微波技术与天线 答案 第1章
微波技术与天线课后习题答案(西电版)
★了解同轴线的特性阻抗及分类。
1.4习题及参考解答[I. 1]设一特性阻抗为50 Q的均匀传输线终端接负4k/<=100 Q.求负我反对系数巧・在离负裁0.2入・0.25入及0.5入处的输入阳抗及反对系数分别为多少?解终端反射系数为=& - Z。
= 100 — 50 =丄11 _ K _ 100 + 50 _ T根拥传输线上任怠一恵的反肘糸数和输入阳抗的公贰r(z)= r lC ^和= z。
;兰::二在离负载0.2入.0. 25A> 0.5入反射系数和输入阻抗分别为r(0.2A)= Y“初忌• r(0.25A)MZ.(0.2入)=29.43Z -23.79° Q・ Z in(0.25A) = 25 Q> Z lft(0.5A) = 100 Q[1.2]求内外导体直径分别为0.25 cm和0.75 cm的空气同轴线的持性阻抗。
若在两导体何塡充介电常数匕= 2.25的介质.求其特性阻抗及300 MHz时的波长。
解空气同轴线的持性阻抗为乙=60 In — = 65. 9 Qa塡充相对介电常数为€,=2.25的介质后.英持件阳抗为/=300 MHz时的波长为[1.3]设特性阻抗为乙的无耗传输线的址波比为"滾一个电爪波"•点离负我的距离为人讪.试证明此时终端负我应为r(0.5A) = Y证明根据输入阳抗公式Z: + jZ, tan" 乂Z o + jZ| tan/3 z在距负栈第一个波节点处的阻抗Z /(/“)=—P y Zl— j 乙I "1,3】Z.P将匕式整理即得17I318[I. 4] 何 持性阻抗为Z =50 Q 的无耗均匀传输线•导体间的媒质参敌为 £.=2.25 ・“, = 】,终瑞接仃&=】Q 的负我"/- 100 MHz 时•兀线长度为A/40试求: ①传输线实际长度'②负载终瑞反射系敌;③ 输入端反射系数'④ 输入瑞阻抗.解传输线上的波长= 2 m因而.传输线的实际长度/ = * = 0. 5 m4终瑞反射系数为…R]—Z 。
《微波天线》习题课解析
助教:郭琪 2016.4.27
第 1章 均匀传输线理论
习题1.1 、1.3、1.5
1.3 设特性阻抗为Z0的无耗传输线的驻波比为ρ,第一个电压波
节点离负载的距离为lminl,试证明此时终端负载应为:
1 j tan lmin1 Zl Z0 j tan lmin1
知识点(三): 回波损耗和插入损耗
1、回波损耗Lr
2、插入损耗Li
1、回波损耗
对于无耗传输线,回波损耗定义为入射波功率与反射波 功率之比, 表示为Lr
Lr ( z) 20lg Γl
dB
式中,Γ l为负载反射系数。可见,回波损耗只取决 于反射系数,反射越大,回波损耗越小。
2、插入损耗
定义入射波功率与传输功率之比,以分贝来表示为
Z1 jZ 0 tan(z ) Z in ( z ) Z 0 Z 0 jZ1 tan(z )
式中, Zl为终端负载阻抗,β为相移常数,Z0为传输线特性阻抗。
Z in (lminl ) 在距负载第一个波节点处的阻抗为:
Z0
Zin (lmaxl ) Z0 在距负载第一个波腹点处的阻抗为:
Z1 Z 0 式中, 1 1 e j1 称为终端反射系数。Z0为特 Z1 Z 0
征阻抗,Zl为负载阻抗,。
输入阻抗与反射系数的关系 1 ( z ) Z in Z 0 1 ( z )
或
Z in Z 0 ( z ) Z in Z 0
结论: 当传输线的特性阻抗一定时,输入阻抗与反射系数一一 对应,因此输入阻抗可通过反射系数的测量来确定。 当Zl=Z0,Γl=0,此时传输线上任意一点的反射系数等于 零,称之为负载匹配。 无耗传输线的阻抗具有λ/2重复性和阻抗变换特性两个 重要性质。
微波技术和天线(第四版)刘学观 第1章
第一章均匀传输线理论第章传输1.1节均匀传输线方程及其解1.2节传输线的阻抗与状态参量1.3节无耗传输线的状态分析1.4节传输线的传输功率、效率与损耗1.5节阻抗匹配151.6节史密斯圆图及其应用1.7节同轴线的特性阻抗1.1 均匀传输线方程及其解 本节要点传输线分类均匀传输线等效及传输线方程传输线方程解及其分析传输线的特性参数1.微波传输线定义及分类微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输因此又称为导波系统 第一类是双导体传输线,它由二根或二根以上平行传输,因此又称为导波系统。
第类是双导体传输线由根或根以平行导体构成,因其传输的电磁波是横电磁波(TEM 波)或准TEM 波,故又称为TEM 波传输线,主要包括平行双线同轴线带状线和微带线等行双线、同轴线、带状线和微带线等。
第二类是均匀填充介质的金属波导管,因电磁波在管内传播,故称为波导,主要包括矩形波导、圆波导、脊形波导和椭圆波导等。
第三类是介质传输线,因电磁波沿传输线表面传播,故称为表面波波导,主要包括介质波导、镜像线和单根表面波传输线等。
