法⎪⎩⎪⎨⎧==+)()1()()()()max(k k k k k Ay x x xy)2(1)()1()2(2)1()2()2()max()max(2)max()]max()[max()max(+∆+++++=+---k k k k k k k x x xxx xλ1.Aitken 加速法步骤:)2()2()2()1()1()1()0()0()0()max()max()max(+++→→→→→→→→→k k k yxxyx xyxx计算)max()max(2)max()]max()[max()max()()1()2(2)1()2()2()2(1k k k k k k k x x xxx x+---=++++++λ五.用幂法求方阵A 的最大模特征值,并用Aitkem 加速法⎪⎪⎪⎭⎫ ⎝⎛---=20101350144A1.利用excel 来解决幂法求方阵A 的最大模特征值,并用Aitkem 加速法矩阵A-414 0 -5 13 0 -10 2计算区 k x k |x k |max(x k ) λy k 0 1 1 1 1 1 1 1 1 1 1 1108110811010.80.1 2 7.2 5.4 -0.8 7.2 5.4 0.8 7.2 7.8644067797 1 0.75-0.11111111111 3 6.5 4.75-1.2222222222 6.5 4.751.2222222222 6.5 6.2666666667 10.73076923077 -0.188******** 4 6.23076924.5 -1.3760686.23076924.5 1.37606836.23076926.062510.7222222-0.220850308 3761 308 761 308 2222 480115 6.11111111114.3888888889-1.44170096026.11111111114.38888888891.44170096026.11111111116.015384615410.71818181818-0.235914702586 6.05454545454.3363636364-1.47182940526.05454545454.33636363641.47182940526.05454545456.003831417610.71621621622-0.24309494687 6.0270270274.3108108108-1.48618989366.0270270274.31081081081.48618989366.0270270276.000956937810.71524663677-0.246587560828 6.01345291484.298206278-1.49317512166.01345291484.2982062781.49317512166.01345291486.000239177210.71476510067-0.248305780859 6.00671140944.2919463087-1.49661156176.00671140944.29194630871.49661156176.00671140946.000059790710.71452513966-0.2491565616710 6.00335195534.2888268156-1.49831312336.00335195534.28882681561.49831312336.00335195536.000014947510.71440536013-0.2495794240411 6.00167504194.2872696817-1.49915884816.00167504194.28726968171.49915884816.00167504196.000003736910.71434552051-0.2497900732112 6.00083728724.2864917667-1.49958014646.00083728724.28649176671.49958014646.00083728726.000000934210.71431561323-0.2498951520713 6.00041858524.286102972-1.49979030416.00041858524.2861029721.49979030416.00041858526.000000233610.71430066271-0.2499476132914 6.0002092784.2859086153-1.49989522666.0002092784.28590861531.49989522666.0002092786.000000058410.71429318824-0.2499738187615 6.00010463534.2858114471-1.49994763756.00010463534.28581144711.49994763756.00010463536.000000014610.7142894512-0.249986913342.利用Matlab来解决幂法求方阵A的最大模特征值,并用Aitkem加速法幂法A=[-4,14,0;-5,13,0;-1,0,2];x0=[1;1;1];k=1y=x0/maxa(x0)x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.01x0=x1;k=k+1maxa(x0)y=x0/maxa(x0)x1=A*yend;Aitkem加速A=[-4,14,0;-5,13,0;-1,0,2];l1=0;k=1x0=[1;1;1];y0=x0/maxa(x0)x1=A*y0;y1=x1/maxa(x1)x2=A*y1;y2=x2/maxa(x2)l0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1) + maxa(x0))while (abs(l1-l0))>0.01x0=x1;x1=x2;l1=l0;k=k+1x2=A*y2maxk=maxa(x2)y2=x2/maxkl0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1)+maxa(x0))end;六.实验体会1.通过实验,我更加掌握利用幂法求方阵的最大特征值及对应特征向量的一种迭代法;2.利用各种加速法求方阵的最大特征值及对应特征向量的一种迭代法;3.在试验过程中更进一步了解excel,Matlab解线性方程的方便性以及它的强大功能,相信这对以后的学习和工作都有很大的帮助。

