BP神经网络的Matlab语法介绍
基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。
1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。
Matlab工具箱中地BP与RBF函数

Matlab工具箱中的BP与RBF函数Matlab神经网络工具箱中的函数非常丰富,给网络设置适宜的属性,可以加快网络的学习速度,缩短网络的学习进程。
限于篇幅,仅对本章所用到的函数进展介绍,其它的函数与其用法请读者参考联机文档和帮助。
1 BP与RBF网络创建函数在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。
表 1 神经网络创建函数(1) newff函数功能:创建一个前馈BP神经网络。
调用格式:net = newff(PR,[S1S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF)参数说明:•PR - R个输入的最小、最大值构成的R×2矩阵;•S i–S NI层网络第i层的神经元个数;•TF i - 第i层的传递函数,可以是任意可导函数,默认为 'tansig',可设置为logsig,purelin等;•BTF -反向传播网络训练函数,默认为 'trainlm',可设置为trainbfg,trainrp,traingd等;•BLF -反向传播权值、阈值学习函数,默认为 'learngdm';•PF -功能函数,默认为'mse';(2) newcf函数功能:创建一个N层的层叠(cascade)BP网络调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)参数同函数newff。
(3) newrb函数功能:创建一个径向基神经网络。
径向基网络可以用来对一个函数进展逼近。
newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。
在网络的隐层添加神经元,直到网络满足指定的均方误差要求。
调用格式:net = newrb(P,T,GOAL,SPREAD)参数说明:•P:Q个输入向量构成的R×Q矩阵;•T:Q个期望输出向量构成的S×Q矩阵;•GOAL:均方误差要求,默认为0。
Bp神经网络的Matlab实现

式, 同一层之 间不存 在相 互连接 , 隐层 可 以有 一层或 多层 . 层与层 之 间有 两种 信号在 流通 : 一种是 工 作信 号 ( 实线 表 示 )它是 施 加输 入信 号 后 用 , 向前传 播直 到在输 出端 产生 实 际输 出的信 号 , 是输 入 和权 值 的 函数 . 另
我们 可 以直观 、 便地进 行分 析 、 算 及仿 真 工作 _ . 经 网络 工 具箱 是 M tb以神 经 网 络 为基 础 , 方 计 2神 j aa l 包含 着 大
量B p网络 的作 用 函数和算 法 函数 , B 为 p网络 的仿 真研 究 提供 了便 利 的工 具 . 运用 神 经 网络 工具 箱 一般 按 照
21年 1 00 0月
湘 南 学 院 学报
J u n lo a g a o ra f Xin n n Umv  ̄i e t y
Oc . 2 0 t . 01 V0 . l No. J3 5
第 3 卷第 5期 1
B p神 经 网络 的 Ma a 现 t b实 l
石 云
一
输 入层
隐 层
输 出层
种是 误差信 号 ( 虚线 表示 )网络实 际输 出与期望 输 出间的差 值 即为 用 ,
图 1 典型 B p网络 模 型
误差 , 由输 出端开 始逐层 向后传 播 . p网络 的学 习过程 程 由前 向计 算 它 B
BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。
它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。
本文将介绍BP神经网络的原理及其在MATLAB中的应用。
BP神经网络的原理基于神经元间的权值和偏置进行计算。
一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。
输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。
BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。
前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。
反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。
在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。
以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。
可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。
BP神经网络matlab详细参数

BP神经⽹络matlab详细参数基于matlab BP 神经⽹络参数详解(1)⽣成BP ⽹络(,[1 2...],{ 1 2...},,,)net newff PR S S SNl TF TF TFNl BTF BLF PF =PR :由R 维的输⼊样本最⼩最⼤值构成的2R ?维矩阵。
[1 2...]S S SNl :各层的神经元个数。
{ 1 2...}TF TF TFNl :各层的神经元传递函数。
BTF :训练⽤函数的名称。
