高考文科数学 复数小题-知识点、考法及解题方法

合集下载

2023年统考版《师说》高考数学复习(文科)课件 第12章 复数、推理与证明、算法

2023年统考版《师说》高考数学复习(文科)课件 第12章 复数、推理与证明、算法

(2)复数加法的运算定律
复数的加法满足交换律、结合律,即对任何z1、z2、z3∈C,有z1+z2
=z2+z1,(z1+z2)+z3=z1+(z2+z3).
二、必明3个常用结论
1+i
1−i
2
1.(1±i) =±2i; =i; =-i;
1−i
1+i
2.-b+ai=i(a+bi);
3.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+i4n+1+i4n+2+i4n+
第一节 数系的扩充与复数的引入
必备知识—基础落实
关键能力—考点突破
·最新考纲·
1.理解复数的基本概念.
2.理解复数相等的充要条件.
3.了解复数的代数表示及其几何意义.
4.能进行复数代数形式的四则运算.
5.了解复数代数形式的加、减运算的几何意义.
·考向预测·
考情分析:复数的基本概念(复数的实部、虚部、共轭复数、复数的
4a = 4
所以,ቊ
,解得a=b=1,因此,z=1+i.
6b = 6
)
(3)[2021·全国甲卷]已知(1-i)2z=3+2i,则z=(
3
3
A.-1- i B.-1+ i
2
3
C.- +i
2
3
D.- -i
2
2
答案: (3)B
3+2i
解析: (3)(1-i)2z=-2iz=3+2i,z= −2i =
3+2i ·i −2+3i
3

=-1+
i.
−2i·i
2
2
)
反思感悟 复数代数形式运算问题的解题策略
复数的

复数的高考必备知识点

复数的高考必备知识点

复数的高考必备知识点复习高考,是所有学生必须经历的一段时间,而其中最重要的就是掌握高考的必备知识点。

高考的题目范围广泛,考查的知识点也非常繁多,掌握这些知识点,对于备战高考至关重要。

本文将为大家总结复数的高考必备知识点,并从不同学科的角度进行讲解。

一、语文1. 名词复数形式的构成:大多数名词在单数形式后面加-s构成复数形式,如book-books。

以-s、-sh、-ch、-x结尾的名词,在单词后面加-es构成复数,如class-classes。

以-o结尾的名词,一般加-es构成复数,如potato-potatoes。

但也有例外,如photo-photos。

2. 不可数名词没有复数形式。

例如:information,water。

二、数学1. 复数的基本概念:复数是实数和虚数的总称,形如a+bi的数称为复数,其中a是实部,b是虚部,而i是虚数单位。

2. 复数的加减法:实部相加,虚部相加,例如(3+2i)+(1+3i)=4+5i。

实部相减,虚部相减,例如(3+2i)-(1+3i)=2-1i。

3. 复数的乘法:实部相乘减虚部相乘,例如(3+2i)*(1+3i)=(3*1-2*3)+(3*2+1*3)i=3-6+6i+3i=9-3+9i=6+9i。

4. 复数的除法:利用复数的共轭进行计算,例如(3+2i)/(1+3i)=(3+2i)(1-3i)/(1+3i)(1-3i)=[(3+2i)(1-3i)]/[(1+3i)(1-3i)]=(3-9i+2i-6i^2)/(1-3i+3i-9i^2)=(3-7i+6)/(1+9)=(9-7i)/10=0.9-0.7i。

5. 复数的幂运算:利用指数法则进行计算,例如(i^2)^3=i^6=(-1)^3=-1。

三、化学1. 元素符号的复数形式:化学元素的符号在表示复数形式时,一般在后面添加-s,如atoms。

2. 化学方程式中的复数:在化学反应方程式中,反应物和生成物的系数表示物质的摩尔比。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

高考复数知识点精华总结

高考复数知识点精华总结

复 数1.复数的概念:(1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R);(3)复数的实部、虚部、虚数与纯虚数。

2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。

应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。

4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i ,(1)加法:z1+z2=(a1+a2)+(b1+b2)i ;(2)减法:z1-z2=(a1-a2)+(b1-b2)i ;(3)乘法:z1〃z2=(a1a2-b1b2)+(a1b2+a2b1)i ;(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。

(6)特殊复数的运算:① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模|Z|=22a b +, 且2||z z z ⋅==a 2+b 2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩. 两个复数不能比较大小,只能由定义判断它们相等或不相等。

高考复数知识点精华总结

高考复数知识点精华总结

高考复数知识点精华总结1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。

2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。

应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。

4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。

(6)特殊复数的运算:① ni (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模, 且2||z z z ⋅==a2+b2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩.两个复数不能比较大小,只能由定义判断它们相等或不相等。

新高考数学二轮复习知识点总结与题型归纳 第2讲 复数(解析版)

新高考数学二轮复习知识点总结与题型归纳 第2讲 复数(解析版)