(2012新)数值分析II实验项目

(2012新)数值分析II实验项目

数值分析II 实验项目(2012年新)实验一 简单迭代法与加速方法一、目的与要求:1、掌握求解非线性方程实根的简单迭代法的编程运算2、会分析迭代步数,设计容许误差二、实验内容:1、方程324100x x +-=可以等价化成以下三种形式:(i) 1/210(4)x x x =- (ii) 1/210()4x x =+ (iii) 32241038x x x x x x+-=-+ 针对三种等价形式给出三种不同的简单迭代格式并使用每种格式计算方程在区间[1,2]上的解,初值选为1.5,容许误差选为1.0E-5,即510-;分析每种格式的收敛性;分析收敛格式的迭代步数与计算时间。

2、结合上述问题中(ii)相应的迭代格式,利用Stenffenson 迭代法求原方程的解。

初值选为1.5,容许误差选为1.0E-5,分析迭代步数与计算时间,并与上述简单迭代法作比较。

实验二 Newton 迭代法一、目的与要求:掌握求解非线性方程实根的Newton 切线法的编程运算二、实验内容:1、用Newton 切线法求xx e -=在0.5附近的根,2、用Newton 切线法求方程310x x --=在1.5附近的一个根. (选做)3、用Newton 切线法计算3k =,4k =时,方程2((3)0k x x -=在1.3附近的根以及2.5附近的根,比较计算两根时的迭代次数,并与理论结论作比较。

实验三 Newton 下山法与重根加速法一、目的与要求:掌握求解非线性方程实根的Newton 下山法与重根加速法的编程运算二、实验内容:1、分别使用Newton 切线法与Newton 下山法求解方程310x x --=在 1.5x =附近的根,但是初值选为0.6x =,根据计算结果,验证下山法在初值选取范围上的优越性。

2、分别使用Newton 切线法与重根加速法计算3k =,4k =时,方程2((3)0k x x -=在1.3附近的根,在相同的容许误差下,比较两种方法的计算时间与迭代次数。

