河北工业大学2016算法分析与设计实验报告

合集下载

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

算法设计与分析实验报告

算法设计与分析实验报告

实验一排序算法设计一、实验内容冒泡排序二、实验问题分析该问题主要涉及到了指针和循环和相互比较的方法,是综合知识的应用。

三、数学模型根据题目要求,依次对每个数据进行比较,直至得出最后结果。

如果a>b则交换位置,如果a<b则不交换。

四、程序流程图五、源代码#include <stdio.h>void sort(int a[]){int temp;for(int i=0;i<9;i++){for(int j=0;j<10-i-1;j++){if(a[j]>a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}printf("排序后的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");}void main(){int a[10];for(int i=0;i<10;i++){scanf("%d",&a[i]);}printf("排序前的数据\n"); for(i=0;i<10;i++){if(i==5){printf("\n");}printf("%d ",a[i]);}printf("\n");sort(a);}六、测试结果实验二递归算法设计一、实验内容1.判断S字符是否为“回文”的递归函数,并编写程序测试。

二、实验问题分析递归是一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法。

递归算法设计,就是把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题,在逐步求解小问题后,再返回(回溯)得到大问题的解。

算法设计与分析实验报告(模版)

算法设计与分析实验报告(模版)

武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。

一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。

输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。

结果:。

二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。

统计最后有几张正面朝上,以及他们的位置号。

代码设计:。

结果:。

三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。

A说:B得第三名,C得第五名。

B说:D得第二名,E得第四名。

C说:B得第一名,E得第四名。

D说:C得第一名,B得第二名。

E说:D得第二名,A得第三名。

结果每个人都猜对了一半,实际名次是什么呢?代码设计:。

结果:。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告专业班级:姓名:学号:指导老师:实验一递归算法的设计与实现•计算整数的非负整数次幂(1)设计思路对于34按步骤可以分析:34=32*3232=31*3131=31*1对于33按步骤可以分析:33=32*31;32=31*31;31=31*1;分析可以得到:当x n中n为奇数时,x n=x*(x n/2)2当x n中n为偶数的,x n=(x n/2)2;当n/2=0;return 1;一步步进行递归返回计算,如果n位奇数,在进行一部乘以x 否则返回运算结果(2)源程序代码#include<iostream>using namespace std;int power(int x,int n){int y;if(n==0){y=1;}else{y=power(x,n/2);y=y*y;if(n%2==1){y=y*x;}}return y;}void main(){cout<<"请输入一个底数X:";int x;cin>>x;cout<<"请输入一个指数Y: ";int y;cin>>y;if(y<0){cout<<"你的输入有误:请重新输入:"<<endl; cin>>y;}int c;c=power(x,y);cout<<x<<"的"<<y<<"次幂的结果是"<<c<<endl; }(3)代码运行结果(4)时间复杂度令n=2k,则可以得到:f(n)=g(k)=k+1=logn+1=O(logn)2.基于递归算法的插入排序(1)设计思路通过主函数传来一个数组的首地址和数组的长度,然后利用递归的原理,当n=0;程序返回,执行入栈的递归程序,依次比较2个数的大小,3个数的大小等,根据比较的结果将第n个数插入适当的位置。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。

本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。

一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。

在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。

通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。

二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。

在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。

我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。

三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。

在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。

我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。

四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。

在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。

我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。

五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。

在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。

在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。

在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。

河北工业大学数值分析实验三实验四实验报告

河北工业大学数值分析实验三实验四实验报告

数值分析实验报告指导老师:宛艳萍姓名:班级:学号:实验三 复化辛卜生法,龙贝格法1.实验名称:复化辛卜生法,龙贝格法2.实验目的1)通过实际计算体会各种方法的精确度。

2)会编写用复化辛卜生、龙贝格算法求定积分的程序。

3.算法描述1)用复化辛卜生法计算积分 dxx I ⎰+=12)1/(1算法:复化辛卜生公式为S n =h/6∑∑+-=+++)]()2/(4)([11k k kn k x f h x f xf ,计算过程为:1.令,/)(n a b h -= ),2/(1h a f s +=;02=s2.对1,,2,1-=n k计算),2/(11h kh a f s s +++=)(22kh a f s s ++=3.))(24)((6/21b f s s a f h s +++= 。