第2讲复数本章内容主要是复数的概念、复数的运算.引入虚数,这是中学阶段对数集的最终扩充.需要掌握复数的概念、弄清实数与复数的关系,掌握复数代数形式的运算(包括加、减、乘、除),了解复数的几何表示.由于向量已经单独学习,因此复数的向量形式与三角形式就不作要求,主要解决代数形式.【知识要点】1.复数的概念中,重要的是复数相等的概念.明确利用“转化”的思想,把虚数问题转化为实数问题加以解决,而这种“转化”的思想是通过解实数的方程(组)的方法加以实现.2.复数的代数形式:z=a+bi(a,b∈R).应该注意到a,b∈R是与z=a+bi为一个整体,解决虚数问题实际上是通过a,b∈R在实数集内解决实数问题.3.复数的代数形式的运算实际上是复数中实部、虚部(都是实数)的运算.【复习要求】1.了解数系的扩充过程.理解复数的基本概念与复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.【例题分析】1.将下列各式的运算结果在复平面中表示,在第四象限的为()A.1ii+B.1ii+-C.1ii-D.1ii--【答案】A【考点】复数的代数表示法及其几何意义【专题】转化思想;定义法;数系的扩充和复数;数学运算【分析】利用复数的运算分别求出四个选项中复数的代数形式,判断其对应的点所在的象限即可.【解答】解:对于A,由11iii+=-,故对应的点在第四象限,所以A正确;对于B,11iii+=-+-,故对应的点在第二象限,所以B不正确;对于C,11iii-=--,故对应的点在第三象限,所以C不正确;对于D,11iii-=+,故对应的点在第一象限,所以D不正确.故选:A.【点评】本题考查了复数的几何意义的运用,主要考查了复数的四则运算法则的运用,属于基础题.2.若复数z 满足|1||12|z i i -+=-,其中i 为虚数单位,则z 对应的点(,)x y 满足方程( )A .22(1)(1)5x y -+-=B .22(1)(1)5x y -++=C .22(1)(1)5x y ++-=D .22(1)(1)5x y +++= 【答案】B【考点】复数的代数表示法及其几何意义;复数的模【专题】函数思想;转化法;数系的扩充和复数;数学运算【分析】由已知求得z ,代入|1||12|z i i -+=-,求模整理得答案.【解答】解:设z x yi =+,|1||12|z i i -+=-,|(1)(1)||12|x y i i ∴-++=-, ∴2222(1)(1)1(2)x y -+++-,故22(1)(1)5x y -++=,故选:B .【点评】本题考查复数模的求法,是基础题.3.已知复数2i z i =+,则其共轭复数z 的虚部为( ) A .25 B .25- C .25i D .25i - 【答案】B【考点】复数的运算【专题】转化思想;定义法;数系的扩充和复数;数学运算 【分析】利用复数的四则运算求出z ,结合共轭复数的定义求出z ,即可得到其虚部. 【解答】解:(2)21122(2)(2)555i i i i z i i i i ⋅-+====+++-,则1255z i =-, 所以共轭复数z 的虚部为25-. 故选:B .【点评】本题考查了复数的运算,主要考查了复数的四则运算以及共轭复数的应用,属于基础题.4.复数12z i =+,213z i =-,其中i 为虚数单位,则12z z z =⋅在复平面内的对应点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【考点】复数的代数表示法及其几何意义【专题】转化思想;综合法;数系的扩充和复数;数学运算【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数12z i =+,213z i =-,则12(2)(13)23(16)55z z z i i i i =⋅=+-=++-=-,z 在复平面内的对应点(5,5)-位于第四象限,故选:D .【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.5.已知i 是虚数单位,则1||1i i +=- 1 . 【答案】1.【考点】复数的模;复数的运算 【专题】对应思想;转化法;数系的扩充和复数;数学运算【分析】化简1|||||1i i i+=-,求出模即可. 【解答】解:21(1)21(1)(1)2i i i i i i i ++===--+, 故1||||11i i i+==-, 答案为:1.【点评】本题考查了复数求模问题,是基础题.6.函数()(*n n f n i i n N -=+∈,i 是虚数单位)的值域可用集合表示为 {2-,0,2} .【答案】{2-,0,2}.【考点】虚数单位i 、复数【专题】转化思想;定义法;数系的扩充和复数;数学运算【分析】对n 进行赋值,发现函数()f n 的周期为4,从而得到函数的值域.【解答】解:因为f (1)0=,f (2)2=-,f (3)0=,f (4)2=,f (5)0=,f (6)2=-,f (7)0=,f (8)2=,⋯所以函数()f n 的周期为4,故函数()f n 的值域为{2-,0,2}.故答案为:{2-,0,2}.【点评】本题考查了虚数单位i 的理解和应用,解题的关键是判断出()f n 是周期为4的函数,属于基础题.7.已知复数z 满足(2)34(z i i i +=+是虚数单位),则||z5 . 5.【考点】复数的模【专题】转化思想;综合法;数系的扩充和复数;数学运算【分析】把已知等式变形,再由商的模等于模的商求解. 【解答】解:由(2)34z i i +=+,得342i z i+=+, 34||||525i z i +∴===+ 5.【点评】本题考查复数模的求法,考查数学转化思想方法,是基础题.8.已知z ∈C 且z ﹣2+|z |=2+12i ,求z 的值.【考点】复数的运算;复数的模.【专题】方程思想;转化法;数系的扩充和复数;数学运算.【答案】z =3+4i .【分析】设z =a +bi ,a ,b ∈R ,根据条件得到关于a ,b 的方程,求出a ,b 的值,即可得到z .【解答】解:设z =a +bi ,a ,b ∈R ,则,即 因此,解得, ∴z =3+4i .【点评】本题考查了复数的运算法则,复数相等,考查了推理能力与计算能力,属于基础题。