2. 均匀传输线方程当高频电流通过传输线时,在传输线上有:导线将产生热耗,这表明导线具有分布电阻;在周围产生磁场,即导线存在分布电感;由于导线间绝缘不完善而存在漏电流,表明沿线各处有分布电导;两导线间存在电压,其间有电场,导线间存在分布电容。
这四个分布元件分别用单位长分布电阻、漏电导、电感和电容描述。
设传输线始端接信号源,终端接负载,坐标如图所示。
Δz其上任意微分小段等效为由电阻R Δz 、电感L Δz 、电容C Δz z +Δz z z 0和漏电导G Δz 组成的网络。
i (z +Δz ,t )i (z ,t )R ΔzL Δz u (z +Δz ,t )u (z ,t )G Δz C Δz设时刻t 在离传输线终端z 处的电压和电流分别为u (z,t ) 和i (z,t ),+z +z +z z +Δz而在位置z Δz 处的电压和电流分别为u (z Δz,t )和i (z Δz,t )。
2023年大学_微波技术与天线(王新稳著)课后答案下载
2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。
最新微波技术与天线答案
微波技术与天线答案1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< 此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β=开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-14 解: 表1-5 1-15 解: 表1-61-16 解: 表1-71-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L LY j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线,课后答案
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0
微波技术与天线答案
1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗 90101210 1.66510500.66610L L Z C C --⨯====Ω⨯ f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L L L Z Z -Γ+===Ω+Γ-由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=ΩBb) 002252033in Z jZ tgjZ tg j πλπλ=⨯=-ΩBc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-4短路线长度 0.182λ 0.25λ0.15λ 0.62λ 输入阻抗in Z j2.2 ∞j1.38 j0.94 输入导纳in Y-j0.46-j0.024-j1.061-14 解: 表1-5 开路线长度 0.1λ 0.19λ0.37λ 0.48λ 输入阻抗in Z -j1.38 -j0.4j0.94 j7.9 输入导纳in Yj0.73j2.5-j1.06-j0.131-15 解: 表1-6负载阻抗L Z0.3+j1.3 0.5-j1.6 30.25 0.45-j1.2 -j2.0驻波比ρ 9.16 1.86 3 4 5.7 ∞ 反射系数Γ0.80.30.50.60.711-16 解: 表1-7 负载阻抗L Z 0.8+j 0.3-j1.1 ∞ j1.0 1.0 6+j3输入阻抗in Z 0.488-j0.61 0.23+j0.85-j1 1 0.13-j0.067输入阻抗in Z (Ω) 24.4-j30.5 11.5+j42.3-j50 50 6.67-j3.331-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗 0010000010010316L Z Z Z ''===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
《微波技术与天线》习题集规范标准答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题答案
ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4