(2)⽹络训练[,,,,,] (,,,,,,)net tr Y E Pf Af train net P T Pi Ai VV TV =(3)⽹络仿真[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T =BP ⽹络的训练函数训练⽅法训练函数梯度下降法traingd 有动量的梯度下降法 traingdm ⾃适应lr 梯度下降法traingda⾃适应lr 动量梯度下降法 traingdx 弹性梯度下降法 trainrpFletcher-Reeves 共轭梯度法traincgfPloak-Ribiere 共轭梯度法 traincgp Powell-Beale 共轭梯度法 traincgb 量化共轭梯度法trainscg拟⽜顿算法trainbfg⼀步正割算法trainoss Levenberg-Marquardt trainlmBP⽹络训练参数训练参数参数介绍训练函数net.trainParam.epochs最⼤训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最⼤失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.min_grad最⼩梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显⽰训练迭代过程(NaN表⽰不显⽰,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最⼤训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc动量因⼦(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长⽐(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降⽐(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc表现函数增加最⼤⽐(缺省为1.04)net.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减⼩量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最⼤值(缺省为50.0)trainrpnet.trainParam.searchFcn⼀维线性搜索⽅法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainoss net.trainParam.sigma因为⼆次求导对权值trainscg调整的影响参数(缺省值5.0e-5)/doc/cd3ed4b6f5335a8102d220e4.html mbda trainscgHessian矩阵不确定性调节参数(缺省为5.0e-7)net.trainParam.men_redtrainlm控制计算机内存/速uc度的参量,内存较⼤设为1,否则设为2(缺省为1)net.trainParam.mu trainlmµ的初始值(缺省为0.001)net.trainParam.mu_dec trainlmµ的减⼩率(缺省为0.1)net.trainParam.mu_inc trainlmµ的增长率(缺省为10)net.trainParam.mu_max trainlmµ的最⼤值(缺省为1e10)。
BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。
BP神经网络matlab教程

w
N 1 ho
w o (k )hoh (k )
N ho
2.4.2 BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
p
i 1
h 1,2,
o 1,2,
,p
q
yio (k ) whohoh (k ) bo
o 1,2,
yoo (k ) f( yio (k ))
h 1
q
2.4.2 BP网络的标准学习算法
第四步,利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 o (k ) 数 。 ( w ho (k ) b ) e e yio yi (k )
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 , , xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q
BP神经网络matlab实现的基本步骤

1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。
关于网络具体建立使用方法,在后几节的例子中将会说到。
4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。
若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。
归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
PSO优化的BP神经网络(Matlab版)

PSO优化的BP神经⽹络(Matlab版)前⾔:最近接触到⼀些神经⽹络的东西,看到很多⼈使⽤PSO(粒⼦群优化算法)优化BP神经⽹络中的权值和偏置,经过⼀段时间的研究,写了⼀些代码,能够跑通,嫌弃速度慢的可以改⼀下训练次数或者适应度函数。
在我的理解⾥,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于⽤粒⼦去尝试作为⽹络的参数,然后训练⽹络的阈值,所以总是会看到PSO优化了权值和阈值的说法,(⼀开始我是没有想通为什么能够优化阈值的),下⾯是我的代码实现过程,关于BP和PSO的原理就不⼀⼀赘述了,⽹上有很多⼤佬解释的很详细了……⾸先是利⽤BP作为适应度函数function [error] = BP_fit(gbest,input_num,hidden_num,output_num,net,inputn,outputn)%BP_fit 此函数为PSO的适应度函数% gbest:最优粒⼦% input_num:输⼊节点数⽬;% output_num:输出层节点数⽬;% hidden_num:隐含层节点数⽬;% net:⽹络;% inputn:⽹络训练输⼊数据;% outputn:⽹络训练输出数据;% error : ⽹络输出误差,即PSO适应度函数值w1 = gbest(1:input_num * hidden_num);B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num);w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num...