高中数学复数知识点总结

高中数学复数知识点总结

1. 复数的概念与表示1.1 复数的概念复数是由实数和虚数构成的数,形式为a + bi,其中a和b都是实数,而i是虚数单位,满足i^2 = -1。

1.2 复数的表示复数可以用代数形式、几何形式和指数形式表示。

•代数形式:a + bi•几何形式:复平面上的点•指数形式:re^(iθ)2. 复数的运算2.1 复数加减法对于两个复数a + bi和c + di,它们的和与差分别为:•和:(a + c) + (b + d)i•差:(a - c) + (b - d)i2.2 复数乘法对于两个复数a + bi和c + di,它们的积为:(ac - bd) + (ad + bc)i2.3 复数除法对于两个复数a + bi和c + di,它们的商为:((ac + bd) + (bc - ad)i) / (c^2 + d^2)3. 复数的性质与运算规律3.1 复数的模复数a + bi的模为:|a + bi| = √(a^2 + b^2)3.2 复数的共轭复数a + bi的共轭为:a - bi3.3 复数的运算规律•交换律:(a + bi)(c + di) = (c + di)(a + bi)•结合律:((a + bi)(c + di))(e + fi) = (a + bi)((c + di)(e + fi))•分配律:(a + bi)(e + fi) = ae + afi + bei + bfi•单位元:1 + 0i•逆元:对于非零复数a + bi,其逆元为(a + bi)^{-1} = (a^2 + b^2)^{-1}(a - bi)4. 复数的应用4.1 复数与方程许多实系数一元二次方程可以通过配方、因式分解等方法转化为复数根的形式。

4.2 复数与函数复数可以表示为函数的极限、积分和级数。

例如,欧拉公式e^(iθ) = cos(θ) + i sin(θ)。

4.3 复数与物理在电磁学、量子力学等领域,复数常用于表示波动方程、能量本征值等物理量。

复数高考基础题型总结及解题技巧

复数高考基础题型总结及解题技巧

复数高考基础题型总结及解题技巧复数高考基础题型总结及解题技巧一、概述复数在高考数学中是一个基础而重要的概念,涉及到代数、函数、方程等多个章节。

在高考中,复数的题型也是非常常见的,包括求模、共轭、乘法、除法、方程等多种类型。

了解复数的基础知识,并掌握解题技巧,对于高考数学的备考至关重要。

二、复数的基本概念1. 复数的定义复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,bi 为虚部,i为虚数单位,满足i^2=-1。

