2019-2020年中考数学专题复习题型一方程组不等式与函数的实际应用题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学专题复习题型一方程组不等式与函数的实际应用题含解析
1.(xx重庆A卷第23题)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1)果农今年收获樱桃至少50千克;(2)12.5
【解析】
试题分析:(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.
试题解析:(1)设该果农今年收获樱桃x千克,
根据题意得:400﹣x≤7x,
解得:x≥50,
答:该果农今年收获樱桃至少50千克;
考点:1.一元二次方程的应用;2.一元一次不等式的应用.
2.(xx贵州安顺第23题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)4. 【解析】
试题分析:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解. (2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
试题解析:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,
x =15,
经检验x =15是原方程的解. ∴40﹣x =25.
甲,乙两种玩具分别是15元/件,25元/件;
(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,
481525
(48)1000<y
y y y -+-≤⎧⎨
⎩, 解得20≤y <24.
因为y 是整数,甲种玩具的件数少于乙种玩具的件数, ∴y 取20,21,22,23, 共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
3.(xx 郴州第21题)某工厂有甲种原料,乙种原料,现用两种原料生产处两种产品共件,已知生产每件产品需甲种原料,乙种原料,且每件产品可获得元;生产每件产品甲种原料,乙种原料,且每件产品可获利润元,设生产产品 件(产品件数为整数件),根据以上信息解答下列问题: (1)生产两种产品的方案有哪几种?
(2)设生产这件产品可获利元,写出关于的函数解析式,写出(1)中利润最大的方案,并求出最大利润. 【答案】(1)共有三种方案:方案一:A 产品18件,B 产品12件,方案二:A 产品19件,B 产品11件,方案三:
A 产品20件,
B 产品10件;(2)利润最大的方案是方案一:A 产品18件,B 产品12件,最大利润为23400元.
方案三:A产品20件,B产品10件;
(2)根据题意得:y=:700x+900(30﹣x)=﹣200x+27000,
∵﹣200<0,
∴y随x的增大而减小.
∴x=18时,y有最大值.
y最大=﹣200×18+27000=23400元.
答:利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.
考点:一元一次不等式组的应用;一次函数的应用. .
4.(xx浙江宁波第23题)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
【答案】(1)甲种商品的销售单价是900元,乙种商品的单价为600元;(2)2.
【解析】
(2)设销售甲产品a万件,则销售乙产品(8-a)万件.
根据题意得:900a+600(8-a)≥5400
解得:a≥2
答:至少销售甲产品2万件.
考点:1.二元一次方程组的应用;2.一元一次不等式的应用.
5.(xx湖北咸宁第22题)某公司开发出一款新的节能产品,该产品的成本价位元/件,该产品在正式投放市场前通过代销点进行了为期一个月(天)的试销售,售价为元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线表示日销售量(件)与销售时间(天)之间的函数关系,已知线段表示的函数关系中,时间每增加天,日销售量减少件.
⑴第天的日销售量是件,日销售利润是元;
⑵求与之间的函数关系式,并写出的取值范围;
⑶日销售利润不低于元的天数共有多少天?试销售期间,日销售最大利润是多少元?
【答案】(1)330,660;(2)y=
20(018)
5450(1830)
y x x
y x x
=≤≤
⎧
⎨
=-+≤
⎩
;(3)720元.
(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,
解得:x≥16;
当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,
解得:x≤26..
∴16≤x≤26.
26﹣16+1=11(天),
∴日销售利润不低于640元的天数共有11天.
∵点D的坐标为(18,360),
∴日最大销售量为360件,
360×2=720(元),
∴试销售期间,日销售最大利润是720元.
考点:一次函数的应用.
6.(xx广西百色第24题)某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.
(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?
【答案】(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用.
7.(xx黑龙江齐齐哈尔第25题)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:
(1);;;
(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;
(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
(4)若小军的行驶速度是米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围.
【答案】(1)10;15;200;(2)小军在途中与爸爸第二次相遇时,距图书馆的距离是750米;(3)爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米;(4)00<v<
(2)
线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;
线段OD所在的直线的函数解析式为y=120x.
联立两函数解析式成方程组,,解得:
75
4
2250
x
y
⎧
=
⎪
⎨
⎪=
⎩
,
∴3000﹣2250=750(米).
答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.
(3)根据题意得:|200x﹣1500﹣120x|=100,
解得:x1= =17.5,x2=20..
答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.
(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
当线段OD过点C时,小军的速度为3000÷22.5= (米/分钟).
结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
考点:一次函数的应用.
8.(xx黑龙江绥化第27题)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间的路程(千米)与轿车行驶时间(小时)的函数图象如图所示.请结合图象提供的信息解答下列问题:
(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;
(2)求轿车在乙城停留的时间,并直接写出点的坐标;
(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程(千米)与轿车行驶时间(小时)之间的函数关系式.(不要求写出自变量的取值范围)
【答案】(1)甲城和乙城之间的路程为180千米,轿车和卡车的速度分别为120千米/时和60千米/时;
(2)轿车在乙城停留了0.5小时,点D的坐标为(2,120);
(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.
(2)
卡车到达甲城需180÷60=3(小时)
轿车从甲城到乙城需180÷120=1.5(小时)
3+0.5﹣1.5×2=0.5(小时)
∴轿车在乙城停留了0.5小时,
点D的坐标为(2,120);
(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.