+ hidden_num + hidden_num * output_num);B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:...input_num * hidden_num + hidden_num + hidden_num * output_num + output_num);net.iw{1,1} = reshape(w1,hidden_num,input_num);net.lw{2,1} = reshape(w2,output_num,hidden_num);net.b{1} = reshape(B1,hidden_num,1);net.b{2} = B2';%建⽴BP⽹络net.trainParam.epochs = 200;net.trainParam.lr = 0.05;net.trainParam.goal = 0.000001;net.trainParam.show = 100;net.trainParam.showWindow = 0;net = train(net,inputn,outputn);ty = sim(net,inputn);error = sum(sum(abs((ty - outputn))));end 然后是PSO部分:%%基于多域PSO_RBF的6R机械臂逆运动学求解的研究clear;close;clc;%定义BP参数:% input_num:输⼊层节点数;% output_num:输出层节点数;% hidden_num:隐含层节点数;% inputn:⽹络输⼊;% outputn:⽹络输出;%定义PSO参数:% max_iters:算法最⼤迭代次数% w:粒⼦更新权值% c1,c2:为粒⼦群更新学习率% m:粒⼦长度,为BP中初始W、b的长度总和% n:粒⼦群规模% gbest:到达最优位置的粒⼦format longinput_num = 3;output_num = 3;hidden_num = 25;max_iters =10;m = 500; %种群规模n = input_num * hidden_num + hidden_num + hidden_num * output_num + output_num; %个体长度w = 0.1;c1 = 2;c2 = 2;%加载⽹络输⼊(空间任意点)和输出(对应关节⾓的值)load('pfile_i2.mat')load('pfile_o2.mat')% inputs_1 = angle_2';inputs_1 = inputs_2';outputs_1 = outputs_2';train_x = inputs_1(:,1:490);% train_y = outputs_1(4:5,1:490);train_y = outputs_1(1:3,1:490);test_x = inputs_1(:,491:500);test_y = outputs_1(1:3,491:500);% test_y = outputs_1(4:5,491:500);[inputn,inputps] = mapminmax(train_x);[outputn,outputps] = mapminmax(train_y);net = newff(inputn,outputn,25);%设置粒⼦的最⼩位置与最⼤位置% w1阈值设定for i = 1:input_num * hidden_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B1阈值设定for i = input_num * hidden_num + 1:input_num * hidden_num + hidden_numMinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end% w2阈值设定for i = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B2阈值设定for i = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num MinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end%%初始化位置参数%产⽣初始粒⼦位置pop = rands(m,n);%初始化速度和适应度函数值V = 0.15 * rands(m,n);BsJ = 0;%对初始粒⼦进⾏限制处理,将粒⼦筛选到⾃定义范围内for i = 1:mfor j = 1:input_num * hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + 1:input_num * hidden_num + hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num if pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendend%评估初始粒⼦for s = 1:mindivi = pop(s,:);fitness = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn);BsJ = fitness; %调⽤适应度函数,更新每个粒⼦当前位置Error(s,:) = BsJ; %储存每个粒⼦的位置,即BP的最终误差end[OderEr,IndexEr] = sort(Error);%将Error数组按升序排列Errorleast = OderEr(1); %记录全局最⼩值for i = 1:m %记录到达当前全局最优位置的粒⼦if Error(i) == Errorleastgbest = pop(i,:);break;endendibest = pop; %当前粒⼦群中最优的个体,因为是初始粒⼦,所以最优个体还是个体本⾝for kg = 1:max_iters %迭代次数for s = 1:m%个体有52%的可能性变异for j = 1:n %粒⼦长度for i = 1:m %种群规模,变异是针对某个粒⼦的某⼀个值的变异if rand(1)<0.04pop(i,j) = rands(1);endendend%r1,r2为粒⼦群算法参数r1 = rand(1);r2 = rand(1);%个体位置和速度更新V(s,:) = w * V(s,:) + c1 * r1 * (ibest(s,:)-pop(s,:)) + c2 * r2 * (gbest(1,:)-pop(s,:));pop(s,:) = pop(s,:) + 0.3 * V(s,:);%对更新的位置进⾏判断,超过设定的范围就处理下。
BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
BP神经网络 吐血推荐 matlab程序

4.3.1 BP 神经网络的概述:BP 神经网络[9]由Rumelhard 和McClelland 于1986年提出的,从结构上讲,它是一种典型的多层前向型神经网络,具有一个输入层、数个隐含层(可以是一层,也可以是多层)和一个输出层。
层与层之间采用全链接的方式,同一层的神经元多采用线性传递函数。
图1.1,所示,为一个典型的BP 神经网络结构,该网络具有一个隐含层,输入层神经元数目为m ,隐含层神经元数目为l ,输出层神经元数目为n ,隐含层采用S 型传递函数tansig ,输出层传递函数为purelin.4.3.2 BP 神经网络的学习算法思想BP 神经网络的误差反向传播算法是典型的有导师指导的学习算法,其学习过程由信号的正向传播与误差的反向传播两个过程组成。
正向传播时,输入样本从输入层传入,经各隐层处理后,传向输出层。
若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段。
误差反传播时,将输出误差以某种形式通过隐含层向输入层逐渐反传,并将误差分摊,经各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元误差的依据,这种信号正向传播与误差反向传播的各层权值的调整过程是周而复始的进行的。
权值的不断调整过程,就是网络的学习过程,此过程直到网络输出的误差减少到可以接受的程度或进行到预先设定的学习次数为止。
BP 神经网络的精髓是将网络的输出与期望输出间的误差归结为权值和阈值的“过错”,通过反向传播把误差“分摊”给各个神经元的权值和阈值。
BP 神经网络的学习算法的指导思想是权值和阈值的调整要沿着误差函数下降最快的方向——负梯度方向。
4.3.3 BP 神经网络的学习过程一般习惯将单隐含层前馈网络称为三层网络或三层感知网,即输入层,隐含层,输出层。
输入向量13n (x x x ...x TX =,2,,).若加入0x 1=-,可为隐含层神经元引入阈值,隐含层输出向量为13n (,,TY y y y y =,2,),若加入0y 1=-,可为输出层引入阈值,隐含层各神经元为13n (...TO O O O =,2,,O ).输入层与隐含层神经元间的网络权值矩阵与隐含层与输出层神经元间的网络权值矩阵分别为11111121m 111121222m 111l1l2lm ....W ωωωωωωωωω⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 22211121m 222221222m 222l1l2lm ....W ωωωωωωωωω⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(4.6) 隐含层神经元的阈值1θ和输出层神经元的阈值2θ分别为1111'11l =[,...,]θθθθ,, 2222'11l =[,...,]θθθθ, (4.7)则隐含层神经元的的输出为m11j ji i j j i=1=f x -=f net O ωθ∑()(),j=1,2,…,l (4.8) 其中,m11j ji i j i=1net =x -ωθ∑,j=1,2,…,l ;f (.)为隐含层的传递函数。
(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
MATLAB实例:BP神经网络用于回归任务

MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。
通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。
因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。
神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。
BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。
如下图所⽰。
整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。
这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。
y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。
这⾥隐层节点数为20。
BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。
BP神经网络的设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。
本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。
通过不断调试,大致弄明白这两个函数对神经网络的存储。
下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。
如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口输入:save net %net为已训练好的网络然后在命令窗口输入:load net %net为已保存的网络加载net。