2. 复数的表示形式复数可以表示为代数形式a+bi,也可以表示为三角形式r(cosθ + isinθ),其中r为复数的模,θ为辐角。

3. 复数的运算复数的加法、减法、乘法、除法与实数的运算类似,需要分别对实部和虚部进行运算。

三、常见高考基础题型及解题技巧1. 求复数的模题型:已知复数z=a+bi,求z的模|z|。

解题技巧:利用复数的定义,|z|=√(a^2+b^2)。

2. 求复数的共轭题型:已知复数z=a+bi,求z的共轭复数z*。

解题技巧:z*的实部和虚部分别与z相同,但虚部的符号相反,即z*=a-bi。

3. 复数的乘法题型:计算复数z1=a+bi和z2=c+di的乘积。

解题技巧:根据复数的乘法规则,进行实部和虚部的分配、合并、整理,得到结果。

4. 复数的除法题型:计算复数z1=a+bi除以z2=c+di的商。

解题技巧:利用复数的定义和除法运算规则,将分母有理化,然后进行分子分母同乘后整理得到商的实部和虚部。

5. 解复数方程题型:解方程z^2=a,其中a为实数。

解题技巧:化为二元一次方程组,利用求根公式解得复数解。

四、个人观点与总结复数作为数学中的一个重要概念,不仅在高考中频繁出现,而且在数学建模、物理等领域也有着广泛的应用。

对复数的基础知识和解题技巧进行深入的学习和掌握,对于数学学科的发展至关重要。

希望同学们能够在备考高考数学的过程中,认真对待复数的学习,多加练习,提高对复数的理解和运用能力。

(精选试题附答案)高中数学第七章复数解题技巧总结

(精选试题附答案)高中数学第七章复数解题技巧总结

(名师选题)(精选试题附答案)高中数学第七章复数解题技巧总结单选题1、2−i 1+2i =( )A .1B .−1C .iD .−i答案:D分析:根据复数除法法则进行计算.2−i 1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−5i 5=−i 故选:D小提示:本题考查复数除法,考查基本分析求解能力,属基础题.2、已知i 是虚数单位,若z =i +a 1+i 为纯虚数,则实数a =( ) A .1B .−1C .2D .−2答案:B分析:由复数除法法则化简复数为代数形式,然后由复数的定义求解.因为z =i +a 1+i =(a+i )(1−i )(1+i )(1−i )=a−a i +i −i 22=a+12+1−a 2i 为纯虚数, 所以{a+12=01−a 2≠0 ,a =−1.故选:B .3、在复平面内,复数2−i1−3i 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A分析:根据复数的运算法则,求得2−i1−3i =12+12i,结合复数的几何意义,即可求解.由题意,复数2−i1−3i =(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,所以该复数在复平面内对应的点为(12,12),在第一象限.故选:A.4、若复数z满足z(1−2i)=5,则()A.z=1−2iB.z+1是纯虚数C.复数z在复平面内对应的点在第二象限D.若复数z在复平面内对应的点在角α的终边上,则cosα=√55答案:D分析:利用复数的除法求复数z及对应点坐标,并确定所在的象限,结合各选项描述判断正误.由题设,z=51−2i=1+2i且对应点在第一象限,A、C错误;z+1=2+2i不是纯虚数,B错误;由z在复平面内对应的点为(1,2),所以cosα=√55,D正确.故选:D5、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解. 根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i. 故选:A.6、若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33i D.−13−√33i答案:C分析:由共轭复数的概念及复数的运算即可得解.z̅=−1−√3i,zz̅=(−1+√3i)(−1−√3i)=1+3=4.z zz̅−1=−1+√3i3=−13+√33i故选:C7、欧拉公式e iθ=cosθ+isinθ(e为自然底数,i为虚数单位)是瑞士数学家欧拉最早发现的,是数学界最著名、最美丽的公式之一根据欧拉公式,复数e2i在复平面内对应点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:B分析:根据欧拉公式有e2i=cos2+isin2,判断cos2, sin2即可确定e2i对应点所在象限.由题意知:e2i=cos2+isin2,而π2<2<π,∴cos2<0, sin2>0,故e2i对应点在第二象限.故选:B8、已知复数z=1+√2i(i为虚数单位),设z̅是z的共轭复数,则z̅的虚部是()A.√2B.−√2C.√2i D.−√2i答案:B分析:先求出共轭复数,从而可求出其虚部由z =1+√2i ,得z =1−√2i ,所以z̅的虚部是−√2,故选:B9、复数11−3i 的虚部是( ) A .−310B .−110C .110D .310答案:D分析:利用复数的除法运算求出z 即可.因为z =11−3i =1+3i (1−3i)(1+3i)=110+310i , 所以复数z =11−3i 的虚部为310. 故选:D. 