考点:一次函数的应用.
9.(xx湖北孝感第22题)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有两种型号的健身器可供选择.
(1)劲松公司xx年每套型健身器的售价为万元,经过连续两年降价,xx年每套售价为万元,求每套型健身器年平均下降率;
(2)xx年市政府经过招标,决定年内采购并安装劲松公司两种型号的健身器材共套,采购专项费总计不超过万元,采购合同规定:每套型健身器售价为万元,每套型健身器售价我万元.
①型健身器最多可购买多少套?
②安装完成后,若每套型和型健身器一年的养护费分别是购买价的和 .市政府计划支出万元进行养护.问该计划支出能否满足一年的养护需要?
【答案】(1)每套A型健身器材年平均下降率n为20%;
(2)①A型健身器材最多可购买40套;②该计划支出不能满足养护的需要.
所以
n1=0.2=20%,n2=1.8(不合题意,舍去).
答:每套A型健身器材年平均下降率n为20%;
(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,
依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,
整理,得
1.6m+96﹣1.2m≤1.2,
解得m≤40,
即A型健身器材最多可购买40套;
②设总的养护费用是y元,则
y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),
∴y=﹣0.1m+14.4.
∵﹣0.1<0,
∴y随m的增大而减小,
∴m=40时,y最小.
∵m=40时,y最小值=﹣01×40+14.4=10.4(万元).
又∵10万元<10.4万元,
∴该计划支出不能满足养护的需要.
考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.
10.(xx河池第24题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多元,用元购得的排球数量与用元购得的足球数量相等.
⑴排球和足球的单价各是多少元?
⑵若恰好用去元,有哪几种购买方案?
【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.
②购买排球10个,购买足球8个.
【解析】
试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;
(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.
试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:
考点:分式方程的应用;二元一次方程的应用.
11.(xx浙江衢州第21题)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算。
【答案】(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.
试题解析:(1)设y1=k1x+80,
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
12.(xx重庆A卷第23题)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1)果农今年收获樱桃至少50千克;(2)12.5
【解析】
试题分析:(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.
试题解析:(1)设该果农今年收获樱桃x千克,
根据题意得:400﹣x≤7x,
解得:x≥50,
答:该果农今年收获樱桃至少50千克;
(2)由题意可得:
100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,
令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,
整理可得:8y2﹣y=0
解得:y1=0,y2=0.125
∴m1=0(舍去),m2=12.5
∴m2=12.5,
答:m的值为12.5.
考点:1.一元二次方程的应用;2.一元一次不等式的应用.
13.(xx贵州安顺第23题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)4.
【解析】
试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=25.
甲,乙两种玩具分别是15元/件,25元/件;
(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,
481525
(48)1000<y y y y -+-≤⎧⎨⎩, 解得20≤y <24.
因为y 是整数,甲种玩具的件数少于乙种玩具的件数,
∴y 取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
14.(xx 贵州黔东南州第23题)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.
(1)求甲、乙两队工作效率分别是多少?
(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m 天,乙队工作n 天,求学校需支付的总工资w (元)与甲队工作天数m (天)的函数关系式,并求出m 的取值范围及w 的最小值.
【答案】(1)甲、乙两队工作效率分别是和.(2)6≤m ≤12.34800元.
【解析】
试题分析:(1)设甲队单独完成需要x 天,乙队单独完成需要y 天.列出分式方程组即可解决问题;
(2)设乙先工作x 天,再与甲合作正好如期完成.则,解得x =6.由此可得m 的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;
试题解析:(1)设甲队单独完成需要x 天,乙队单独完成需要y 天. 由题意11183181x y x
y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得,
经检验是分式方程组的解,
∴甲、乙两队工作效率分别是和.
考点:一次函数的应用;分式方程的应用.
15.(xx 四川泸州第21题)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
【答案】(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.
【解析】
试题分析:(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程求解即可;
(2)设甲种书柜购买m 个,则乙种书柜购买(20-m )个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W ≤1820且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组,解不等式组即可的不等式组的解集,从而确定方案.
(2)解:设甲种书柜购买m 个,则乙种书柜购买(20-m )个;
由题意得:()20180240204320m m m m -≥+-≤⎧⎪⎨⎪⎩
解之得:8≤m≤10
因为m取整数,所以m可以取的值为:8,9,10
即:学校的购买方案有以下三种:
方案一:甲种书柜8个,乙种书柜12个,
方案二:甲种书柜9个,乙种书柜11个,
方案三:甲种书柜10个,乙种书柜10个.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
16.(xx四川省广安市)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.
(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.
【答案】(1)W=8t+900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册.
【解析】
试题分析:(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据总价=单价×数量,即可得出W关于t的函数关系式;
试题解析:(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,∴有三种购买方案:
方案一:购买30件文化衫、15本相册;
方案二:购买31件文化衫、14本相册;
方案三:购买32件文化衫、13本相册.
∵W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.
考点:1.一次函数的应用;2.一元一次不等式组的应用;3.最值问题;4.方案型.
17.(xx四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.
【解析】
试题分析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
试题解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.
答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.
(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.
∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴
20.520.3(10)8 20040005400
m m
m
⨯+⨯-≥
⎧
⎨
+≤
⎩
,解得:5≤m≤7,
∴有三种不同方案.
∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题.。