2)龙贝格算法计算dxxI ⎰+=102)1/(156e ε=-算法)((12/12∑-=++=n k k n n n x f h T T ;/)(n a b h n -= n k h k x )2/1(2/1+=+)(3/122n n n n T T T S -+= )_(15/122n n n n S S S C +=)(63/122n n n n C C C R -+=用事后估计法控制精度2|5e -6n n R R -< 。

4.源程序:1)/* 用复化辛卜生公式求积分 */ #include "stdio.h" float fx(float x){double f;f=1.0/(1.0+x*x); return f; } double fs(int n){double a=0.0,b=1.0,h,s,s1,s2=0; int i;h=(b-a)/n; s1=fx(a+h/2); for(i=1;i<n;i++){s1=s1+fx(a+i*h+h/2); s2=s2+fx(a+i*h);}s=(h/6.0)*(fx(a)+fx(b)+4*s1+2*s2);return s;}void main(){printf("实验三复化辛卜生法计算机112 耿向飞学号:112434\n");printf("s(2)=%lf\ns(4)=%lf\ns(8)= %lf",fs(2),fs(4),fs(8));}2)/* 龙贝格法 */#include "stdio.h"#include "math.h"#define E 2.71828182//被积函数f(x)double fx(double x){double f;f=1/(1+x*x);return f;}//梯形公式求tndouble tx(int n){double s3=0.0,h,t,b=1.0,a=0.0;int i;h=(b-a)/n;for(i=1;i<n;i++)s3=s3+fx(i*h);t=(h/2)*(fx(a)+fx(b)+2*s3);return t;} double s(int n){double s;s=tx(2*n)+(1.0/3.0)*(tx(2*n)-tx(n ));return s;}double c(int n){double c;c=s(2*n)+(1.0/15.0)*(s(2*n)-s(n)) ;return c;}double r(int n){double r;r=c(2*n)+(1.0/63.0)*(c(2*n)-c(n)) ;return r;}void main(){double rr,pp;int n=1;rr=r(n);pp=r(2*n)-r(n);printf("实验三龙贝格法计算机112 耿向飞学号:112434\n");printf("结果为:%.15lf 误差小于等于: %.15lf",rr,pp);}5.运行结果1)复化辛卜生公式2)龙贝格算法6.对算法的理解与分析:复化辛卜生公式和龙贝格算法适用于求数值积分,而且都能提高计算积分的精度龙贝格算法其实是在复化辛卜生公式递推的基础之上生成的一种精度高,而且收敛速度也较快的一种算法。

《算法设计与分析》实验报告模板 (1)

《算法设计与分析》实验报告模板 (1)

《算法设计与分析》实验报告
学号:姓名:
实验一分治法求解众数问题
一、实验目的
1.掌握分治法的设计思想并能熟练应用;
2.理解分治与递归的关系。

二、实验题目
在一个序列中出现次数最多的元素称为众数,根据分治法的思想设计算法寻找众数。

三、实验程序
四、程序运行结果
实验二动态规划法求解单源最短路径问题
一、实验目的
1.深刻掌握动态规划法的设计思想;
2.熟练应用以上算法思想求解相关问题。

二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。

采用动态规划法求解多段图从源点到终点的最小代价路径。

三、实验程序
四、程序运行结果
实验三贪心法求解单源点最短路径问题
一、实验目的
1.掌握贪心法的设计思想;
2.分析比较同一个问题采用不同算法设计思想求解的结果。

二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。

采用贪心法求解多段图从源点到终点的最小代价路径。

三、实验程序
四、程序运行结果
实验四回溯法求解0/1背包问题
一、实验目的
1.掌握回溯法的设计思想;
2.掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;
二、实验题目
给定n种物品和一个容量为C的背包,选择若干种物品(物品不可分割),使得装入背包中物品的总价值最大。

采用回溯法求解该问题。

三、实验程序
四、程序运行结果。

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。

2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。

给出一个算法,判断A中是否存在主元素。

二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。

但某次运行可能找不到解。

(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。

同时体会确定性算法与随机化算法的差异及各自的优缺点。

(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。

此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。

三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。

要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。

b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。

(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。

b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。

c.实现蒙特卡罗算法,并输出其运行次数及时间。

d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。

(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。

河北工业大学算法实验

河北工业大学算法实验

算法分析与设计实验报告学院: 计算机科学与软件学院班级: 计131班姓名: 张硕学号: 133020实验一利用分治算法,编程实现循环赛日程表安排问题一、实验内容1.实现《网球循环赛》问题的分治算法,并进行算法时间复杂性分析。