但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作如下所示:%% 以函数的形式训练神经网络functionshenjingwangluo()P=[-1,-2,3,1;-1,1,5,-3];%P为输入矢量T=[-1,-1,1,1,];%T为目标矢量net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')%创建一个新的前向神经网络inputWeights=net.IW{1,1}inputbias=net.b{1}%当前输入层权值和阀值layerWeights=net.LW{2,1}layerbias=net.b{2}net.trainParam.show=50;net.trainParam.lr=0.05;net.trainParam.mc=0.9;net.trainParam.epochs=1000;net.trainParam.goal=0.0002;%调用算法训练BP网络[net,tr]=train(net,P,T);%保存训练好的网络在当前工作目录下的aaa 文件中,net为网络名save('aaa', 'net');%也可以采用格式“save aaa net;”%若要保存到指定目录用“'save('d:\aaa.mat', 'net');”这样就保存到指定的目录下了%%调用网络,以函数的形式function jiazaiwangluo()%网络加载,注意文件名要加单引号load('-mat','aaa');%从指定目录加载“load('-mat','d:\aaa.mat'); ”P=[3;4]A=sim(net,P)%对网络进行仿真上面两个函数都已经调试成功,有需要的朋友可以试试看,希望对大家有帮助。
基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。
以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 11],'maxGenTerm',gen,...'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);net.LW{2,1}=W1;net.LW{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数net.trainParam.show=1;net.trainParam.lr=1;net.trainParam.epochs=50;net.trainParam.goal=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值想运行程序,直接在代码窗口输入GABPNET即可。
BP神经网络在MATLAB上的实现与应用

收稿日期:2004-02-12作者简介:桂现才(1964)),海南临高人,湛江师范学院数学与计算科学学院讲师,从事数据分析与统计,数据挖掘研究.2004年6月第25卷第3期湛江师范学院学报JO URN AL OF Z HA NJI ANG NOR M AL CO LL EG E Jun 1,2004Vol 125 N o 13BP 神经网络在M ATLAB 上的实现与应用桂现才(湛江师范学院数学与计算科学学院,广东湛江524048)摘 要:BP 神经网络在非线性建模,函数逼近和模式识别中有广泛地应用,该文介绍了B P 神经网络的基本原理,利用MA TL AB 神经网络工具箱可以很方便地进行B P 神经网络的建立、训练和仿真,给出了建立BP 神经网络的注意事项和例子.关键词:人工神经网络;BP 网络;NN box MA TL AB中图分类号:TP311.52 文献标识码:A 文章编号:1006-4702(2004)03-0079-051 BP 神经网络简介人工神经网络(Artificial Neural Netw orks,简称为N N)是近年来发展起来的模拟人脑生物过程的人工智能技术.它由大量简单的神经元广泛互连形成的复杂的非线性系统,它不需要任何先验公式,就能从已有数据中自动地归纳规则,获得这些数据的内在规律,具有很强的非线性映射能力,特别适合于因果关系复杂的非确性推理、判断、识别和分类等问题.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple -layer feedf or ward net 2work,简记为BP 网络),是目前应用最多也是最成功的网络之一,构造一个BP 网络需要确定其处理单元)))神经元的特性和网络的拓扑结构.1.1神经元模型神经元是神经网络最基本的组成部分,一般地,一个有R 个输入的神经元模型如图1所示.其中P 为输入向量,w 为权向量,b 为阈值,f 为传递函数,a 为神经元输出.所有输入P 通过一个权重w 进行加权求和后加上阈值b 再经传递函数f 的作用后即为该神经元的输出a.传递函数可以是任何可微的函数,常用的有Sigmoid 型和线性型.1.2 神经网络的拓扑结构神经网络的拓扑结构是指神经元之间的互连结构.图2是一个三层的B P 网络结构.B P 网络由输入层、输出层以及一个或多个隐层节点互连而成的一种多层网,这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系,又不致使网络输出限制在-1和1之间.2 M A TLAB 中B P 神经网络的实现BP 网络的训练所采用的算法是反向传播法,可以以任意精度逼近任意的连续函数,近年来,为了解决BP 网络收敛速度慢,训练时间长等不足,提出了许多改进算法[1][2].在应用BP 网络解决实际问题的过程中,选择多少层网络、每层多少个神经元节点、选择何种传递函数、何种训练算法等,均无可行的理论指导,只能通过大量的实验计算获得.这无形增加了研究工作量和编程计算工作量.M AT L AB 软件提供了一个现成的神经网络工具箱(Neural Netw ork T oolbox,简称N Nbox),为解决这个矛盾提供了便利条件.下面针对BP 网络的建立、传递函数的选择、网络的训练等,在介绍NN box 相关函数的基础上,给出利用这些函数编程的方法.2.1 神经网络的建立M AT LAB 的N Nbox 提供了建立神经网络的专用函数ne wff().