【精品】《微波技术与天线》习题答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为50Q的均匀传输线终端接负载& =100Q,求负载反射系数L,在离负载0.22, 0.25/1及0.52处的输入阻抗及反射系数分别为多少?解:r i=(Z1-Z0)/(Z1+Z0) = l/3「(0.2人)=二〃"=:疽° 服「(0.5/1) = | (二分之一波长重复性)r(0.252) = -|Z,,(0.22) = Z o Zi + jZ°tan 例=29 43z _ 23.79g0 Z o + tan/?/Z,… (0.252) = 502/100 = 25Q (四分之一波长阻抗变换性)Z,,(0.52) = 100Q (二分之一波长重复性)1. 2求内外导体直径分别为0. 25cm和0. 75cm的空气同轴线的特性阻抗;若在两导体间填充介电常数& =2.25的介质,求其特性阻抗及f = 300MHz时的波长。
解:同轴线的特性阻抗Z0=-^ln-山.ah则空气同轴线Z.=601n- = 65.9Qa当&=2.25 时,Z0=4L In-= 43.90A a当f = 300MHz时的波长:C = 0.67m1.3题设特性阻抗为Z o的无耗传输线的驻波比p ,第一个电压波节点离负载的距离为/mini,试证明此时的终端负载应为Z] = Z0X—土_七耍min 1 1 u • .07X?-jtan/?/minl证明:对于无耗传输线而言:..7_ 7 *Z] +Zo/tan—mini■ i"— ° Z°+Z"tan% 函=ZJ P由两式相等推导出:Z|=Z°x上些久些Q — J tan 风顽11.4传输线上的波长为:C/f久=# = 2m因而,传输线的实际长度为:2I =里=0.5m4终端反射系数为:=R I-Z Q =_竺如96]&+Z。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一为衰减波,无法传播。一为传输波,可以沿导波装置传播。 1-27 答: 当电磁波在导波系统中的传播相速与频率有关时,不同频率的波同 时沿该导波装置传输时,等相位面移动的速度不同,有快有慢,故该 现象为“色散” 。 1-28 答: 对比自由空间均匀平面波的波阻抗定义,定义波导的波阻抗为
Z
横向电场 Et ,且 Et,Ht 与传播方向满足右手定则 横向磁场 H t
1-6 解: ∵ Z L =Z0 ∴ U z U i 2e
j z
U r 2 0
e j z2 z1 U z1
100e U z2
2 j 3
100e U z1
j
6
V
u z1 , t 100 cos t V 6
2m
m 1
3.21 0
可以传播
c TE21
c TE31
D d
4
1.61 0 1.07 0
可以传播
D d
L0 L1 1.665 109 50 C1 C0 0.666 1012
X 1 = ωL1=2π×50 ×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1 =ωC1=2π×50×0.666×10×10-12=2.09×10-9S/cm
U z U i 2e j z U r 2e j z
I
3 z 4
1 j 20 j 2 j 0.11 Nhomakorabea 200
jt u z, t z 3 Re U z e 18cos t 2 V 4
jt i z, t z 3 Re I z e 0.11cos t 2 A 4
0 L 2 zmax1
得
0.43 zmax1
zmin1
得 L 2 zmin1
Zin j 1 得
L 0.180 4
1-23 解: 原电路的等效电路为 由
Zin 1 j
向负载方向等效(沿等 图)0.25 电长度 得 Z in
1-10 解:
Z0
33
2 zmin1 4cm 2 zmin
L
1 2 0.2, zmin1 0.5 1 4
zmin1 0.2 L e j 2 zmin1
∴
L 0.2e
j 2
2
2.32 108 m / s
1-31 证: ∵ Z 01
0
1 / 2a
2
0
g1 0
Z 02
0 r
1 0 r / 2a
2
0
g 2 0
∴
Z 02 g 2 Z 01 g1
1-32 解: Z 0
60
r
60
ln
D 35 60ln 50 d 15.2
I z 1 U i 2e j z U r 2e j z Z0
将
U i 2 20V ,U r 2 2V , z
U 20e
3 j 2
2 3 3 4 2
代入
3 z 4
2e
3 j 2
j 20 j 2 j18V
L
1-7 解:
1 0.2 0.2e j 2 1
c 30cm f
1 L 1 L 1 0.2 得 Z0 Z L 100 150 1 L 1 L 1 0.2
由 由 得 1-8 解: (a) (b) (c) (d) 1-9 解:
Zin jZ 0tg
2
jZ 0tg
j 520 j 520
1-12 解: 2 L 1-13 解: 短路线长度 输入阻抗 Z in 输入导纳 Yin 1-14 解: 开路线长度 输入阻抗 Z in 输入导纳 Yin 1-15 解:
o Z L Z 0 50 j100 7 j 4 0.62e j 29.75 Z L Z 0 150 j100 13
表 1-4 0.182 λ j2.2 -j0.46 表 1-5 0.1 λ -j1.38 j0.73 0.19 λ -j0.4 j2.5 表 1-6 3 0.25 0.45-j1.2 -j2.0 0.37 λ j0.94 -j1.06 0.48 λ j7.9 -j0.13 0.25 λ ∞ 0 0.15 λ j1.38 -j0.024 0.62 λ j0.94 -j1.06
负载阻抗 0.3+j1.3 0.5-j1.6
ZL
驻波比 ρ 反射系数 9.16 0.8 1.86 0.3 3 0.5 4 0.6 5.7 0.7 ∞ 1
1-16 解: 负载阻 抗 ZL 输入阻 抗 Z in 输入阻 24.4-j30.5 11.5+j42.3 0 -j50 50 6.67-j3.33 0.488-j0.61 0.23+j0.85 0 -j1 1 0.13-j0.067 0.8+j 表 1-7 0.3-j1.1 ∞ j1.0 1.0 6+j3
4
0.2e
j
2
1-11 解: 短路线输入阻抗 开路线输入阻抗
Zin jZ0tg l Zin jZ0ctg l
a) b) c) d)
6 3 2 2 Zin jZ 0tg jZ 0tg 3 3
Zin jZ 0ctg j173.2 3 2 Zin jZ 0ctg j173.2 3
并联支节输入导纳
B ctg lmin 2.5
lmin 0.061
此时
Z L 1/ 2.5
500 / 2.5 200 (纯电阻) ZL
变换段特性阻抗 1-22 解: 由 由
Z0 Z L 100000 100 10 316 Z0
L arctg1/ 0.8 51.34o 308.66o
d 2U z 2U z 0 2 dz 2 d I z 2I z 0 dz 2
无论 TE 波还是 TM 波,其模式电流电压满足的传输线方程与长线方 程一样。故称其为广义传输线方程。 1-25 答: 导行波不能在导波系统中传输时所对应的最低频率称为截止频率, 该频率所确定的波长称为截止波长 当 c 时,波被截止,不能传播 当 c 时,波可以传播 1-26 答: 当波截止时, 。 当波传播时, j 。
第一章
1-1 解: f=9375MHz, c / f 3.2cm, 此传输线为长线 1-2 解: f=150kHz, c / f 2000m,
l / 3.125 1
l / 0.5 104 1
此传输线为短线 1-3 答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感, 电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用 R1 , L1 , C1 , G1 表示,分别称其为传输线单位长度的分布 电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 Z 0 f=50Hz 1-5 解: ∵
抗
Z in ( Ω )
1-17 解: L 0.7e j135 1-18 解: K
o
U min 0.6 U max
43.2o zmin1
用公式求
Z L Z0
1 j tg zmin1 K jtg zmin1 Z0 jtg zmin1 1 jKtg zmin1
50
用圆图求
0.6 jtg 43.2o 42.85 j 22.8 1 j 0.6 tg 43.2o
Z L 42.5 j 22.5
短路分支线的接入位置 d=0.016 λ 时 B 0.516 最短分支线长度为 1-19 解: Z L 2.6 j1.4, 由圆图求得
Z L Z0
0.2 z L e j 2 z 0.2e j 2 z zmax
0, zmax1 2 zmax1
4
7.5cm
Zin z , in z 1 Zin z Z0 100, in z 0
1 Z in
则
Yin Zin Yin Zin j 1 j 2
由 Yin Yin j Zin
得
由负载方向等效 0.125 电长度(沿等 图)得
YL 1 j 2
Z L 0.2 j 0.4
1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。将横 向电场或磁场用标位函数的梯度表示。该标位函数可用纵向分布函数 U(z).I(z)及横向分布函数表示。 对应横向电场与横向磁场的纵向分布 函数 U(z).I(z)具有电压与电流的量纲,故称其为对应导行模式的模 式电压与模式电流。其满足的传输线方程为
Zin z 2Z 0 200, in z Zin Z 0 1 Zin Z 0 3
Zin z 2Z0 200, in z 1/ 3
1 1.2 1.5 1 0.8
Z max Z 0 75, Z min
2
得
1 1/ g 2 1/ 2a
2
30mm 3cm