2.对实现的分治算法进行改进;3.对上述改进后算法进行时间复杂性分析,通过实验结果分析对比,得出自己的结论和总结。

4. 设计的程序要满足正确性,代码中有关键的注释,书写格式清晰,简洁易懂,效率较高,利用C++的模板,设计的程序通用性好,适合各种合理输入,并能对不合理输入做出正确的提示。

二、实验目的1.深刻理解并掌握“分治算法”的设计思想;2.提高应用“分治算法”设计技能;3.理解这样一个观点:用递归方法编写的问题解决程序具有结构清晰,可读性强等优点,且递归算法的设计比非递归算法的设计往往要容易一些,所以当问题本身是递归定义的,或者问题所涉及到的数据结构是递归定义的,或者是问题的解决方法是递归形式的时候,往往采用递归算法来解决。

三、程序清单(1)递归:#include<iostream.h>int p[128][128];void fenpei(int a){int b=a/2;if(b>1){fenpei(b);for(int i=0;i<b;i++){for(int j=0;j<b;j++)p[i+b][j+b]=p[i][j];}for(i=0;i<b;i++){for(int j=0;j<b;j++)p[i+b][j]=p[i][j]+b;}for(i=0;i<b;i++){for(int j=0;j<b;j++)p[i][j+b]=p[i+b][j];}}else{p[0][0]=1;p[0][1]=2;p[1][0]=2;p[1][1]=1;}}int main(){int num;cout<<"请输入参赛队伍数:";cin>>num;fenpei(num);cout<<" ";for(int i=1;i<num;i++){cout<<i<<" ";}cout<<endl;for(i=0;i<num;i++){for(int j=0;j<num;j++){cout<<p[i][j]<<" ";}cout<<endl;}return 0;}(2)非递归#include<iostream.h>int p[128][128];void fenpei(int a){p[0][0]=1;p[0][1]=2;p[1][0]=2;p[1][1]=1;int b=2;while(b<a){for(int i=0;i<b;i++){for(int j=0;j<b;j++)p[i+b][j+b]=p[i][j];}for(i=0;i<b;i++){for(int j=0;j<b;j++)p[i+b][j]=p[i][j]+b;}for(i=0;i<b;i++){for(int j=0;j<b;j++)p[i][j+b]=p[i+b][j];}b=b*2;}}int main(){int num;cout<<"请输入参赛队伍数:";cin>>num;fenpei(num);cout<<" ";for(int i=1;i<num;i++){cout<<i<<" ";}cout<<endl;for(i=0;i<num;i++){for(int j=0;j<num;j++){cout<<p[i][j]<<" ";}cout<<endl;}return 0;}四、调试步骤改正程序,无误后运行程序,输入测试数据,观察输出结果与预期结果,若有误,则继续改正程序,无误后则程序完成。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。

本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。

2. 实验背景在现代社会中,算法的应用无处不在。

无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。

因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。

3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。

通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。

4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。

在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。

4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。

在本实验中,我们将选择经典的冒泡排序算法作为实现对象。

冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。

通过多次迭代,最终实现整个数组的排序。

4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。

具体步骤如下:1.遍历待排序数组,从第一个元素开始。

2.比较当前元素与下一个元素的大小。

3.如果当前元素大于下一个元素,则交换它们的位置。

4.继续比较下一个元素,直到遍历完整个数组。

5.重复上述步骤,直到没有需要交换的元素。

4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。

我们可以准备一组随机的数字作为输入,并对算法进行测试。

通过比较输入和输出结果,我们可以判断算法是否正确。

同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。

在本实验中,我们将使用时间复杂性分析来评估算法的效率。

4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。

《算法设计与分析》课程实验报告 (算法问题求解基础1)