用ne wf f 函数来确定网络层数、每层中的神经元数和传递函数,其语法为:net =ne wf f(PR,[S1,S2,,,S N],{TF1,TF2,,,T FN},B TF,BL F,PF)其中PR 是一个由每个输入向量的最大最小值构成的Rx2矩阵.Si 是第i 层网络的神经元个数.TFi 是第i 层网络的传递函数,缺省为tansig,可选用的传递函数有tansig,logsig 或purelin.BT F )字符串变量,为网络的训练函数名,可在如下函数中选择:traingd 、traingdm 、traingdx 、trainbfg 、trainlm 等,缺省为trainlm.BL F )字符串变量,为网络的学习函数名,缺省为learngdm.BF )字符串变量,为网络的性能函数,缺省为均方差c mse cnew ff 在确定网络结构后会自动调用init 函数用缺省参数来初始化网络中各个权重和阈值,产生一个可训练的前馈网络,即该函数的返回值为net.由于非线性传递函数对输出具有压缩作用,故输出层通常采用线性传递函数,以保持输出范围.2.2 神经网络训练初始化后的网络即可用于训练,即将网络的输入和输出反复作用于网络,不断调整其权重和阈值,以使网络性能函数net.performFcn 达到最小,从而实现输入输出间的非线性映射.对于new ff 函数产生的网络,其缺省的性能函数是网络输出和实际输出间的均方差M SE.在N Nbox 中,给出了十多种网络学习、训练函数,其采用的算法可分为基本的梯度下降算法和快速算法,各种算法的推导参见文献[1][2].在M A T LAB 中训练网络有两类模式:逐变模式(incremental mode)和批变模式(batch mode).在逐变模式中,每一个输入被作用于网络后,权重和阈值被更新一次.在批变模式中,所有的输入被应用于网络后,权重和阈值才被更新一次.使用批变模式不需要为每一层的权重和阈值设定训80湛江师范学院学报(自然科学) 第25卷练函数,而只需为整个网络指定一个训练函数,使用起来相对方便,而且许多改进的快速训练算法只能采用批变模式,在这里我们只讨论批变模式,以批变模式来训练网络的函数是train ,其语法主要格式为:[net,tr]=train(N ET,p,t),其中p 和t 分别为输入输出矩阵,NET 为由ne wff 产生的要训练的网络,net 为修正后的网络,tr 为训练的记录(训练步数epoch 和性能perf).train 根据在new ff 函数中确定的训练函数来训练,不同的训练函数对应不同的训练算法.Traingd 基本梯度下降算法.收敛速度慢,可用于增量模式训练.Traingdm 带有趋势动量的梯度下降算法.收敛速度快于Traingd,可用于增量模式训练.Traingdx 自适应学习速度算法.收敛速度快于Traingd,仅用于批量模式训练.Trainnp 强适应性BP 算法.用于批量模式训练,收敛速度快,数据占用存储空间小.Traincgf Fletcher-reeves 变梯度算法.是一种数据占用存储空间最小的变梯度算法.Traincgp Polak -Ribiere 变梯度算法.存储空间略大于Traincgp,但对有些问题具有较快的收敛速度.Traincgb Powell-beale 变梯度算法.存储空间略大于Traincgp,具有较快的收敛速度.Trainsc g 固定变比的变梯度算法.是一种无需线性搜索的变梯度算法.Trainbf g BFGS 拟牛顿算法.数据存储量近似于Hessian 矩阵,每个训练周期计算虽大,但收敛速度较快.Trainoss 变梯度法与拟牛顿法的折中算法.Trainlm Levenberg -Marquardt 算法.对中度规模的网络具有较快的收敛速度.Trainbr 改进型L )M 算法.可大大降低确定优化网络结构的难度.训练时直接调用上述的函数名,调用前为下列变量赋初始值:net.trainParam.show )))每多少轮显示一次;net.trainPara m.L r )))学习速度;net.trainParam.epochs )))最大训练轮回数;net.trainPara m.goal )))目标函数误差.2.3 仿真函数及实例利用仿真函数可对训练好的网络进行求值运算及应用.函数调用形式为:a=sim(net,p);其中net 为训练好的网络对象,p 为输入向量或矩阵,a 为网络输出.如果P 为向量,则为单点仿真;P 为矩阵,则为多点仿真.作为应用示例利用上述的函数,可解决下述非线性单输入单输出系统的模型化问题.已知系统输入为:x(k)=sin(k*P /50)系统输出为:y(k)=0.7sin(P x)+0.3sin(3P x)假定采样点k I [0,50].采用含有一个隐层的三层BP 网络建模,为了便于比较建立了两个模型.模型一的神经元为{1,7,1},模型二为{3,7,1},输入层和隐层传递函数均为TA NSIG 函数,输出层为线性函数.网络训练分别采用基本梯度下降法和变学习速度的梯度下降法.可编制如下的应用程序:k=0:50;x(k)=sin(k*pi/50);y(k)=0.7*sin(pi*x)+0.3*sin(3*pi*x);net=new ff([0,1],[1,7,1],{-tansig .,.tansig .,.purelin .},.traingd .);%建立模型一,并采用基本梯度下降法训练.net.trainParam.show=100;%100轮回显示一次结果81第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用82湛江师范学院学报(自然科学)第25卷net.trainParam.L r=0.05;%学习速度为0.05net.trainParam.epochs=50000;%最大训练轮回为50000次net.trainParam.goal=1e-4;%均方误差为0.0001net=train(net,x,y);%开始训练,其中x,y分别为输入输出样本y1=sim(net,x);%用训练好的模型进行仿真plot(x,y,x,y1);%绘制结果曲线若采用模型二,仅需将程序第4句ne wf f函数中的第二个参数改为[3,7,1].若采用变学习速度算法,仅需将该函数第4个参数改为.traingda.,加入:net.trainparam.lr-inc=1.05%;训练速度增加系数.一句即可.模型一用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数为4214次.模型二用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数6511次.(M A TL AB6.0)以上结果反映出BP网络经有效训练后可很好地逼近非线性函数.