数值_分析实验报告

数值_分析实验报告

一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。

二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。

2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。

3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。

4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。

三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。

(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。

试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。

实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。

t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。

三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。

清华大学高等数值分析 第二次实验作业

清华大学高等数值分析  第二次实验作业

400
600
800
1000
1200
1400
1600
1800
2000
迭代次数
图4
m步的重启动GMRES法求解Ax=b的收敛曲线
结论: m步重启GMRES方法快于m步重启Arnoldi方法, 随m增加, 迭代次数减小, 但都大于未重启算法的次数。当m=40时两种方法计算时间最短,此外,m步重 启动 Arnoldi 方法的收敛曲线有峰点和波纹,收敛速度均匀性差, m 步重启动 GMRES方法的收敛曲线很平滑,单调下降,收敛速度均匀性好。(图4是五条曲 线, 只是由于m=20和m=80两条曲线比较靠近, 看起来像四条, 放大后才能看清) 2.对于 1 中的矩阵,将特征值进行平移,使得实部有正有负,和 1 的结果进行比 较,方法的收敛速度会如何?基本的 Arnoldi 算法有无峰点?若有,基本的 GMRES 算法相应地会怎样? 解: (1)欲将特征值进行平移,使得实部有正有负,可以将矩阵 A 做如下变换:
10
0
特征值虚部按不同比例因子 k变化的 GMRES算法的收敛曲线 (阶数 n=1000)
k=0.2 k=0.5 k=2 k=5
10
-5
||rk||/||b||
10
-10
10
-15
0
100
200
300
400
500
600
700
800
900
1000
迭代次数
图8 特征值虚部按不同比例因子k变化的GMRES法求解求解Ax=b的收敛曲线
图7 特征值虚部按不同比例因子k变化的Arnoldi法求解求解Ax=b的收敛曲线
(3)GMRES法求解求解A′x=b: 利用matlab编程实现GMRES算法。b = ones(1000,1),x0 = zeros(1000, 1)。 计算每一步迭代的残差rk相对于初始残差的2范数。相对残差2范数的对数 值与迭代步数的关系曲线如图8所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b=polyfit(x,y,4);
x1=0.0:0.05:1.00;
>> y1=a(4)+a(3)*x1+a(2)*x1.^2+a(1)*x1.^3;
y2=b(5)+b(4)*x1+b(3)*x1.^2+b(2)*x1.^3+b(1)*x1.^4;
>> plot(x,y,'*');
>> hold on;
(1)掌握曲线拟合的最小二乘法;
(2)将函数逼近方法与插值法进行比较。
2.实验要求(由课任教师于实验开始前公布,不低于2行,不超过3行,由学生负责填写;5号字,行距20):
3.实验内容(由课任教师指明,由学生填写,不超出本页本栏):
1.对于给函数 在区间[-1,1]上取 =-1+0.2i(i=0,1,……,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与用插值法的结果比较。
>> plot(x1,y1,'-r')
>> y2=newton(x,y,x1);
>> hold on;
>> plot(x1,y2,'-')
2.>> y=[1.00 0.41 0.50 0.61 0.91 2.02 2.16];
>> x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];
>> a=polyfit(x,y,3);
2.由实验给出数据表
x
0.0
0.1
0.2
0.3
0.5
0.8
1.0
y
1.0
0.41
0.50
0.61
0.91
2.02
2.46
试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。
3.使用快速傅立叶变换确定函数 在 上的16次三角插值多项式.
4.实验步骤、实施过程、关键代码、实验结果及分析说明等(核心部分,至少2页,可以加页):
f(x) =
a0 + a1*cos(x*w) + b1*sin(x*w) +
a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +
信息与计算科学专业实验报告
课程名称
数值分析
总实验学时:16
第2次
共8次
实验项目名称
函数逼近与快速傅立叶变换
本次实验学时数:2
实验类型
日期
2018年5月3日星期四
年级
2016
学生姓名
阳超
学号
20164390318
课任教师
刘文艳
1.实验目的(由课任教师于实验开始前公布,不低于2行,不超过3行,由学生负责填写;5号字,行距20):
a7 = -25.8 (-31.95, -19.64)
b7 = -0.001727 (-0.002615, -0.0008382)
a8 = 0.6573 (0.5651, 0.7496)
b8 = 0.0001319 (6.379e-05, 0.0002)
w = 0.1668 (0.1649, 0.1686)
a4 = -770.2 (-809.6, -730.7)
b4 = 0.09692 (0.04741, 0.1464)
a5 = 275 (238.3, 311.7)
b5 = -0.03879 (-0.05865, -0.01894)
a6 = -13.17 (-35.47, 9.124)
b6 = 0.01047 (0.0051, 0.01585)
>> plot(x1,y1,'-r')
>> hold on;
>> plot(x1,y2,'-')
试用cftool工具得:
f(x) = p1*x^3 + p2*x^2 + p3*x + p4
Coefficients (with 95% confidence bounds):
p1 = -8.388 (-8.388, -8.388)
a1 = 3127 (3117, 3136)
b1 = -0.1425 (-0.2151, -0.06995)
a2 = -2372 (-2394, -2351)
b2 = 0.2022 (0.09917, 0.3053)
a3 = 1493 (1459, 1526)
b3 = -0.1691 (-0.2554, -0.08286)
5.小结、体会或建议(2至3行):
这次实验,学会了使用cftool工具,感觉这个工具很方便。
学生签名:阳超
2018年5月4日
7.教师评语:
教师签名:
20年月日
成绩
1.>> i=0:1:10;
>> x=-1+0.2*i;
>> y=1./(1+25*x.^2);
>> a=polyfit(x,y,3);
>> hold on;
&g;> plot(x,y,'*');
hold on;
>> y1=a(4)+a(3)*x1+a(2)*x1.^2+a(1)*x1.^3;
p2 = 14.76 (14.76, 14.76)
p3 = -5.147 (-5.147, -5.147)
p4 = 0.9428 (0.9428, 0.9428)
3.利用cftool工具箱
>> x=-pi:0.01:pi;
>> y=x.^2.*cos(x);
>> cftool
General model Fourier8:
a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +
a8*cos(8*x*w) + b8*sin(8*x*w)
Coefficients (with 95% confidence bounds):
a0 = -1714 (-1716, -1711)
相关文档
最新文档