《算法设计与分析》课程实验报告 (算法问题求解基础1)
s1[i] = s1[i-1] * 10 + pow(10,i-1);
}
int s2[10] = {0,9,189,2889,38889,488889,5888889,68888889,788888889};
int a;
scanf("%d",&a);
int count;
count = 0;
while(a > 0){
题目二:最大间隙
源码:
#include<iostream>
#include<cstdio>
using namespace std;
double a[10000] = {0};
int main(){
int n;
cin>>n;
for(int i = 0 ; i < n ; i++){
cin>>a[i];
样例输出:
3.2
二、实验目的
(1)理解算法的概念
(2)理解函数渐近态的概念和表示方法
(3)初步掌握算法时间复杂度的计算方法
三、实验要求
(1)对于每个题目提交实验代码。
(2)根据程序设计测试数据,并记录测试结果,要求边界情况必须测试
(3)使用我们学过的分析方法分析你的算法的时间效率,如果可能,请进行算法的优化,尽量减小算法的时间效率或空间效率。
《算法设计与分析》课程实验报告
实验序号:1 实验项目名称:算法问题求解基础
一、实验题目
题目一:统计数字问题
题目描述
一本书的页码从自然数1开始顺序编码直到自然数n。输的页码按照通常的习惯编排,每个页码都不含有多余的前导数字0.例如,第6页用数字6表示,而不是06或者006等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2...8,9。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告1. 引言本实验报告旨在介绍算法设计与分析的相关内容。

首先,我们将介绍算法设计的基本原则和步骤。

然后,我们将详细讨论算法分析的方法和技巧。

最后,我们将通过一个实例来演示算法设计与分析的过程。

2. 算法设计算法设计是解决问题的关键步骤之一。

它涉及确定问题的输入和输出,以及找到解决方案的具体步骤。

以下是算法设计的一般步骤:2.1 理解问题首先,我们需要全面理解给定问题的要求和约束。

这包括确定输入和输出的格式,以及问题的具体要求。

2.2 制定算法思路在理解问题后,我们需要制定解决问题的算法思路。

这涉及确定解决问题的高层次策略和步骤。

通常,我们使用流程图、伪代码等工具来表示算法思路。

2.3 编写算法代码在制定算法思路后,我们可以根据思路编写实际的算法代码。

这可能涉及选择适当的数据结构和算法,以及编写相应的代码来实现解决方案。

2.4 调试和测试编写算法代码后,我们需要进行调试和测试,以确保算法的正确性和可靠性。

这包括检查代码中可能存在的错误,并使用不同的测试样例来验证算法的正确性。

3. 算法分析算法分析是评估算法性能的过程。

它涉及确定算法的时间复杂度和空间复杂度,以及评估算法在不同输入情况下的执行效率。

3.1 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长的速度。

常见的时间复杂度包括常数时间复杂度 O(1)、线性时间复杂度 O(n)、对数时间复杂度 O(log n)、平方时间复杂度 O(n^2) 等。

通过分析算法中的循环、递归等关键部分,可以确定算法的时间复杂度。

3.2 空间复杂度空间复杂度是衡量算法所需空间随输入规模增长的速度。

它通常用于评估算法对内存的使用情况。

常见的空间复杂度包括常数空间复杂度 O(1)、线性空间复杂度 O(n)、对数空间复杂度 O(log n) 等。

通过分析算法中的变量、数组、递归栈等关键部分,可以确定算法的空间复杂度。

3.3 执行效率评估除了时间复杂度和空间复杂度外,我们还可以通过实验和测试来评估算法的执行效率。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。

⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。

2.⽤动态规划的⽅法实现0/1背包问题。

3.⽤分⽀限界法实现0/1背包问题。

4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。

三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。

采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。

该递归函数采⽤回溯法求出所有解。

main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。

对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。

所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。

这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。

算法设计与分析学习报告(优秀范文5篇)

算法设计与分析学习报告(优秀范文5篇)