【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.10、复数2−i 1+3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C分析:利用复数的除法可化简2−i 1+3i ,从而可求对应的点的位置.∵2−i1+3i =(2−i )(1−3i )10=−1−7i 10,所以该复数对应的点为(−110,−710),在第三象限.故选:C.填空题11、设i 为虚数单位,则1−i 1+i 的虚部为______.答案:−1解析:根据复数除法运算化简复数,进而得结果1−i 1+i =(1−i)⋅(1−i)(1+i)⋅(1−i)=1−2i+i21−i2=−2i2=−i所以答案是:−1小提示:易错点睛:本题考查了复数的实部和虚部,在解题时一般利用分子、分母同乘分母的共轭复数进行运算,化简为a+bi的形式,b就是这个复数的虚部,一定要注意符号,考查学生的运算求解能力,属于易错题.12、3+2i−(2+5i)−4i=______.答案:1−7i##−7i+1分析:根据复数的加减法运算法则可得结果.3+2i−(2+5i)−4i==3−2+(2−5−4)i=1−7i.所以答案是:1−7i13、若复数m−3+(m2−9)i≥0,则实数m的值为________.答案:3分析:由题意知m−3+(m2−9)i为实数,实部大于或等于0,虚部等于0,即可求解.因为复数不能比较大小,所以m−3+(m2−9)i为实数,可得{m−3≥0m2−9=0解得m=3所以实数m的值为3,所以答案是:314、1−i1+2i(其中i是虚数单位)的共轭复数为___________.答案:−15+35i分析:首先根据复数代数形式的除法运算化简,再求出其共轭复数;解:1−i1+2i =(1−i)(1−2i)(1+2i)(1−2i)=1−2i−i+2i25=−15−35i故1−i1+2i (其中i 是虚数单位)的共轭复数为−15+35i 所以答案是:−15+35i15、已知z 1=(m 2+m +1)+(m 2+m −4)i(m ∈R ),z 2=3−2i ,则“m =1”是“z 1=z 2”的________条件. 答案:充分不必要分析:根据充分条件,必要条件的定义即得.当z 1=z 2时,必有m 2+m +1=3且m 2+m −4=−2,解得m =−2或m =1,显然“m =1”是“z 1=z 2”的充分不必要条件.所以答案是:充分不必要.解答题16、已知复数z =|2−3i |+3i ,求|z |.答案:√22分析:化简复数z ,利用复数的模长公式可求得结果.因为z =|2−3i |+3i =√22+(−3)2+3i =√13+3i ,因此,|z |=√13+32=√22.17、已知复数z 使得z +2i ∈R ,z 2−i ∈R ,其中i 是虚数单位.(1)求复数z 的共轭复数z̅;(2)若复数(z +mi)2在复平面上对应的点在第四象限,求实数m 的取值范围.答案:(1)4+2i ;(2)(−2,2).分析:(1)根据z +2i ∈R 、z 2−i ∈R ,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z̅;(2) 复数(z +mi)2在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围(1)设z =x +yi(x,y ∈R),则z +2i =x +(y +2)i∵z +2i ∈R∴y =−2又z2−i =x−2i2−i=2x+25+x−45i∈R,∴x=4综上,有z=4−2i∴z̅=4+2i(2)∵m为实数,且(z+mi)2=[4+(m−2)i]2=(12+4m−m2)+8(m−2)i∴由题意得{12+4m−m2>08(m−2)<0,解得−2<m<2故,实数m的取值范围是(−2,2)小提示:本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围18、已知复数z=m(m−1)+(m2+2m−3)i,当m取何实数值时,复数z是:(1)纯虚数;(2)z=2+5i.答案:(1)m=0;(2)m=2.解析:(1)利用m(m−1)=0,(m2+2m−3)≠0,即可求解.(2)利用复数相等的条件实部与虚部分别相等m(m−1)=2,(m2+2m−3)=5即可求解.(1)若复数是纯虚数,则{m(m−1)=0m2+2m−3≠0,解得{m=0或m=1m≠−3且m≠1,所以m=0(2)利用复数相等的条件实部与虚部分别相等可得{m(m−1)=2m2+2m−3=5,解得{m=2或m=−1m=2或m=−4,即m=219、已知复数z=4+2i1−i+m(m∈R),z的共轭复数为z. (1)若m=1,求:z⋅z;(2)若z⋅z>5|z|,求m的取值范围.答案:(1)13;(2)(−∞,−5)∪(3,+∞).分析:(1)先利用复数的除法运算化简可得z=1+m+3i,令m=1,再利用复数的乘法运算计算即可;(2)利用复数的乘法和模长公式化简不等式可得√(1+m)2+9>5,求解即可(1)z=4+2i1−i +m=(4+2i)(1+i)(1−i)(1+i)+m=1+m+3i,当m=1时,z=2+3i,则z̅=2−3i,∴z⋅z̅=(2+3i)(2−3i)=13.(2)由z⋅z̅>5|z|,得(1+m)2+9>5√(1+m)2+9,整理,得√(1+m)2+9>5,即(1+m)2>16,解得m<−5或m>3,即m的取值范围为(−∞,−5)∪(3,+∞).。