但其训练次数过多,训练时间长.3建立BP神经网络的注意事项利用M A TL AB软件提供的工具箱编制采用BP网络解决非线性问题程序是一种便捷、有效、省事的途径,但在使用时要解决好以下几个关键环节.3.1神经元结点数网络的输入与输出结点数是由实际问题的本质决定的,与网络性能无关.网络训练前的一个关键步骤是确定隐层结点数L,隐层结点数的选择与其说具有科学性,不如说更具有技巧性,往往与输入数据中隐含的特征因素有关.L的选择至今仍得不到一个统一的规范.L的初始值可先由以下两个公式中的其中之一来确定[3][4].l=m+n(1)或l=0143mn+0112n2+2154m+0177n+0135+0151(2)其中m、n分别为输入结点数目与输出结点数目.隐层结点数可根据公式(1)或(2)得出一个初始值,然后利用逐步增长或逐步修剪法.所谓逐步增长是先从一个较简单的网络开始,若不符合要求则逐步增加隐层单元数到合适为止;逐步修剪则从一个较复杂的网络开始逐步删除隐层单元,具体实现已有不少文献讨论.3.2传递函数的选择工具箱提供了三种传递函数:L og-sigmoid、tan-sigmoid和线性函数.前两种为非线性函数,分别将x I(-],+])的输入压缩为y I[0,1]和y I[-1,+1]的输出.因此,对非线性问题,输入层和隐层多采用非线性传递函数,输出层采用线性函数,以保持输出的范围,就非线性传递函数而言,若样本输出均大于零时,多采用L og-sigmoid函数,否则,采用Tan-sigmoid函数.对线性系统而言,各层多采用线性函数.3.3数据预处理和后期处理如果对神经网络的输入和输出数据进行一定的预处理,可以加快网络的训练速度,M A TL AB 中提供的预处理方法有(1)归一化处理:将每组数据都变为-1至1之间数,所涉及的函数有pre mnmx、postmnmx、tramnmx;(2)标准化处理:将每组数据都化为均值为0,方差为1的一组数据,所涉及的函数有prestd、poststd、trastd;(3)主成分分析:进行正交处理,可减少输入数据的维数,所涉及的函数有prepca、trapca.(4)回归分析与相关性分析:所用函数为postrg,可得到回归系数与相关系数,也可用[5]介绍的方法进行置信区间分析.下面以归一化处理为例说明其用法,另外两种预处理方法的用法与此类似.对于输入矩阵p 和输出矩阵t 进行归一化处理的语句为:[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);训练时应该用归一化之后的数据,即:net =train(net,pn,tn);训练结束后还应对网络的输出an =sim(net ,pn)作如下处理:a =postmnmx(an,mint,maxt);当用训练好的网络对新数据pne w 进行预测时,也应作相应的处理:pnew n =tramnmx(pne w,minp,maxp);ane wn =sim(net,pne wn);ane w =postmnmx(anew,mint,ma xt);3.4 学习速度的选定学习速度参数net.trainparam.lr 不能选择的太大,否则会出现算法不收敛.也不能太小,会使训练过程时间太长.一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值来确定.3.5 对过拟合的处理网络训练有时会产生/过拟合0,所谓/过拟合0就是训练集的误差被训练的非常小,而当把训练好的网络用于新的数据时却产生很大的误差的现象,也就是说此时网络适应新情况的泛化能力很差.提高网络泛化能力的方法是选择合适大小的网络结构,选择合适的网络结构是困难的,因为对于某一问题,事先很难判断多大的网络是合适的.为了提高泛化能力,可用修改性能函数和提前结束训练两类方法来实现,详见[6].参考文献:[1] 张乃尧、阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.[2] 刘增良、刘有才.模糊逻辑与神经网络)))理论研究与探索[M].北京:北京航空航天大学出版社,1996.[3] 徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.[4] 高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-85[5] 陈小前,罗世彬,王振国,等1B P 神经网络应用中的前后处理过程研究[J].系统工程理论与实践,2002,22(1):65-70.[6] 闵惜琳、刘国华.用MA TLAB 神经网络工具箱开发B P 网络应用[J].计算机应用,2001,21(8):163-164.[7] 飞思科技产品研发中心.MA TLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.Realization of BP Networks and Their Applications on MATLABG UI Xian-cai(Mathe matics and C omputational Science School,Zhanji ang Normal C ollege,Zhanjiang,Guangdong 524048,Chi na)Abstract:B P Neural Netw orks are widely applied in nonlinear modeling,f unction approach,and pat 2tern rec ognition.This paper introduces the fundmental of BP Neural Networks.Nnbox can be easily used to create,train and simulate a netw ork,w hile some e xamples and explanations are given.Key words:Artificial Neural Netw orks;B P Networks;Nnbox;M A TL AB 83第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 数据预处理
在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。
下面简要介绍归一化处理的原理与方法。
(1) 什么是归一化?