算法设计与分析学习报告(优秀范文5篇)第一篇:算法设计与分析学习报告算法课程学习报告持续13周的高级算法设计与分析课程结束了。

选修了这门课程的同学们即将迎来最后的考试。

回顾这半年以来关于这么课程的学习情况,我体会最深的是:不论是从深度还是从广度上,现在所习的算法比曾经学习的算法难度增加了很多。

但是邓教授极富经验的教学和详细的课件,为我的学习提供了很大的方便。

可是毕竟我以前的底子不够厚,基础不够劳,在听课中会出现跟不上教师思路的现象。

我也积极的采取措施,争取处理好这种情况。

总体说来,上完算法课,我还是学到了很多东西的。

下面我就对所学的内容进行梳理归纳,总结一下我在学习中的体会和研究心得。

算法课程的开课阶段,邓教授为我们简单介绍了算法,课堂上可能用到的参考资料,以及一些著名的算法方面的书籍,为我的学习提供潜在的工具。

我购买了一本教材——《算法导论》。

这本书够厚,够详细。

但是我一直没有机会仔细的研读。

我想有一天希望能够好好读一下。

在介绍算法的课堂上,我还了解了算法相关的一些基本概念,算法的重要性,还有算法的历史。

我印象最深的就是一个叫图灵的外国人。

对计算机科学与技术这个领域做出了图书贡献。

我个人认为,堪比爱因斯塔发现相对论的贡献。

都揭示了某个领域的本质。

开辟的一个领域的发展。

对于整个人类来说,他们这类人都是功不可没的。

已经不能简单的用伟人来形容他们。

但是人类社会需要这样的人,社会需要一些人的推动才能进步。

说到这里,我不禁要想,算法到底有什么用,也许答案是简单的,为了方便写程序实现系统功能。

这只是表面的用途。

我觉得最本质的作用是为了社会进步。

辩证唯物主义自然观中有关于科学技术的详细定义。

之所以产生科学技术是为了发挥人的主观能动性去改造自然。

学习和研究算法正是为了让人在一定的限度内改造自然。

我不是在扯,而是在写算法报告和背自然辩证法资料的时候产生的心得体会,不知道算不算邓教授要求的心得。

介绍完算法历史以后,就进入的真正的算法设计与分析的学习。

河北工业大学数值分析实验五实验六实验报告 (6000字)

河北工业大学数值分析实验五实验六实验报告 (6000字)

数值分析实验报告姓班学实验五矩阵的lu分解法,雅可比迭代1.实验名称矩阵的lu分解法,雅可比迭代2.实验目的1)熟悉求解线性方程组的有关理论和方法;2)会编制列主元消去法、lu 分解法、雅可比及高斯—塞德尔迭代法德程序; 3)通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。

3.实验内容会编制列主元消去法、lu 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解各种方法的优缺点。

4.算法描述1)列主元高斯消去法算法:将方程用增广矩阵[a∣b]=(aij)n?(n?1)表示1) 消元过程对k=1,2,…,n-1①选主元,找ik??k,k?1,?,n?使得aik,k=maxk?i?naik②如果aik,k?0,则矩阵a奇异,程序结束;否则执行③。

③如果ikakj?aikj?k,则交换第k行与第ik行对应元素位置,j=k,┅,n+1④消元,对i=k+1, ┅,n计算lik?aik/akk对j=l+1, ┅,n+1计算aij?aij?likakj2) 回代过程①若ann②xn?0,则矩阵a奇异,程序结束;否则执行②。

;对i=n-1, ┅,2,1,计算?an,n?1/annn?xi??ai,n?1????/a?aijxj??iij?i?1?2)矩阵直接三角分解法算法:将方程组ax=b 中的a分解为a=lu,其中l为单位下三角矩阵,u为上三角矩阵,则方程组ax=b化为解2个方程组ly=b,ux=y,具体算法如下:①对j=1,2,3,…,n计算u1j?a1j对i=2,3,…,n计算li1?ai1/a11②对k=1,2,3,…,n: a. 对j=k,k+1,…,n计算k?1ukj?akj??lq?1kquqjb. 对i=k+1,k+2,…,n计算k?1lik?(aik??lq?1iquqk)/ukk③y1?b1,对k?1k=2,3,…,n计算yk?bk??lq?1kqyq④xn?yn/unn,对k=n-1,n-2,…,2,1计算nxk?(yk??uq?k?1kqxq)/ukk注:由于计算u的公式于计算y的公式形式上一样,故可直接对增广矩阵?a11?a?21???an1a1,n?1??a22?a2na2,n?1????????an2?annan,n?1??a12a1n[a∣b]=施行算法②,③,此时u的第n+1列元素即为y。

算法设计与分析第二版实践报告总结

算法设计与分析第二版实践报告总结

算法设计与分析第二版实践报告总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!算法设计与分析第二版实践报告总结引言在计算机科学领域,算法设计与分析是一项至关重要的工作。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。