高三复数的知识点归纳总结

高三复数的知识点归纳总结

高三复数的知识点归纳总结复数是数学中的一个重要概念,它在高中数学中被广泛研究和应用。

掌握复数知识对于理解和解决各类数学问题具有重要意义。

在高三阶段,学生需要对复数的基本概念、运算规则以及与其他数学知识的联系有较为深入的了解。

本文将对高三阶段复数的相关知识点进行归纳总结。

1. 复数的定义和性质复数是由实数和虚数组成的数。

其中,实数部分与虚数部分分别用虚数单位i表示,虚数单位i的平方为-1。

复数可以表示为 a+bi 的形式,其中a为实部,b为虚部。

复数包含了实数,并且可以在复平面上进行表示。

复数的共轭、模、幂等性质是复数运算的重要基础。

2. 复数的四则运算复数的加减法与实数的加减法类似,分别对实部和虚部进行运算。

复数的乘法可以使用分配律展开计算,利用虚数单位i的平方性质化简计算。

复数的除法可以通过乘以共轭形式,并结合有理化等技巧化简问题。

四则运算的结果仍为复数,需要对结果进行合并和化简。

3. 复数的模与论证复数的模是复数到原点的距离,也是复数自身的绝对值。

根据复数的定义,模的计算公式为√(a^2 + b^2),其中a和b分别为实部和虚部。

复数的模具有非负性、三角不等式等性质。

通过模也可以计算复数的幂,利用三角函数的定义,可以将复数表示为模与辐角的形式,其中辐角表示复数与正实轴的夹角。

4. 复数与二次函数复数与二次函数之间存在着密切的联系。

对于二次函数的解,当判别式为负时,存在共轭的复数解;当判别式为零时,存在重根的解;当判别式为正时,存在两个不同的实数解。

在解二次函数问题时,通过运用复数知识可以得到更全面的解释和解答。

5. 复数平面与向量复数平面也称为阿尔及利亚平面,它由实轴和虚轴构成。

复数可以在复数平面上表示为点,复数的加减乘除运算可以通过复数平面上的几何对应关系进行解释和理解。

复数的模可以表示为原点到该复数所对应的点的距离。

复数还可以和向量一一对应,在复数平面上的几何运算可以转化为向量上的运算。

复数解题的基本技巧与应用指南

复数解题的基本技巧与应用指南

复数解题的基本技巧与应用指南复数数学问题是我们在数学学习中常常会遇到的一类问题,也是一类考验我们数学思维力和解题能力的问题。

掌握复数的基本知识和解题技巧,对于我们解决这类问题非常重要。

本文将为大家介绍一些基本的复数解题技巧,并提供应用指南,希望对大家的学习有所帮助。

一、复数的基本知识首先,让我们回顾一下复数的定义与性质。

复数是由实数和虚数构成的,记作a + bi,其中a是实数部分,bi是虚数部分,i是虚数单位,满足i^2 = -1。

复数有实部和虚部之分,当虚数部分为0时,复数退化为实数。

对于复数的加减乘除,遵循相应的运算规则。

二、复数解题的基本技巧1. 求复数的共轭复数的共轭指的是保持实部不变,虚部改变符号的复数。

其定义为a - bi,记作z*。

对于求复数的共轭,我们可以利用共轭的性质,也可以直接进行运算。

2. 求复数的模复数的模指的是复平面上复数到原点的距离,记作|z|,计算公式为|z| = √(a^2 + b^2)。

求复数的模可以通过直接计算或应用求平方根的方法求得。

3. 求复数的幂复数的乘方是指将复数自身连乘n次的结果,记作z^n。

对于求复数的幂,我们可以利用复数的极坐标表示,也可以通过直接计算的方法进行求解。

4. 求复数的根求复数的根是指找到满足z^n = w的复数z,其中w为已知复数。

对于求复数的根,我们可以利用复数的极坐标表示,也可以通过直接计算的方法进行求解。

三、复数解题的应用指南1. 几何意义复数在几何中有着广泛的应用。

当我们将复数看作是二维平面上的点时,可以将复数问题转化为几何问题进行解答。

例如,求两个复数的和可以理解为求两个点在平面上的相对位置关系。

2. 代数意义复数在代数中也有重要的应用。

当我们将复数看作是代数方程的解时,可以利用复数的性质解决代数问题。

例如,求复数方程的根可以通过将方程转化为复数的形式进行求解。

3. 物理意义复数在物理学中有着广泛的应用。

在振动和波动等领域,复数可以用来描述物理量的振幅和相位等特性。

复数试题及答案高中数学

复数试题及答案高中数学

复数试题及答案高中数学一、选择题1. 复数z = 3 + 4i的模是()A. 5B. √5C. √(3² + 4²)D. 42. 已知z₁ = 2 - i,z₂ = 1 + 3i,求z₁z₂的值是()A. 5 - iB. 5 + iC. 2 + 5iD. 2 - 5i3. 复数z = 1/(1 - i)的共轭复数是()A. -1 - iB. -1 + iC. 1 - iD. 1 + i二、填空题4. 复数3 - 4i的实部是______,虚部是______。

5. 若复数z满足|z| = 5,且z的实部为3,则z的虚部可以是______。

三、解答题6. 求复数z = 2 + 3i的共轭复数,并计算|z|。

7. 已知复数z₁ = 2 + i,z₂ = 1 - 2i,求z₁ + z₂,z₁ - z₂,z₁z₂。

8. 证明:对于任意复数z,都有|z|² = z * z的共轭复数。

答案一、选择题1. C. √(3² + 4²) = 52. A. 5 - i ((2 - i)(1 + 3i) = 2 + 6i - i - 3 = 5 - i)3. D. 1 + i (1/(1 - i) = (1 + i)/2)二、填空题4. 3,-45. ±4 (因为|z|² = 3² + 虚部²,所以虚部² = 25 - 9 = 16,虚部= ±4)三、解答题6. z的共轭复数是2 - 3i,|z| = √(2² + 3²) = √13。

7. z₁ + z₂ = (2 + i) + (1 - 2i) = 3 - iz₁ - z₂ = (2 + i) - (1 - 2i) = 1 + 3iz₁z₂ = (2 + i)(1 - 2i) = 2 - 4i + i - 2i² = 4 - i8. 证明:设z = a + bi,其中a和b是实数,i是虚数单位。

高考文科数学命题热点名师解密专题:复数的解题策略(含答案)

高考文科数学命题热点名师解密专题:复数的解题策略(含答案)