数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如
(0.1,0.9) 。
(2) 为什么要归一化处理?
<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。
<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。
<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。
例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。
<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。
例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。
(3) 归一化算法
一种简单而快速的归一化算法是线性转换算法。
线性转换算法常见有两种形式:
<1>
y = ( x - min )/( max - min )
其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。
上式将数据归一化到[ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。
<2>
y = 2 * ( x - min ) / ( max - min ) - 1
这条公式将数据归一化到[ -1 , 1 ] 区间。
当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。
(4) Matlab数据归一化处理函数
Matlab中归一化处理数据可以采用premnmx ,postmnmx ,tramnmx 这3个函数。
<1> premnmx
语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)
参数:
pn:p矩阵按行归一化后的矩阵
minp,maxp:p矩阵每一行的最小值,最大值
tn:t矩阵按行归一化后的矩阵
mint,maxt:t矩阵每一行的最小值,最大值
作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。
<2> tramnmx
语法:[pn] = tramnmx(p,minp,maxp)
参数:
minp,maxp:premnmx函数计算的矩阵的最小,最大值
pn:归一化后的矩阵
作用:主要用于归一化处理待分类的输入数据。
<3> postmnmx
语法:[p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)
参数:
minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值
mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值
作用:将矩阵pn,tn映射回归一化处理前的范围。
postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。
2. 使用Matlab实现神经网络
使用Matlab建立前馈神经网络主要会使用到下面3个函数:
newff :前馈网络创建函数
train:训练一个神经网络
sim :使用网络进行仿真
下面简要介绍这3个函数的用法。
(1) newff函数
<1>newff函数语法
newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。
语法:n et = newff ( A, B, {C} ,‘trainFun’)
参数:
A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;
B:一个k维行向量,其元素为网络中各层节点数;
C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;trainFun :为学习规则采用的训练算法。
3.1.1BP网络创建函数
1) newff
该函数用于创建一个BP网络。
调用格式为:
net=newff
net=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF)
其中,
net=newff;用于在对话框中创建一个BP网络。
net为创建的新BP神经网络;
PR为网络输入向量取值范围的矩阵;
[S1S2…SNl]表示网络隐含层和输出层神经元的个数;
{TFl TF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;
BTF表示网络的训练函数,默认为‘trainlm’;
BLF表示网络的权值学习函数,默认为‘learngdm’;
PF表示性能数,默认为‘mse’。
<2>常用的激活函数
常用的激活函数有:
a) 线性函数(Linear transfer function)
f(x) = x
该函数的字符串为’purelin’。
b) 对数S形转移函数( Logarithmic sigmoid transfer function )
该函数的字符串为’logsig’。
c) 双曲正切S形函数(Hyperbolic tangent sigmoid transfer function )
也就是上面所提到的双极S形函数。
该函数的字符串为’ tansig’。
Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。
<3>常见的训练函数
常见的训练函数有:
traingd :梯度下降BP训练函数(Gradient descent backpropagation) traingdx :梯度下降自适应学习率训练函数
<4>网络配置参数
一些重要的网络配置参数如下:
net.trainparam.goal :神经网络训练的目标误差
net.trainparam.show :显示中间结果的周期
net.trainparam.epochs :最大迭代次数
net.trainParam.lr :学习率
(2) train函数
网络训练学习函数。
语法:[ net, tr, Y1, E ] = train( net, X, Y )
参数:
X:网络实际输入
Y:网络应有输出
tr:训练跟踪信息
Y1:网络实际输出
E:误差矩阵
(3) sim函数
语法:Y=sim(net,X)
参数:
net:网络
X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数
Y:输出矩阵Q×N,其中Q为网络输出个数。