本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。

二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。

给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。

三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。

1. 暴力法暴力法是一种朴素的解决方法。

它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。

然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。

2. 动态规划法动态规划法是一种高效的解决方法。

它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。

对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。

通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。

最后,我们返回dp数组中的最大值即为所求的最大子序列和。

该算法的时间复杂度为O(n),效率较高。

四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。

1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。

为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。

2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。

同时,我们还对两种算法的运行时间进行了比较。

结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。

五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。

我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北工业大学算法分析与设计2016实验报告学院: 计算机科学与软件学院班级:姓名:学号:实验一【实验学时】4学时【实验目的】1.深刻理解并掌握“分治算法”的设计思想;2.提高应用“分治算法”设计技能;3.理解这样一个观点:用递归方法编写的问题解决程序具有结构清晰,可读性强等优点,且递归算法的设计比非递归算法的设计往往要容易一些,所以当问题本身是递归定义的,或者问题所涉及到的数据结构是递归定义的,或者是问题的解决方法是递归形式的时候,往往采用递归算法来解决。

【问题描述】设有n=2k个选手要进行网球循环赛,要求设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天.按照分治的策略,可将所有参赛的选手分为两部分,n=2k个选手的比赛日程表就可以通过为n/2=2k-1个选手设计的比赛日程表来决定。

递归地执行这种分割,直到只剩下2个选手时。

【源程序】#include<stdio.h>#include<math.h>void GameTable(int k, int a[80][80]){int n=2;int i, j, t, temp;a[1][1]=1; a[1][2]=2;a[2][1]=2; a[2][2]=1;for (t=1; t<k; t++){temp=n; n=n*2;for(i=temp+1; i<=n; i++)for(j=1; j<=temp; j++)a[i][j]=a[i-temp][j]+temp;for(i=1; i<=temp; i++)for(j=temp+1; j<=n; j++)a[i][j]=a[i+temp][j-temp];for(i=temp+1;i<=n; i++)for(j=temp+1; j<=n; j++)a[i][j]=a[i-temp][j-temp];}}int main(){int i,j,k;int a[80][80];printf("请输入k的数值 k=");scanf("%d",&k);GameTable(k,a);for(i=1; i<=pow(2,k); i++){for(j=1; j<=pow(2,k); j++)printf("%5d",a[i][j]);printf("\n");}return 0;}【运行结果】【分析总结】本次实验思路简单,并且编程实现也不复杂。

通过这次试验,我对于分治法的设计思想理解地更加深入。

其主要思想就是将一个大问题,分解为一个个的小问题,知道每个小问题很容易求出解为止。

最后再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出元问题的解。

实验二【实验学时】4学时【实验目的】(1)熟练掌握动态规划思想及教材中相关经典算法。

(2)掌握动态规划算法求解问题的一般特征和步骤;使用动态规划法编程,求解0/1背包问题。

【问题描述】0/1背包问题是给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn}的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。

在0/1背包问题中,物品i或者被装入背包,或者不被装入背包,设xi表示物品i装入背包的情况,则当xi=0时,表示物品i没有被装入背包,xi=1时,表示物品i被装入背包。

0/1背包问题可以看作是决策一个序列(x1, x2, …, xn),对任一变量xi的决策是决定xi=1还是xi=0。

在对xi-1决策后,已确定了(x1, …, xi-1),在决策xi时,问题处于下列两种状态之一:(1)背包容量不足以装入物品i,则xi=0,背包不增加价值;(2)背包容量可以装入物品i,则xi=1,背包的价值增加了vi。

这两种情况下背包价值的最大者应该是对xi决策后的背包价值。

【源程序】//本程序的测试用例是课本上的例题#include <stdio.h>int x[100], V[100][100];int max(int a, int b){return (a>b ? a : b);}int KnapSack(int w[], int v[], int n, int C){int i,j;//初始化第0列for(i=0; i<=n; i++)V[i][0]=0;//初始化第0行for(j=0; j<=C; j++)V[0][j]=0;//双重for循环完成填表过程for(i=1; i<=n; i++)for(j=1; j<=C ; j++)if(j<w[i]) V[i][j]=V[i-1][j];else V[i][j]=max(V[i-1][j], V[i-1][j-w[i]]+v[i]); //从右下角开始往回寻找for(j=C, i=n; i>0; i--){if(V[i][j]>V[i-1][j]){x[i]=1;j-=w[i];}else x[i]=0;}//返回背包最大价值return V[n][C];}int main(){//n是物品个数;C是背包总容量int w[100], v[100], n, C;printf("请输入物品种类:");scanf("%d",&n);printf("请输入背包重量:");scanf("%d",&C);printf("请输入重量矩阵:");for(int i=1; i<=n; i++)scanf("%d",&w[i]);//这里注意i从1开始取值printf("请输入价值矩阵:");for(int i=1; i<=n; i++)scanf("%d",&v[i]);//这里注意i从1开始取值printf("\n");printf("背包取得的最大价值为:%d\n",KnapSack(w, v, n, C)); printf("问题的最优解序列为:");for(int i=1; i<=n; i++)printf("%2d",x[i]);printf("\n\n");printf("二维矩阵V为:\n");for(int i=0; i<=n; i++){for(int j=0; j<=C; j++)printf("%3d",V[i][j]);printf("\n");}return 0;}【运行结果】【分析总结】通过这次试验,我体会到了动态规划法设计思想的巧妙之处。