专题31 复数的解题策略一.【学习目标】1.理解复数的有关概念,掌握复数相等的充要条件,并会应用. 2.了解复数的代数形式的表示方法,能进行复数的代数形式的四则运算. 3.了解复数代数形式的几何意义及复数的加、减法的几何意义,会简单应用. 二.知识点与方法总结 1.复数的有关概念(1)复数的概念形如a +b i(a ,b ∈R)的数叫做复数,其中a ,b 分别是它的实部和虚部,若b ≠0,则a +b i 为虚数,若a=0,则a +b i 为纯虚数,i 为虚数单位.(2)复数相等:复数a +b i =c +d i ⇔a =c ,b =d (a ,b ,c ,d ∈R). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(4)复数的模向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R)的模,记作|z |或|a +b i|,即|z |=|a +b i|. 2.复数的四则运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2=ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0).3.两条性质(1)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i n +i n +1+i n +2+i n +3=0(其中n ∈N *);(2)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. 4.方法规律总结(1).设z =a +b i(a ,b ∈R),利用复数相等的充要条件转化为实数问题是求解复数常用的方法. (2).实数的共轭复数是它本身,两个纯虚数的积是实数.(3).复数问题几何化,利用复数、复数的模、复数运算的几何意义,转化条件和结论,有效利用数和形的结合,取得事半功倍的效果. 三.典例分析 (一)复数的概念例1.若复数(为虚数单位)在复平面内对应的点在虚轴上,则实数()A.B.2C.D.【答案】D【解析】复数在复平面内对应的点在虚轴上,则,故选练习1.若复数z=(3﹣6i)(1+9i),则()A.复数z的实部为21B.复数z的虚部为33C.复数z的共轭复数为57﹣21iD.在复平面内,复数z所对应的点位于第二象限【答案】C练习2.若复数(为虚数单位),则复数在坐标平面内对应点的坐标为()A.B.C.D.【答案】B【解析】z,则复数z在复平面内对应点的坐标是:(1,-1).故选:B.(二)复数的几何意义例2.已知复数在复平面内对应的点分别为,则()A.B.C.D.【答案】D【解析】∵复数在复平面内对应的点分别为(1,1),(0,1),∴=1+i,=i.∴.故选:D.练习1.复数在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】因为所以复数z在复平面所对应的点是(1,3)练习2.设复数满足,其中为虚数单位,则复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由(1+i)2•z=2+i,得2iz=2+i,∴,∴复数z对应的点的坐标为(,﹣1),位于第四象限.故选:D.练习3.已知,且,则实数的值为()A.0B.1C.D.【答案】C【解析】∵,∴∴=3,得,则,∴a=,故选:C.(三)复数的运算法则例3.计算(i为虚数单位),结果为()A.B.C.D.【答案】A【解析】=(11+2i)=-20-15i故选:A.练习1.复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】复数.在复平面内对应的点为(-1,2) 位于第二象限.故选B.练习2.已知复数是纯虚数,则()A.B.C.D.【答案】A【解析】依题意,由于为纯虚数,故,解得,故选A.练习3.定义,若展开式中一次项的系数为,则等于(为虚数单位)()A.B.C.1D.-1【答案】B(四)复数的模及几何意义例4.若复数,,其中是虚数单位,则的最大值为( )A.B.C.D.【答案】C【解析】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C练习1.已知复数,则A.B.C.1D.【答案】B【解析】,,则,故选:B.学-科网练习2.已知复数z1,z2在复平面内对应的点分别为A(-2,1),B(a,3).(1)若|z1-z2|=,求a的值;(2)复数z=z1·z2对应的点在第一、三象限的角平分线上,求a的值.【答案】(1)a=-3或a=-1。

数学高考复数必考知识点

数学高考复数必考知识点

数学高考复数必考知识点数学作为一门严格的科学,它的考试内容也是精确而全面的。

在高考数学中,复数是必考的一个重要知识点。

复数作为数学的一个分支,它的引入不仅丰富了数学的内容,也在实际生活中有着广泛的应用。

首先,我们来了解一下什么是复数。

复数是由实部和虚部组成的数,可以表示为a+bi的形式,其中a和b都是实数,且i是虚数单位。

实部a表示复数在实轴上的投影,虚部b表示复数在虚轴上的投影。

复数中的实轴和虚轴构成了复平面,我们可以通过在复平面上表示复数的位置来进行计算和分析。

复数的加减运算是比较简单的,只需要对实部和虚部进行分别相加或相减即可。

这一点与我们在小学学习的数字相加减非常类似。

例如,(2+3i)+(5-2i)=(2+5)+(3-2)i=7+i。

通过简单的计算,我们可以得到结果。

同样,复数的减法也是类似的。

复数的乘法运算相对复杂一些,需要运用到虚数单位i的平方等于-1的性质。

例如,(4+2i)(3-5i)=12-20i+6i-10i^2=22-14i。

值得注意的是,我们要注意分配律和减法的运算顺序,以保证计算的准确性。

除法运算是复数中最复杂的部分之一。

在计算复数的除法时,我们需要把除法转化为乘法,并借助共轭复数来进行运算。

具体方法是,先用虚数单位i的平方等于-1的性质消去分母中的虚部,将分母改造成实数。

然后,通过乘以分子的共轭复数,将分母分子的虚部都消去,最后可以得到结果。

例如,(4+2i)/(3-5i)可以进行如下计算:(4+2i)(3+5i)/(3-5i)(3+5i)=[(12+20i)+(6i-10)]/(3^2-(5i)^2)=[(12+26i)/34=(6/17)(6+13i)。

复数的数学运算还包括指数和对数运算。

特别是复数的指数运算,比如求e^(iθ)的形式。

通过欧拉公式,我们可以将复数的指数形式转化为三角函数的形式,进而进行计算。

同时,我们还需要注意指数运算中的周期性,因为三角函数是周期性的。

高中数学复数题型归纳总结

高中数学复数题型归纳总结

高中数学复数题型归纳总结一、复数概念复数是由实部和虚部构成的数,可以用形如a+bi的形式表示,其中a为实数部分,b为虚数部分,i为虚数单位,且i^2=-1。

二、常见运算法则1.加法和减法:实部与实部相加减,虚部与虚部相加减。

2.乘法:使用分配律展开,i^2=-1,进一步简化计算。

3.除法:用有理化的方法进行分子分母的有理化,并利用i^2=-1进行简化。

三、复数的表示形式1.代数形式:a+bi,a、b为实数。

2.三角形式:r(cosθ+isinθ),r为复数的模,θ为辐角或幅角。

3.指数形式:re^(iθ),r为复数的模,θ为辐角或幅角。

四、复数共轭对于复数z=a+bi,其共轭复数记为z*,即共轭复数与原复数的虚部符号相反,即z*=a-bi。

五、复数的模对于复数z=a+bi,其模记为|z|,即模等于复数的实部与虚部构成的向量的长度,即|z|=√(a^2+b^2)。

六、复数的辐角或幅角对于复数z=a+bi,其辐角或幅角记为arg(z),即辐角或幅角等于复数与实轴正方向形成的夹角。

七、复数的乘方对于复数z=a+bi,其乘方可以使用三角形式来计算,即z^n=r^n(cos(nθ)+isin(nθ)),这里r为模,θ为辐角或幅角。

八、复数的根式对于复数z=a+bi,其根式可以使用三角形式来计算,即z^(1/n)=r^(1/n)(cos(θ/n)+isin(θ/n)),这里r为模,θ为辐角或幅角。

九、复数的应用领域1.电学领域:交流电的分析与计算可以使用复数来表示。

2.物理领域:波函数等的计算与分析可以使用复数来表示。

3.工程领域:信号处理、图像处理等需要对信号进行计算与分析的领域中,复数也有着广泛的应用。

综上所述,复数是由实部和虚部构成的数,具有加法、减法、乘法、除法等运算法则。

复数可以用代数形式、三角形式和指数形式来表示,其中三角形式和指数形式可以方便地进行复数的乘法、除法、乘方和根式运算。

复数在电学、物理和工程等领域有着广泛的应用,是高中数学中重要的内容之一。

高考复数知识点精华总结

高考复数知识点精华总结

高考复数知识点精华总结1.复数的概念:复数是由实部和虚部组成的数,可以表示为z=a+bi,其中a和b都是实数,i是虚数单位。

2.复数集:复数集包括整数、有理数、实数(当b=0时)、分数、小数、无理数、纯虚数和虚数。

3.复数a+bi的实部为a,虚部为b,i是虚数单位。

当b=0时,a+bi是实数,当b≠0时,a+bi是虚数。

若a=0且b≠0,则a+bi是纯虚数。

4.复数的四则运算:加法、减法、乘法、除法都可以用实数单位和虚数单位进行运算。

特殊复数的运算包括周期性运算和(1±i)2=±2i等。

5.共轭复数与复数的模:复数z=a+bi的共轭复数为a-bi,模为|z|=√(a^2+b^2)。

共轭复数关于实轴对称,若b=0,则实数a与其共轭复数相等。

6.两个复数相等的定义为a+bi=c+di,其中a、b、c、d都是实数。

复数不能进行大小比较,只能由定义判断它们相等或不相等。

在运算中需要将虚数单位i的平方i^2=-1结合到实际运算过程中去。

6.复数的除法可以通过将分母实化得到,即满足(c+di)(x+yi)=a+bi (c+bi≠0)的复数x+yi被称为复数a+bi除以复数c+di的商。

由于两个共轭复数的积是实数,因此可以得到以下公式:a+bi / (c+di) = (ac+bd)/(c^2+d^2) + (bc-ad)i/(c^2+d^2)7.复数a+bi的模表示复数a+bi的点到原点的距离。

1.例1:对于复数z=m+1+(m-1)i,当m=1时,z是实数;当m≠1时,z是虚数;当m=-1时,z是纯虚数;当m<-1时,z对应的点Z在第三象限。

例2:已知(2x-1)+i=y-(3-y)i,其中x。

y∈R,求x。

y。

解得x=2.y=4.2.例4:对于复数z=m25+(m2+3m-10)i,当虚部m2+3m-10=0时,z为实数,解得m=2;当虚部m2+3m-10≠0且分母不为零时,z为虚数,解得m≠2且m≠±5;当虚部为0且分母不为零时,z为纯虚数,解得m=-2.3.计算i+i2+i3+……+i2005,可以将i的周期性用以下公式表示:i+i2+i3+……+i2005=(i+i2+i3+i4)+……+(i2001+i2002+ i2003+i2004)+i2005=(i-1-i+1)+ (i-1-i+1)+……+(i-1-i+1)+i。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档