动态规划算法通常用于求解具有某种最优性质的问题。

在这类问题中,可能会有许多可行解。

每一个解都对应于一个值,都希望找到具有最优值的解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。

实验三【实验学时】6学时【实验目的】掌握贪心算法求解问题的一般特征和步骤;通过使用贪心算法求解0/1背包和TSP问题,进一步加深对贪心算法的理解和运用。

【问题描述】0/1背包问题是给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn}的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中每次从物品集合中选择单位重量价值最大的物品,如果其重量小于背包容量,就可以把它装入,并将背包容量减去该物品的重量。

因此背包问题具有最优子结构性质。

TSP问题是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。

1)最近邻点策略:从任意城市出发,每次在没有到过的城市中选择最近的一个,直到经过了所有的城市,最后回到出发城市。

2)最短链接策略:每次在整个图的范围内选择最短边加入到解集合中,但是,要保证加入解集合中的边最终形成一个哈密顿回路。

【0/1背包源程序】//本程序的测试用例来源于课本例题#include<stdio.h>#include<algorithm>using namespace std;struct G{double v;double w;double x=0;int flag=0;}good[100];bool cmp1(G a, G b)//按照性价比降序排序return a.v/a.w > b.v/b.w;}bool cmp2(G a, G b)//按照序号升序排序{return a.flag < b.flag;}int main(){int i, n, C;double maxValue=0;printf("请输入物品种类:");scanf("%d",&n);printf("请输入背包重量:");scanf("%d",&C);printf("请输入重量矩阵:");for(int i=0; i<n; i++){scanf("%lf",&good[i].w);good[i].flag=i;}printf("请输入价值矩阵:");for(int i=0; i<n; i++)scanf("%lf",&good[i].v);sort(good, good+n, cmp1);for(i=0; good[i].w<=C; i++){good[i].x=1;maxValue+=good[i].v;C-=good[i].w;}good[i].x=(double)C/good[i].w;maxValue+=good[i].x*good[i].v;printf("背包的最大价值为:%.2f\n",maxValue); sort(good, good+n, cmp2);printf("问题的最优解向量为:");for(int i=0; i<n; i++){printf("%.1f ",good[i].x);}printf("\n");return 0;}【运行结果】【TSP源程序】#include <stdio.h>//#define LOCALint arc[10][10];int n;//城市个数int w;//起点城市int TSP(int n, int w){int edgeCount = 0, TSPLength = 0;int min = 100, u, v;int flag[10]={0};//可以对于flag数组中所有元素清零; u=w; flag[w]=1;while(edgeCount < n-1){min = 100;for(int j=1; j<=n; j++){if(flag[j]==0 && arc[u][j]<min){v=j;min=arc[u][j];}}TSPLength+=arc[u][v];flag[v]=1;edgeCount++;printf("%d-->", u);u=v;}printf("%d-->%d\n", v, w);return (TSPLength+arc[u][w]);}int main(){#ifdef LOCALfreopen("data.in", "r", stdin);freopen("data.out", "w", stdout); #endif // LOCALprintf("请输入城市个数:");scanf("%d",&n);printf("请输入代价矩阵:\n");for(int i=1; i<=n; i++)for(int j=1; j<=n; j++){scanf("%d",&arc[i][j]);}printf("请输入起点城市:");scanf("%d",&w);printf("最短路径为:");printf("最小代价为:%d", TSP(n, w)); return 0;}【运行结果】【分析总结】通过这次试验,我更好地掌握了贪心法的设计思想。

相关文档
最新文档